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ABSTRACT Mineral image classification technology based on machine vision is an efficient system for ore
sorting. With the development of artificial intelligence and computer technology, the deep learning-based
mineral image classification system is gradually applied to ore sorting. However, there is a bottleneck in
improving classification accuracy, and the feature extraction ability of the CNNs model is relatively limited
for multi-category mineral image classification tasks. Therefore, four visual attention blocks are designed
and embedded in the existing CNNs model, and newmineral image classification models based on the visual
attention mechanism and CNNs are proposed. Then, referring to the building strategies of the different depth
ResNet, we build various CNNs model embedding with attention blocks for mineral image classification
and visualize the models by Grad-CAM to observe the change in classification weight distributions and
classification weight values. Finally, by using the confusion matrices, this experiment systematically
evaluates the classification performance of the proposed models and analyzes the misjudgment rate.

INDEX TERMS Deep learning, visual attention mechanism, mineral image classification, Grad-CAM.

I. INTRODUCTION
At this stage, the exploitation and application of mineral
resources have entered a new era since the inventory of their
mineral resources has declined rapidly with the growth of
industrial development, which raises new demands for ore
mining and application technology. Recently, intelligent ore
sorting has become one of the crucial factors for mineral
processing and mining enterprises, which not only saves
workforce andmaterial consumption, increases mining safety
factors but also lays the foundation for sustainable devel-
opment. For example, intelligent ore sorting technology can
quickly realize the gangue discharge or pre-separation of
underground or concentrator feed and effectively reduce the
energy consumption of lump ore crushing, grinding, and other
processes.

When exploring intelligent ore sorting equipment, scholars
first applied it based on high-tech sensors, which effec-
tively replaces the manual sorting process, improves particle
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separation efficiency, and reduces pollution treatment
costs [1]. At present, the intelligent ore sorting equipment
put into production is mainly based on ray sensors and used
in large-grain particle identification and separation, including
XRT and XRF, which has a high classification accuracy
and fast classification speed [2]–[5]. However, the problems
such as high cost and high radiation still limit their further
application and development.

With the development of computer technology and digi-
tal image acquisition equipment, the intelligent ore sorting
equipment with digital images as processing objects has
been gradually applied to industrial practice. In contrast to
ray sensor-based sorting equipment, machine vision-based
ore sorting equipment extracts the ore feature information
from the images collected through optical components and
completes the image classification task in static or dynamic
scenes. Therefore, it has the advantages of low cost, high
efficiency, no radiation, and easy installation. At this stage,
there are two central technical cores of ore sorting equip-
ment based on machine vision: the machine learning-based
image classification technology and the deep learning-based
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image classification technology. Firstly, there are two main
streams of the machine learning-based image classification
technology, including the supervised learning algorithm and
unsupervised learning algorithm, among which supervised
learning algorithm has a better performance. Specifically,
the supervised learning algorithms mainly include Deci-
sion Tree [6], [7], Naive Bayesian [8], K-Nearest Neigh-
bors [9], Support Vector Machine (SVM) [10], which all
have been experimented, tested, and applied in mineral image
classification tasks[11]–[19]. However, the applications of
machine learning-based mineral image classification models
need to be supported with higher resolution images. Due to
harsh image acquisition environments and complex work-
ing conditions (rainy weather or dust), the stable acquisi-
tion of high-resolution images is relatively difficult, which
increases the workload and difficulty of image acquisition.
Additionally, in the machine learning-based ore image clas-
sification models, the process of feature selection requires
a series of experience and knowledge, which increases
the threshold of its application and limits its development
prospects.

On the other hand, with the development of artificial
intelligence and further exploration of computer technol-
ogy, the deep learning-based image classification technology
matures gradually and has achieved excellent performances
in many image-classification tasks [20]–[22]. Specifically,
it replaces the feature selection process with convolution neu-
ral networks (CNNs) to automatically extract image features
and filter the extracted feature maps. Additionally, the deep
learning-based image classificationmodel reduces the depen-
dence on high-resolution images, improving themodel classi-
fication efficiency and accuracy. In the field of mineral image
classification, scholars have explored the relative application
potentials of deep learning-based image classification sys-
tems. For example, combining the deep learning technology
and CNNs, Fu and Aldrich used VGGNet to classify mineral
images in South Africa and compared its performance with
traditional machine learning-based mineral image classifica-
tion systems [23]. Similarly, using VGGNet, Zhu et al. classi-
fied ten different ore slice images, the classification accuracy
reached 98.1%, and the time consuming of the single image
classification is only 1.5s [24]. Combined with VGG16 and
Principal Component Analysis (PCA), Sudakov et al. clas-
sified core slice images and achieve a preferred classifica-
tion accuracy [25]. In the exploration of the complex CNNs
models, based on the InceptionV3, LP et al. proposed a
four-classes rock image classification system, which has an
higher classification accuracy than machine learning-based
image classification models [26]. Zhang et al. efficiently
completed the classification task of potassium feldspar, per-
lite, plagioclase, and quartz images by combining Trans-
fer Learning technology with the InceptionV3 [27]. In the
comparison of the different CNNs-based image classifica-
tion models, Baraboshkin et al. used AlexNet, VGGNet,
and Inception to classify 20,000 rock images collected

from different regions and strata [28]. Additionally, because
of the excellent classification performance of CNNs mod-
els in mineral image classification tasks, it is also used
for coal gangue discharge [29], [30] and iron ore image
classification [31].

The performances of those mentioned above deep
learning-based ore image classification models on the cor-
responding tasks have proved that it will as the mainstream
of the intelligent ore sorting equipment. However, there
still have bottlenecks in its classification performance for
the multi-category (>2) mineral image classification tasks.
Meanwhile, it is widely known that the feature extraction
and operation processes of the CNNs models are automatic.
Therefore, some irrelevant information in the ore images
will interfere with the model feature extraction ability during
the model training phase, such as reflect light, dust, and
noise points, which will result in loss of model classification
accuracy. As a result, the above problems will limit the
application potentials and development prospects of the deep
learning-based ore image classification systems.

Nowadays, CNNs models that incorporate visual atten-
tion mechanisms have become a popular area in deep
learning-based image classification research, which is
inspired by the physiological perception of the human eyes
for environments. Precisely, the CNNs-based image clas-
sification model incorporating visual attention can extract
image feature information at key locations with a lower
extra computational cost, thus improving the classification
performance [32]. Therefore, in order to solve the above
difficulties and improve the application potentials of the deep
learning-based ore sorting equipment, this paper takes the
multi-category ore image classification task as the research
aspect and proposes to embed the visual attention mecha-
nism in the deep learning-based mineral image classifica-
tion model. Specifically, taking gas coal, coking coal and
anthracite as experimental objects, referring to the build-
ing strategy of the ResNet, this experiment firstly builds
four ResNet mineral image classification models with dif-
ferent depths for four-classes (<1.4g/cm3, 1.4-1.6g/cm3,
1.6-1.8g/cm3, and >1.8g/cm3) mineral image classification,
including ResNet18, ResNet34, ResNet50, and ResNet101.
After that, we embedded four visual attention modules into
the ResNet and compared the performance of different visual
attention modules. Finally, through various performance met-
rics and classification result visualization, this experiment
measures the increase of model complexity and the distribu-
tion change of the classification weight after adding the visual
attention modules.

In summary, this paper focuses on the following four
aspects of the deep learning-based mineral image classifica-
tion systems:

(1) How to build and embed visual attention modules for
mineral image classification models?

(2) Comparing the performance of the visual attention
modules in multi-category mineral image classification tasks.
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(3) Comparing the classification performance of the gen-
eral CNNs models and CNNs model embedded with visual
attention modules.

(4) How the visual attention modules influence the distri-
butions and values of model classification weight?

II. METHODOLOGY
This section mainly introduces the strategies and method-
ologies of building the deep learning-based mineral image
classification system that incorporates visual attention mech-
anism, mainly including dataset preparation and the building
of CNNs models embedded with attention blocks, as shown
in FIG. 1. Specifically, in the data set preparation stage,
this experiment uses Data Augmentation (DA) technology to
solve the problem of insufficient image data during training,
and when building the CNNs classification model embedded
with visual attentionmodules, this experiment mainly consid-
ers three aspects: Pooling strategy selection, attention block
construction, and CNNs model settings.

A. DATA AUGMENTATION
Sufficient image data is the application basis of the deep
learning-based image classification technology. However,
with the gradual exploration of CNNs models with deeper
layers and more complex structures, scholars often encounter
problems such as insufficient training data and unbalanced
data quantity between the different categories. Specifi-
cally, for the deep learning-based mineral image classi-
fication tasks, researchers often encounter problems from
three aspects: Firstly, the harsh working conditions of indus-
trial applications reduce the stability and efficiency of the
high-quality mineral image collection. Secondly, mineral
image classification is different from general image classifi-
cation tasks, so no uniform and large mineral image datasets
have been established. Therefore, the inadequate amount of
training images can lead to over-fitting problems in the train-
ing phase. Additionally, in the process of the dataset prepara-
tion, the imbalance quantity of ore images between different
categories will lead to the imbalance of the extracted features,
which will influence the model classification accuracy.

A practical and effective strategy to solve the above bot-
tlenecks is DA technology [33]. Specifically, DA technology
expands existing image data sets based on small data sets
already obtained by the applicants, and the classic image DA
methods include flipping, rotating, scaling, clipping, color
dithering, and adding Gaussian noise. Consequently, making
full use of the DA technology will improve the robustness of
the model and reduce the possibility of over-fitting in model
training.

Due to the mentioned advantages of the DA technology,
in the task of mineral image recognition and classification,
scholars always use DA for mineral image dataset prepara-
tion, which effectively solves the problem of insufficient data
and unbalanced data quantity between different category in
the training phase, promoting the further application of deep
learning-based ore sorting equipment [28], [34], [35].

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNNs is a feed-forward neural network with deep structure
and convolution calculation, and it is one of the representative
algorithms in deep learning. It has strong feature-learning
abilities and uses convolution layers to extract features from
input images by hierarchical structure automatically. Specif-
ically, the basic CNNs are composed of convolution lay-
ers, activation layers, normalization layers, pooling layers,
and fully connected layers, as shown in FIG. 2. For image
classification tasks, the convolution layers use convolution
kernel filters to calculate the pixel information in the input
image and output it as matrices. Normalization layers reduce
the dimension of the convolution layer outputs, enhance the
model convergence and improve the model training effi-
ciency. Activation layers process the output feature informa-
tion of the normalization layers to determine whether valid
image features have been captured. Pooling layers operate
a down-sampling process that preserves some of the rep-
resentative features in specific ways, thereby reducing the
dimensions of the feature space. The fully connected layers
link the front convolution sections and combine the extracted
features non-linearly to get the output. At the same time,
the output value of the last fully connected layer is an
N-dimensional vector, which is the number of classification
categories.

Additionally, it is worth knowing that deep learning-based
image classification technology has shown excellent perfor-
mance in many fields, such as agriculture image classifi-
cation [36] and medical image classification [37], and the
typical networks include AlexNet [33], VGGNet [38], Incep-
tion [39] and ResNet [40].

C. POOLING STRATEGY IN CNNs
Pooling calculation is one of the common processes in CNNs,
which mimics the human visual system and reduces the
data dimension, often referred to as sub-sampling or down-
sampling. When building a CNNs model, the position of
the pooling layer is behind the convolution layer to reduce
the dimension of the convolution layer output, effectively
reducing network parameters and preventing over-fitting.
Additionally, pooling calculation will suppress noise, reduce
information redundancy, and improve detection scale and
rotation invariance. Pooling calculations in the CNNs model
include various pooling strategies, mainly divided into Max
Pooling, Average Pooling, and Stochastic Pooling, as shown
in FIG. 3.

Firstly, for Max Pooling, it selects the maximum value in
the pooling kernel area as the output value of the pooling
operation, and the gradient of the pooling value at other
locations is 0. Secondly, for Average Pooling, it adds and
averages the eigenvalues of each location in the correspond-
ing pooling kernel area, using the average as the output value
of the pooling operation. Additionally, for Stochastic Pooling,
the probability of being selected is first determined by com-
paring each value in the pooling kernel (the darker the color
in FIG. 3., the higher the probability of being selected). Then,
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FIGURE 1. Flow chart of CNNs-based classification system with visual attention mechanism.

FIGURE 2. General convolutional neural networks framework including inputs, convolution layers, batch normalization layers,
pooling layers, active layers, and fully connected layers.

FIGURE 3. Different pooling strategies in CNNs including Max Pooling, Mean pooling, and stochastic pooling.

it randomly selects the representative value of the pooling
kernel based on the selecting probability from each location.

For image classification tasks, different pooling strategies
focus on and preserve different information in the input
images. Specifically, Max Pooling, which chooses the max-
imum value, will pay more attention to the more specific
information in the input image to better preserve the texture
information in the input image. Average Pooling tends to
preserve the feature information of the overall input image,
highlighting the background information and contour infor-
mation of the target objects better. Stochastic Pooling has no
specific direction of interest in preserving feature information
in images, but it normalizes the input image feature infor-
mation by random selection, which improves the robustness
of the CNNs model and averages the attention to different
feature information.

However, there are still some drawbacks to using only one
pooling strategy for down sampling. Firstly, using Average
Pooling or Max Pooling alone can lead to loss of useful

information. Since the Average Pooling picks the average
of the activation values for all pixels, the higher positive
activation values may offset the lower negative activation val-
ues, resulting in a loss of discriminatory feature information,
while theMax Pooling discards all non-maximum values, this
will directly result in the loss of helpful feature information.
Additionally, Stoical Pooling has a lower tendency to the spe-
cific feature preservation, like texture information or contour
information.

D. ATTENTION MECHANISM IN CNNs
In order to solve the problem of the loss of helpful and specific
feature information caused by using a single pooling strategy,
this experiment proposes four attention blocks that incorpo-
rate visual attention mechanisms, mainly including Squeeze
and Excitation (SE) block, Channel Attention (CA) block,
Spatial Attention (SA) block, and Mixed Attention (MA)
block. The construction details of various visual attention
blocks are as follow.
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FIGURE 4. Squeeze and excitation block framework in CNNs, where H, W, and C are the dimension of the feature map, H is height,
W is width, C is channel, Ftr is the convolution calculation, Fsq is the Squeeze operation, Fex is the Excitation operation, Fscale is
the Reweight operation, X̃ is the feature map after attention.

1) SQUEEZE AND EXCITATION BLOCK
SE block originated from SE Net proposed by Hu et al.
in the Image Net 2017 competition, which emphasizes the
information relationship along the channel direction in the
CNNs model, and the basic design method of SE block is
shown in FIG. 4., mainly consisting of three steps, Squeeze,
Excitation and Scale [41].

The implementation of the SE block requires the input of
previous feature maps, so in the front-end of the SE block,
the input image needs to go through a standard convolution
operation to get the feature maps (Ftr), as shown in EQ (1).

uc = vc ∗ X =
∑c′

S=1
vsc ∗ x

s (1)

vc The c-th filter
X The input images
∗ The convolution calculation operation
uc The output feature map
vsc A 2D spatial kernel representing a single channel

of vc that acts on the corresponding channel of xs

After the feature maps enter the SE block, it first per-
forms the Squeeze operation, which a simple cluster tech-
nique, like Global Average pooling (EQ (2).). Specifically,
Squeeze processing uses global average pooling operations
to squeeze each feature map, turning each two-dimensional
channel feature into a real number, and it will have a global
perception field, representing the global feature distribution
of the channel response, which makes the global information
available to the CNNs lower layers. Eventually, c feature
maps will become a 1× 1× c real number sequence.

Zc = Fsq (uc) =
1

H ×W

∑H

i=1

∑W

j=1
uc (i, j) (2)

H The height of the input feature map
W The width of the input feature map
uc (i, j) The feature map at (i, j)

After the Squeeze operation, the output feature map is
processed by Excitation operation, which is an adaptive recal-
ibration, and the SE block accomplishes this by using a fully
connected layer (EQ (3).). During the processing, the dimen-
sions of W1 are C/r ∗ C , where r is a scale parameter to
reduce the number of channels and the amount of computa-
tion. Then, it will be calculated by a Rectified Linear Unit
(ReLU) function and multiplied by W2, which is also a fully

FIGURE 5. Squeeze and excitation block setting in ResNet.

connected layer operation, and the dimensions of W2 are
C ∗C/r . The bottleneck structure of the two fully connected
layers effectively reduces themodel complexity, improves the
model generalization ability, and makes the SE block more
non-linear to fit the complex relations between channels bet-
ter. Among them, the first fully connected layer plays the role
of dimension reduction, and the second fully connected layer
is used for dimension restoring. Finally, a normalized weight
between 0 and 1, the output value s, is obtained by the Sig-
moid gating. The Sigmoid function effectively learns about
the non-linear, non-mutually exclusive correlations between
channels and ensures visual attentions for multiple channels.

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (3)

z The output of the Squeeze operation
W1 The first fully connected operation
δ The ReLu calculation
W2 The second fully connected operation
σ The sigmoid function calculation

After an Excitation operation, the feature will be
reweighted, which is accomplished by concatenating the nor-
malized weights onto feature maps of each channel, also
known as Scale operation. Specifically, the Scale operation
regards the Excitation output as the importance of each chan-
nel and weights it to the previous feature by multiplying the
weight coefficients (EQ (4).).

X̃c = Fscale (uc, sc) = sc · uc (4)

X̃c The channel-wise multiplication between the
scalar sc and the feature map uc

The SE block can be directly and flexibly applied to the
existing CNNs models, and its embedding strategy in ResNet
is shown in FIG. 5. Specifically, for ResNet, since it contains
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residual modules, the SE block can be directly embedded in
its residual learning branch.

Firstly, for feature maps with the size of H × W × C ,
the SE block first squeezes each feature map through global
average pooling calculation to get a 1 × 1 × C real number
column, which is the Squeeze operation; Two fully connected
layers are then introduced for Excitation operation, with a
1 × 1 × C/r size first fully connected layer and a 1 ×
1 × C size second fully connected layer. Next, through the
Sigmoid gating, the SE block normalizes the front output
values between 0-1, which represents the weight of each
channel. After that, the channel is recalibrated by multiplying
the attention weights with the original input feature map by
Scale operation. Consequently, through a set of input feature
map processing by SE block, the CNNs model will obtain a
feature map that incorporates the visual attention mechanism.

Although the embedding of the SE block will increase
the model training parameters and calculation complexity,
the increase is usually less than 1% of the original calcula-
tion parameters when r is set reasonably, and the calculation
formula of the parameter increment is shown in EQ (5).
As a result, embedding the SE blocks to CNNs models is
an efficient, fast, and less-cost way to apply visual attention
mechanisms.

Parameter increment = n
2C2

r
(5)

n The numbers of SE block in CNNs model
r The value of dimensionality reduction
C The numbers of channels in SE block

2) CHANNEL ATTENTION BLOCK AND SPATIAL ATTENTION
BLOCK
In order to further promote the application of CNNs model
that incorporates visual attention mechanism in image clas-
sification tasks, based on SE block, Woo proposed CA block
and SA block [42]. The setting strategies of the CA block and
SA block are shown in FIG. 6.

For CA block, it focuses on the problem of ‘‘what is
meaningful?’’ in the input feature map and calculates the
internal relationship between different channels. Specifically,
CA block usesMax Pooling, Average Pooling, and Stochastic
Pooling to calculate input feature map F, respectively. Among
them, Max Pooling obtains more detailed texture features in
the input image, Average Pooling integrates spatial informa-
tion on each channel, and Stochastic Pooling increases the
generalization and robustness of the CNNsmodels. After that,
the three output feature maps Fcmax , F

c
avg, and Fcsto, which

are processing by different pooling strategies, will enter a
shared network consisting of a Multilayer Perceptron (MLP)
with only one hidden layer. Next, to reduce the training
parameters of the visual attention block, the middle layer
size of MLP will be set to Rc/r∗1∗1 (r is the decrement rate).
Then, the three new feature maps after Shared MLP are
element-wise summation, which adds up the corresponding
elements to get the channel attention feature maps. Therefore,

the channel attention feature maps represent the intrinsic rela-
tionship between different channels, solving the problems of
which channels are important and which channels should be
ignored, and the formula of the whole process is expressed as
EQ (6). Additionally, the parameter increment of embedding
CAblock is same as embedding SE block, as shown in EQ (5).

Mc (F) = σ (MLP (AvgPool (F))+MLP (MaxPool (F))

+MLP (StoPool (F))) = σ
(
W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcsto

)))
(6)

σ The sigmoid function calculation
Mc The weight coefficient of channel attention

For SA blocks, the main focus is the intrinsic relationship
of feature maps at the spatial level, solving the problems
of which regions are important and which are secondary.
As a complementary block of the CA block, the spatial
attention process is relatively simple and convenient. Specif-
ically, to get channel information for feature maps at spatial
space, SA block makes Max Pooling, Average Pooling, and
Stochastic Pooling along channel axis, respectively, to get
FSmax ∈ R1∗H∗W , FSavg ∈ R1∗H∗W , and FSsto ∈ R1∗H∗W . Then,
the SA block will concatenate the three output feature maps
and uses a standard convolution layer to get a spatial attention
feature map; the formula for the entire process is expressed as
EQ (7). Additionally, the parameter increment brought about
by the SA block is shown in EQ (8).

MS (F)

= σ
(
f 7×7 ([AvgPool (F) ;MaxPool (F) ; StoPool (F)])

)
= σ

(
f 7×7

([
F savg;F

s
max;F

s
sto

]))
(7)

σ The sigmoid function calculation
f 7×7 The convolution operation with the filter size of

7× 7
MS The weight coefficient of spatial attention

Parameters increment = 2nk2 (8)

n The number of embedding SA block in CNNs model
k The size of convolution kernel

It is worth noting that the CA block and SA block can be
flexibly embedded in existing CNNsmodels independently to
achieve channel or spatial feature attention, and their embed-
ding strategies are similar to SE block.

3) MIXED ATTENTION BLOCK (CHANNEL ATTENTION &
SPATIAL ATTENTION)
During the exploration of CNNs models that incorporate
visual attention mechanisms, researchers have found that
using a single type of attention block (spatial or channel) may
not meet the requirements of feature extraction.
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FIGURE 6. Channel attention block and spatial attention block framework.

FIGURE 7. Mixed attention block combining with channel attention block and spatial attention block, F represents the input
feature map, MC refers to the weight coefficient of channel attention, F ′ refers to the feature map after channel attention block,
MS refers to the weight coefficient of spatial attention, F ′′ refers to the feature map after the spatial attention block, which is the
final refined feature map, ⊗ refers to the element-wise multiplication.

Therefore, to address this problem, Woo proposed a mixed
attention block [42], which is the simultaneous application
of the CA block and SA block., as shown in FIG. 7. At the
same time, they pointed out that the combination, which sets
the CA block first and the SA block later, can improve the
feature-extraction performance and classification accuracy
better than the combination positions were interchanged.

Specifically, in the MA block, the former CA block solves
the problem of which parts of the input feature maps have
greater classification weight, and the latter SA block solves
the problem of which regions are more important in the input
feature maps. In the block, after the input feature map F
(F ∈ RC∗H∗W ) pass through the CA block, the feature
map and weight coefficient of channel attention (MC ) will be
multiplied to obtain F ′, which is the input of the SA block,
as shown in EQ (9). Then, when the F ′ pass through the
SA block, the weight coefficient of spatial attention (MS )
is multiplied with feature map to obtain the final refined

feature F ′′, as shown in EQ (10).

F ′ = MC (F)⊗ F (9)

F
′′

= MS
(
F ′
)
⊗ F ′ (10)

F The input feature map
MC The weight coefficient of channel attention
F ′ The feature map after CA block
MS The weight coefficient of spatial attention
F
′′

The feature map after the SA block, which is the
final refined feature map

⊗ The element-wise multiplication

Besides, the MA block can carry out end-to-end training
and can be embedded in any position in CNNs models while
only adding a few amounts parameters, as shown in EQ (11).
Additionally, taking the embedding strategy of the MA block
in ResNet as an example, it is obvious knowing that the
embedding strategy of the MA block is similar to that of
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FIGURE 8. Mixed attention block setting in ResNet.

the SE block, which can be embedded in the residual branch
directly, as shown in FIG. 8.

Parameters increment = n(
2C2

r
+ 2k2) (11)

n The number of the embedded MA blocks
C The number of channels
r The decrement rate
k The size of convolution kernel

III. CASE STUDY
A. EXPERIMENTAL SETTINGS
1) MATERIAL PREPARATION
In order to explore the application potentials of CNNsmodels
incorporating visual attention mechanism in mineral image
classification tasks, this experiment takes three types of ore
particles in China as experimental objects for mineral image
classification tasks, including gas coal, coking coal, and
anthracite coal. Specifically, three types of coal with 13-
25mmgranularity are selected bymanual screening, and each
type of coal is 20 kg. In this experiment, to simulate indus-
trial separation, the four classes mineral particles are divided
into<1.4g/cm3, 1.4g/cm3-1.6g/cm3, 1.6g/cm3-1.8g/cm3 and
>1.8g/cm3 according to the different density level. Before the
experiment, we determined the ash content and macerals of
the ore samples. The mean ash content of each type of coal
sample is shown in TAB 1., and the maceral analysis is shown
in TAB 2.

The results show that among the three types of coal sam-
ples, the ash content increases with the increase of density
level, that is, the ash content of each kind of <1.4g/cm3 coal
is the lowest, and that of each kind of >1.8g/cm3 coal is the
highest. In the comparison of the ash content in the three kinds
of coal samples, the ash content of anthracite in each density
set is relatively low, followed by gas coal and coking coal.

The results of maceral analysis show that under the same
density level of three types of coal, the organic matter of
each type of coal sample mainly concentrates on the vit-
rinite. With the increase of density level, the content of
organic matters decreases, and the content of mineral mat-
ters increases gradually, which means the particle of each
<1.4g/cm3 coal contains higher organic matters, and the par-
ticle of each >1.8g/cm3 coal contains more mineral matters
(inorganicmatters). In comparing three types of coal samples,
the anthracite vitrinite has higher organic matters, coke coal
is next, and gas coal is lowest under each density level.

Secondly, anthracite and gas coal have relatively more min-
eral matters (inorganic matters) in each density of coal sam-
ples, while gas coal has relatively fewer mineral matters
in each density. It is well known that differences in rock
composition between different density levels will influence
their apparent characteristics. Therefore, the differences in
apparent characteristics will also affect the feature extrac-
tion and classification performance of the CNNs-based ore
image classification model incorporating visual attention
mechanism.

2) IMAGE ACQUISITION & DATASET PREPARATION
The dynamic mineral image acquisition system mainly con-
sists of six parts: vibration feeder, conveyor belt, linear array
industrial camera, linear lighting source, computer, and tail
collector, as shown in FIG. 9. In the overall operation pro-
cesses, mineral sample particles meeting the experimental
requirements are evenly scattered in the front side of the
conveyor belt after vibration screening. Then, the conveyor
belt transmits the mineral particles to the bottom position
of the industrial camera for dynamic shooting and storing.
Finally, the mineral particles will be collected at the tail of the
conveyor belt. Additionally, the sensor on the rotating shaft
will convert the speed of the belt conveyor into a digital signal
and transmit it to the industrial camera to make adaptive
adjustments, which prevents frame loss and deformation of
the collected images.

FIGURE 9. Ore particle image acquisition system consisted of vibrating
feeder, convey belt, liner lighting, industrial camera, computer and outlet.

Specifically, the industrial camera used in the experi-
ment is the 4K color 3CCD linear array camera (JAI 3CCD
Datasheet_LT-400CL), enabling continuous shooting and
under constant speed; The linear lighting source is 500 mm
that can provide uniform illumination; The color temperature
is 5800-7000 k, and the surface brightness during the shooting
process is about 250 Klux.

In this experiment, the color threshold segmentation algo-
rithm is used to prepare image data set of three types of
minerals, including internal particle image segmentation and
edge particle image segmentation, as shown in FIG. 10.

In the internal particle segmentation process, the raw
images are first segmented by pre-threshold value into the
target areas and the background areas (EQ (12).). Secondly,
the raw mineral images are processed by particle marker,
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TABLE 1. Mass percentage and mean ash content of four density level gas coal, cooking coal and anthracite samples.

TABLE 2. Maceral analysis of four density level gas coal, cooking coal and anthracite samples.

FIGURE 10. Ore particle image segmentation by color threshold
segmentation algorithm: (a) inner particle image segmentation; (b) edge
particle image segmentation.

binary treatment, and edge particle removal in turn. Then,
the binary images without edge particles will be processed by
Finite Erection & Exact Dilation (FEED) to resolve the adhe-
sion and overlap problems between the adjacent particles.
Specifically, Finite Erosion (FD)will erode each target area in

the binary image inward with square structure elements to no
connected regions between particles and record the number of
FD processing. Next, Exact Dilation (ED) will restore each
target area independently according to the number of FD.
Finally, the segmentation system will intercept the minimum
bounding rectangle of each target area after ED processing in
the raw images.

In the edge particle segmentation process, for the raw
images that contain edge particles, the lower half of the
previous frame image and the upper half of the latter frame
image will be stitched to synthesize the image. After that,
the stitched raw images will be processed by particle marker,
binary treatment, FEED, and the images of edge particles will
be intercepted from the stitched image.

f (x, y, z) =

{
[0, 0, 0] , y− x > M ∪ x < M

[x, y, z] , other
(12)

f (x, y, z) The pixel value of any point in RGB images
M The value of preset threshold

After segmentation by the above-mentioned segmentation
system, we collected a total of 85,529 coal grain images from
four density sets, containing 28,292 gas coal images, 29,050
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TABLE 3. The number of images of each density level of three types ore particles.

TABLE 4. Dataset setting of each class ore particle images include training set, valid set, and test set.

coking coal images, and 28,187 anthracite images, as shown
in TAB 3.

In order to thoroughly test the application potentials
and classification performance of the CNNs image clas-
sification model embedded with visual attention blocks
in multi-category mineral image classification tasks (four
classifications) and to avoid the problems of insufficient
and unbalanced image data in the CNNs model training
phase, this experiment used DA technology to expand the
obtained training set images to twice the original quantity,
and 14,000 images from each density sets of each type of
coal were randomly selected to make the data sets used for
the experiment. Additionally, the proportion of the training
set, valid set, and valid set is 7:2:1, as shown in TAB 4.

B. MODEL DEVELOPMENT
1) MODEL BUILDING DETAILS
Referring to the ResNet building strategy, this experiment
first builds four ResNet mineral image classification mod-
els with different depths, including ResNet18, ResNet34,
ResNet50, and ResNet101, and adds the attention blocks (SE
block, CA block, SA block, and MA block) for the residual
module after each convolution section, respectively, as shown
in TAB 5. Therefore, visual attention will be applied to the
whole model, promoting the transmission of useful informa-
tion in the network. The final layer of the constructed models
is a fully connected layer, which is the Softmax classifier used
to perform the four classes classification tasks (<1.4g/cm3,
1.4-1.6g/cm3, 1.6-1.8g/cm3, and >1.8g/cm3) for experimen-
tal mineral images. Additionally, this embedding strategy
has little amount of increase in the model complexity and
calculation parameters compared with the original network.

According to the parameter increment formulas in
Section 2.3, the training parameters of four models embed-
ding with four different attention blocks are shown in TAB
6. It can be seen from the comparison that after embedding
different attention blocks to the different depths ResNet,
the increased parameters of each model are similar, and it is
relatively fewer compared to the original training parameters.

2) IMPLEMENTATION SETTING DETAILS
This experiment is based on Python 3.6 environment, uses
the Pytorch toolbox to build the models, and the detailed

model training parameters are shown in TAB 7. Specifically,
the model optimizer is SGD, the Learning rate is 1 × 10-4,
momentum is 0.9, the Dropout rate is 0.5, the Loss func-
tion is categorical_crossentropy, and the Decay rate r of the
attention blocks is 16. When model fitting, the batch size
is 32, the number of epochs is 200, and the ReduceLROn-
Platea (factor = 0.5, patience = 3) is used as the training
callback, which monitors valid loss. Additionally, to improve
the model training efficiency and obtain the optimal classifi-
cation model quickly and accurately, this experiment uses the
Early Stopping (Min_delta= 0, patience= 10) to monitor the
valid loss in the training phase, and the models are trained in
NVIDIA RTX 2080ti, cuda 10.1, and cudnn 7.3.1.

C. RESULT ANALYSIS
1) MODEL EVALUATION AND COMPARISON
After the training of different depth ResNet and ResNet
embedded with attention blocks, we recorded the training
accuracy, training loss, valid accuracy, valid loss, training
time (per epoch), and convergent epoch of the models to eval-
uate and compare the classification performance of different
models in multi-category mineral image classification tasks,
as shown in TAB 8., TAB 9., and TAB 10. Train accuracy and
train loss are used to evaluate the training performance of the
models, valid accuracy and valid loss are used to evaluate the
classification performance of the models, training time (per
epoch) and convergent epoch are used to evaluate the training
difficulty of the models, and all of the data are copied from
the Pytorch toolbox. The specific evaluation and analysis of
each model in different mineral image classification tasks are
as follows.

From the performance metrics of the gas coal dataset,
firstly, when comparing the ResNet with different depths
without attention block, the results show that with the
increase of network depth, the classification performance
of the model for gas coal images is gradually improved,
and the accuracy of the deepest-layer ResNet101 is 6.25%
higher than that of the shallowest-layer ResNet18. Secondly,
when comparing the ResNet with the same depth (gen-
eral ResNet and ResNet embedded with attention blocks),
the results show that embedding attention block to the
models can effectively improve gas coal image classifi-
cation accuracy. Notably, in the overall trend, embedding
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TABLE 5. Experiment CNNs models setting details.

TABLE 6. Parameters of different CNNs models including different depth general ResNet and ResNet embedded with different attention blocks.

MA block to ResNet can maximize the classification accu-
racy of the models. For example, the classification accu-
racy of ResNet18_MA, ResNet34_MA, ResNet50_MA, and
ResNet101_MA is 79.29%, 81.95%, 84.89%, and 86.41%,
respectively. Compared with the same-depth ResNet with-
out attention block, the classification accuracy of four
ResNet_MA increase by 0.36%, 0.48%, 1.3%, and 1.23%,
respectively. Additionally, the models embedded with SE
block, CA block, and SA block also have higher classifi-
cation accuracy than those without attention block. There-
fore, the above experimental results show that embedding
attention blocks to CNNs models can effectively improve the
classification accuracy for the multi-category mineral image
classification task.

In the coking coal image data set, different depth ResNet
shows similar classification performance as in the gas coal
image data set, and the ResNet embedded with MA block
has the highest classification accuracy compared with the
same-depth general and variant models. When analyzing
the effect of embedding attention block on the training
difficulty of different depth models, the results indicate
that embedding attention block to the CNNs models only
slightly improves the training time (per epoch). Specifically,

in models (ResNet18, ResNet34, ResNet50, and ResNet101),
embedding attention block only increases the training time
(per epoch) of 1-2s, 4-9s, 3-9s, and 3-15s, respectively,
which is relatively little compared with the training time
of same-depth ResNet without attention block. At the same
time, we notice that different attention blocks increase the
training time differently, but in the overall trend, the MA
block brings the highest training time (per epoch) increment.
Therefore, the above analysis of the training time increases
after embedding the attention block can provide guidance
for the CNNs-based ore image classification model setting,
which will help researchers apply the visual attention block
into the existing model according to specific tasks.

According to the evaluation results of ResNet in the
anthracite data set, we find that the improvement of classifi-
cation performance and the change of training time caused by
embedding attention block are similar to that in gas coal and
coking coal data sets. However, it is worthmentioning that the
model classification accuracy in anthracite images is higher
than that in gas coal and coking coal image datasets, which
is determined by the apparent characteristics of anthracite
particles, the feature extraction ability of ResNet, and the gain
effect of attention blocks. Therefore, in this part, we focus
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TABLE 7. Model training hyper parameters setting details.

TABLE 8. Different depth ResNet and ResNet with attention block evaluation in gas coal dataset including train accuracy, train loss, valid accuracy, valid
loss, training time (per epoch), and convergent epoch.

on analyzing the effect of embedding attention block on the
model convergent rate. Specifically, by observing the conver-
gent epoch of different ResNet in anthracite dataset and com-
bining with the model convergent rate in gas coal and coking
coal image datasets, we find that embedding attention block
to CNNs model can improve the model convergence rate to a
certain extent. For instance, the ResNet18_ CA converges six
epochs earlier than ResNet18, ResNet34_ SE converges three
epochs earlier than ResNet34, ResNet50_ SE converges four

epochs earlier than ResNet50, and ResNet101_MA con-
verges 15 epochs earlier than ResNet101. At the same time,
other ResNet that contain attention block also have faster
convergence speed than those same-depth models without
attention block. As a result, we conclude that the above
results are related to the improvement of feature extraction
ability caused by embedding attention block, which means
the attention block can improve the CNNs model to extract
better feature maps in mineral images with faster speed.
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TABLE 9. Different depth ResNet and ResNet with attention block evaluation in cocking coal dataset including train accuracy, train loss, valid accuracy,
valid loss, training time (per epoch), and convergent epoch.

TABLE 10. Different depth ResNet and ResNet with attention block evaluation in anthracite dataset including train accuracy, train loss, valid accuracy,
valid loss, training time (per epoch), and convergent epoch.

In summary, the classification performance of the
different-depth ResNet and its variant models embedding
with attention block for three types of coal images indi-
cate that embedding attention block to the CNNs-based ore
image classification models has the following three main
influences. First of all, embedding attention block can effec-
tively improve the model classification accuracy for mineral

images, and the MA block has the highest improvement on
the classification performance of the CNNs models, followed
by SE block, CA block, and SA block. Secondly, the training
time increment caused by embedding attention block is rela-
tively low compared with the original training time. Finally,
embedding attention block to the CNNs model can improve
the model convergence speed to some extent.
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FIGURE 11. Grad-CAM maps of ResNet50 with different attention blocks for four-classes gas coal image classification.

2) CLASSIFICATION VISUALIZATION WITH GRAD-CAM
In order to better observe the classification weight distribu-
tion of the CNNs model embedding with attention blocks in
the mineral image classification task and analyze the regions
with higher classification weight, representing the sensitive
regions of the input image, this experiment introduces the
Gradient-weighted Class Activation Mapping (Grad-CAM)
for model visualization [43]. In short, Grad-CAM technology
uses the gradient information of the last convolution layer
of the CNN model to assign importance to each neuron for
specific attention decisions. Therefore, the primary purpose
of Grad-CAM is to display the key parts that affect the clas-
sification decision, and the calculation formula of the class
activation mapping is shown in EQ (13).

LcGrad−CAM = ReLU
(∑

I
αci A

i
)
, αci

=
1
Z

∑c1

k=1

∑c2

j=1

∂Sc
∂Aikj

(13)

Sc The Softmax score of c category
αci The classification weight of global pooling layer
c1 The length of the input feature map
c2 The width of the input feature map
Aikj The pixel value of row k and column j of the i

feature map

Taking the ResNet50 embedding with different attention
blocks as examples, the Grad-CAM maps of the three types
of coal samples are shown in FIG. 11., FIG. 12., and FIG. 13.

In the Grad-CAM maps, red represents the high classifica-
tion weight areas, and blue represents the low classification
weight areas.

The visualization results indicate that on the whole trend,
ResNet embedding different attention blocks have different
classification weight distribution in the gas coal images,
which means the attention blocks will affect the feature
extraction process of the CNNs model. Firstly, after embed-
ding the attention blocks to the models, the areas that con-
tain classification weight in the image become relatively
larger, which better covers the surface of the gas coal par-
ticle. Specifically, in the ResNet50_MA, the areas containing
classification weight cover the surface of gas coal particles
uniformly, and the weight of texture features inside gas coal
particles is higher than that in general ResNet50. Meanwhile,
ResNet50_SE and ResNet50_CA also show the same distri-
bution change, but its coverage is relatively smaller than that
in the ResNet50_MA. Secondly, in the ResNet50_SA, it can
be observed that the distribution of classification weight is
relatively uneven. As a result, combining the model evalu-
ation results of different ResNet50 in the gas coal dataset,
we can conclude that the classification weight distributions
in Grad-CAM maps will reflect the feature extraction ability
and classification performance of the different ResNet: that
is, the ResNet50_MA has the best feature extraction ability,
followed by ResNet50_SE, ResNet50_CA, ResNet50_SA,
and general ResNet50.

In the visualization results of ResNet50 embedding with
different attention blocks for four density coking coal
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FIGURE 12. Grad-CAM maps of ResNet50 with different attention blocks for four-classes cocking coal image classification.

FIGURE 13. Grad-CAM maps of ResNet50 with different attention blocks for four-classes anthracite image classification.

particles, we found that embedding attention block to the
CNNs models also affects the value of classification weight.
Specifically, after embedding the attention blocks, the color

depth of the red areas (high classification weight) in the
general ResNet50 gradually becomes deeper, and the distri-
bution range is larger, indicating that the classification weight
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FIGURE 14. Confusion matrices of ResNet101 and ResNet101 embedded with different attention blocks in anthracite image
classification task.

of this area is relatively increased. Taking the Grad-CAM
maps of<1.4g/cm3 and 1.4-1.6g/cm3 coking coal particles as
examples, the color depth of red areas in the ResNet50_MA
is deeper than that in general ResNet50. Therefore, the above
results point out that embedding the attention block to CNNs
model will affect the value of classification weight.

The Grad-CAM maps of ResNet50 embedding with dif-
ferent attention blocks in the anthracite dataset show the
same trend as that in gas coal and coking coal datasets.
In ResNet50_MA, ResNet50_SE, and ResNet50_CA, the
regions that have classification weight relatively cover the
whole particle surface. At the same time, the texture areas
in the anthracite particle have a higher classification weight
(dark red), the edge areas have a lower weight (green,
cyan), and the background areas do not have classification
weight (blue).

In summary, the Grad-CAM visualization results of the
above-mentioned models indicate that embedding attention
blocks to the CNNsmodel will affect the classificationweight
in two aspects: 1) Embedding the attention blockswill enlarge
the areas that have classification weight in the input images;
2) Embedding the attention block will increase the value of
classification weight.

3) CLASSIFICATION PERFORMANCE EVALUATION WITH
CONFUSION MATRICES
In order to better evaluate and compare the performance of
attention blocks in the deep learning-based mineral image

classification system, this experiment introduces the confu-
sion matrices to reveal the classification performance of each
model and the discrimination results of ResNet101 embed-
ding with different attention blocks in four density anthracite
image test set are selected, as shown in FIG. 14.

Firstly, the discrimination results of each model indi-
cate that embedding attention block to CNNs model can
reduce the misjudgment to a certain extent. Specifically,
in confusion matrices of the ResNet101, 439 anthracite
images were misjudged, and the 1.6-1.8g/cm3 category has
the highest misjudgment rate, followed by >1.8g/cm3 cat-
egory and 1.4-1.6g/cm3 category, and the lowest misjudg-
ment was 85 for <1.4g/cm3 gas coal images. In contrast,
the misclassification rate of ResNet101 embedding with
Attention blocks is lower, and the amounts of misjudged
images of ResNet101_SE, ResNet101_CA, ResNet101_SA,
and ResNet101_MA were 396, 417, 436, and 347, respec-
tively. Secondly, in the comparison of different ResNet101,
the results show that the performance of embedding MA
block or SE block is better than that of embedding CA
block or SA block to the model. Additionally, when ana-
lyzing the confusion matrices of ResNet101_MA, we find
that the ResNet101_MA has the lowest misjudgment rate
for >1.8g/cm3 anthracite images, only 75, followed by 1.6-
1.8g/cm3 and <1.4g/cm3 anthracite images, and the highest
misjudgment rate for 1.4-1.6g/cm3 anthracite images, which
is 103. Therefore, the above result indicates that although
themisjudgment rate of ResNet101 embedding with attention
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block is reduced, the misjudgment objects will change, which
to some extent reflects the influence of the attention block to
feature extraction.

In summary, the confusion matrices of general ResNet101
and ResNet101 embedding with different attention blocks
indicate that embedding attention block to CNNs model can
effectively reduce the misjudgment rate, that is, improve
the model classification performance for mineral images,
but the misjudgment objects of CNNs model will change
accordingly.

IV. CONCLUSION & OUTLOOK
In order to solve the problems of low classification accu-
racy in multi-category mineral image classification tasks and
low efficiency of mineral image feature extraction in CNNs
models, combining with the visual attention mechanism, four
construction strategies of the visual attention module are
proposed, including the SE block, CA block, SA block, and
MA attention block, and all of them can be flexibly embed-
ded into the existing general CNNs models. Then, taking
gas coal, coking coal, and anthracite as the experimental
objects, and referring to different depth ResNet, this experi-
ment builds various CNNs mineral image classification mod-
els embedding with different attention blocks and tests the
improvement of classification accuracy and feature extraction
ability. Then, the model classification weight distribution and
classification ability are visualized by Grad-CAM and con-
fusion matrices, respectively. The detailed conclusions are
as follows.

(1) Firstly, embedding the attention blocks to the
different-depth CNNs models can effectively improve the
classification accuracy for mineral images, and the improve-
ment value is 0.2%-1.3% (ResNet). Secondly, the MA
block has the highest classification accuracy increment for
each depth ResNet, followed by SE block and CA block,
and SA block. Besides, embedding attention block to the
different-depth ResNet will lead to 1-15s training time incre-
ment, which is relatively little compared to the original train-
ing time. Finally, embedding the attention block to CNNs
models can also improve the convergence speed in the train-
ing phase.

(2) The Grad-CAM visualization results of different
ResNet for different types of mineral images show that
embedding attention block to the CNNs model will affect
the classification weight distribution and the value of classi-
fication weight, which means the attention blocks can effec-
tively improve the feature extraction ability. In other words,
the attention blocks can enhance the extraction of useful
feature informationwhile suppressing the feature information
with less contribution, which will not only save comput-
ing power but also bring stable classification performance
improvement.

(3) When predicting the test set images of anthracite par-
ticles, the confusion matrices of different ResNet101 point
out that embedding attention block to CNNs model can
effectively reduce the misjudgment rate, but the misjudgment

objects will also change. Specifically, compared with the
general ResNet101, the number of misjudgment images
of ResNet101_SE, ResNet101_CA, ResNet101_SA, and
ResNet101_MA by 43, 22, 3, and 92, respectively, but the
models embedding with attention blocks show a higher mis-
judgment rate for 1.4-1.6g/cm3 anthracite images.
In future experiments and research, we will further explore

the application of visual attention mechanism in mineral
image classification tasks and explore its potential application
with other mineral image processing tasks, such as image
segmentation, particle size estimation, and component pre-
diction. Additionally, the construction and embedding strate-
gies of visual attention modules are still one of our research
centers.

ACKNOWLEDGMENT
(Yang Liu, Zelin Zhang, and Liu Xiang contributed equally to
this work.)

REFERENCES
[1] H. Knapp, K. Neubert, C. Schropp, and H. Wotruba, ‘‘Viable

applications of sensor-based sorting for the processing of mineral
resources,’’ ChemBioEng Rev., vol. 1, no. 3, pp. 86–95, Jun. 2014, doi:
10.1002/cben.201400011.

[2] C. Robben, P. Condori, A. Pinto, R. Machaca, and A. Takala, ‘‘X-ray-
transmission based ore sorting at the san rafael tin mine,’’ Minerals Eng.,
vol. 145, Jan. 2020, Art. no. 105870, doi: 10.1016/j.mineng.2019.105870.

[3] C. Robben and H. Wotruba, ‘‘Sensor-based ore sorting technology in
mining—Past, present and future,’’ Minerals, vol. 9, no. 9, p. 523, 2019,
doi: 10.3390/min9090523.

[4] C. Robben, J. de Korte, H. Wotruba, and M. Robben, ‘‘Experiences in
dry coarse coal separation using X-ray-transmission-based sorting,’’ Int.
J. Coal Preparation Utilization, vol. 34, nos. 3–4, pp. 210–219, Jul. 2014,
doi: 10.1080/19392699.2014.869938.

[5] J. Kolacz, ‘‘Advanced separation technologies for pre-concentration of
metal ores and the additional process control,’’ in Proc. E3S Web of Conf.,
vol. 18, 2017, p. 1001, doi: 10.1051/e3sconf/201712301001.

[6] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996, doi: 10.1007/bf00058655.

[7] A. D. Gordon, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, vol. 40, no. 3. Belmont, CA, USA:
Wadsworth International Group, 1984.

[8] Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, ‘‘Naïve Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy,’’ Appl. Environ. Microbiol., vol. 73, no. 16, pp. 5261–5267,
2007, doi: 10.1128/AEM.00062-07.

[9] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’
IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi:
10.1109/TIT.1967.1053964.

[10] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[11] Y. Liu, Z. Zhang, X. Liu, L. Wang, and X. Xia, ‘‘Ore image classifica-
tion based on small deep learning model: Evaluation and optimization
of model depth, model structure and data size,’’ Minerals Eng., 2021,
Art. no. 107020, doi: 10.1016/j.mineng.2021.107020.

[12] Z. Zhang, Y. Liu, Q. Hu, Z. Zhang, and Y. Liu, ‘‘Competitive voting-
based multi-class prediction for ore selection,’’ in Proc. IEEE 16th
Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020, pp. 514–519, doi:
10.1109/CASE48305.2020.9217017.

[13] Z. Zhang, Y. Liu, Q. Hu, Z. Zhang, L. Wang, X. Liu, and X. Xia,
‘‘Multi-information online detection of coal quality based on machine
vision,’’ Powder Technol., vol. 374, pp. 250–262, Sep. 2020, doi:
10.1016/j.powtec.2020.07.040.

[14] A. K. Patel, S. Chatterjee, and A. K. Gorai, ‘‘Development of a machine
vision system using the support vector machine regression (SVR) algo-
rithm for the online prediction of iron ore grades,’’ Earth Sci. Informat.,
vol. 12, no. 2, pp. 197–210, Jun. 2019, doi: 10.1007/s12145-018-0370-6.

VOLUME 9, 2021 98107

http://dx.doi.org/10.1002/cben.201400011
http://dx.doi.org/10.1016/j.mineng.2019.105870
http://dx.doi.org/10.3390/min9090523
http://dx.doi.org/10.1080/19392699.2014.869938
http://dx.doi.org/10.1051/e3sconf/201712301001
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/j.mineng.2021.107020
http://dx.doi.org/10.1109/CASE48305.2020.9217017
http://dx.doi.org/10.1016/j.powtec.2020.07.040
http://dx.doi.org/10.1007/s12145-018-0370-6


Y. Liu et al.: Deep Learning Based Mineral Image Classification

[15] M. Massinaei, A. Jahedsaravani, E. Taheri, and J. Khalilpour, ‘‘Machine
vision based monitoring and analysis of a coal column flotation
circuit,’’ Powder Technol., vol. 343, pp. 330–341, Feb. 2019, doi:
10.1016/j.powtec.2018.11.056.

[16] F. Khorram, A. H. Morshedy, H. Memarian, B. Tokhmechi, and
H. S. Zadeh, ‘‘Lithological classification and chemical component esti-
mation based on the visual features of crushed rock samples,’’ Arabian
J. Geosci., vol. 10, no. 15, pp. 1–9, Aug. 2017, doi: 10.1007/s12517-017-
3116-8.

[17] F. J. Galdames, C. A. Perez, P. A. Estévez, and M. Adams, ‘‘Rock
lithological classification by hyperspectral, range 3D and color images,’’
Chemometric Intell. Lab. Syst., vol. 189, pp. 138–148, Jun. 2019, doi:
10.1016/j.chemolab.2019.04.006.

[18] K. Itano, K. Ueki, T. Iizuka, and T. Kuwatani, ‘‘Geochemical discrim-
ination of monazite source rock based on machine learning techniques
and multinomial logistic regression analysis,’’ Geosciences, vol. 10, no. 2,
p. 63, Feb. 2020, doi: 10.3390/geosciences10020063.

[19] D. Hasterok, M. Gard, C. M. B. Bishop, and D. Kelsey, ‘‘Chem-
ical identification of metamorphic protoliths using machine learning
methods,’’ Comput. Geosci., vol. 132, pp. 56–68, Nov. 2019, doi:
10.1016/j.cageo.2019.07.004.

[20] X. Chen, S. Wang, C Shi, H. Wu, J. Zhao, and J. Fu, ‘‘Robust ship tracking
via multi-view learning and sparse representation,’’ J. Navigat., vol. 72,
no. 1, pp. 176–192, 2019, doi: 10.1017/S0373463318000504.

[21] J. Tang, F. Gao, F. Liu, and X. Chen, ‘‘A denoising scheme-based traf-
fic flow prediction model: Combination of ensemble empirical mode
decomposition and fuzzy C-means neural network,’’ IEEE Access, vol. 8,
pp. 11546–11559, 2020, doi: 10.1109/ACCESS.2020.2964070.

[22] X. Chen, Y. Yang, S. Wang, H.Wu, and J. Tang, ‘‘Ship type recognition via
a coarse-to-fine cascaded convolution neural network,’’ J. Navigat., vol. 73,
no. 4, pp. 813–832, 2020, doi: 10.1017/S0373463319000900.

[23] Y. Fu and C. Aldrich, ‘‘Quantitative ore texture analysis with convolutional
neural networks,’’ IFAC-PapersOnLine, vol. 52, no. 14, pp. 99–104, 2019,
doi: 10.1016/j.ifacol.2019.09.171.

[24] S. Zhu, W. Yang, G. Hou, B. Lu, and S. Wei, ‘‘An intelligent classification
and recognition method of rock thin section,’’ Acta Petrol. Siniva, vol. 40,
no. 1, p. 106, 2020.

[25] O. Sudakov, E. Burnaev, and D. Koroteev, ‘‘Driving digital rock towards
machine learning: Predicting permeability with gradient boosting and deep
neural networks,’’ Comput. Geosci., vol. 127, pp. 91–98, Jun. 2019, doi:
10.1016/j.cageo.2019.02.002.

[26] R. Pires de Lima, A. Bonar, D. D. Coronado, K.Marfurt, and C. Nicholson,
‘‘Deep convolutional neural networks as a geological image classifica-
tion tool,’’ Sedimentary Rec., vol. 17, no. 2, pp. 4–9, Jun. 2019, doi:
10.2110/sedred.2019.2.4.

[27] Y. Zhang, M. Li, S. Han, Q. Ren, and J. Shi, ‘‘Intelligent identifi-
cation for rock-mineral microscopic images using ensemble machine
learning algorithms,’’ Sensors, vol. 19, no. 18, p. 3914, Sep. 2019, doi:
10.3390/s19183914.

[28] E. E. Baraboshkin, L. S. Ismailova, D. M. Orlov, E. A. Zhukovskaya,
G. A. Kalmykov, O. V. Khotylev, E. Y. Baraboshkin, and
D. A. Koroteev, ‘‘Deep convolutions for in-depth automated rock
typing,’’ Comput. Geosci., vol. 135, Feb. 2020, Art. no. 104330, doi:
10.1016/j.cageo.2019.104330.

[29] L. Si, X. Xiong, Z. Wang, and C. Tan, ‘‘A deep convolutional neural
network model for intelligent discrimination between coal and rocks
in coal mining face,’’ Math. Problems Eng., vol. 2020, Mar. 2020,
Art. no. 2616510, doi: 10.1155/2020/2616510.

[30] H. Hong, L. Zheng, J. Zhu, S. Pan, and K. Zhou, ‘‘Automatic recogni-
tion of coal and gangue based on convolution neural network,’’ 2017,
arXiv:1712.00720. [Online]. Available: http://arxiv.org/abs/1712.00720

[31] J. C. Á. Iglesias, R. B. M. Santos, and S. Paciornik, ‘‘Deep learn-
ing discrimination of quartz and resin in optical microscopy images
of minerals,’’ Minerals Eng., vol. 138, pp. 79–85, Jul. 2019, doi:
10.1016/j.mineng.2019.04.032.

[32] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, ‘‘Residual attention network for image classification,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3156–3164.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012, doi: 10.1145/3065386.

[34] S. Xu and Y. Zhou, ‘‘Artificial intelligence identification of ore minerals
under microscope based on deep learning algorithm,’’ Acta Petrol.
Sinica, vol. 34, no. 11, pp. 3244–3252, 2018. [Online]. Available: https://
kns.cnki.net/kcms/detail/detail.aspx?FileName=YSXB201811010&
DbName=CJFQ2018

[35] Z. C. Horn, L. Auret, J. T. McCoy, C. Aldrich, and B. M. Herbst,
‘‘Performance of convolutional neural networks for feature extraction in
froth flotation sensing,’’ IFAC-PapersOnLine, vol. 50, no. 2, pp. 13–18,
Dec. 2017, doi: 10.1016/j.ifacol.2017.12.003.

[36] L. Hashemi-Beni and A. Gebrehiwot, ‘‘Deep learning for remote sensing
image classification for agriculture applications,’’ Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., vols. 2020, pp. 51–54, Nov. 2020, doi:
10.5194/isprs-archives-xliv-m-2-2020-51-2020.

[37] N. Dey, Classification Techniques for Medical Image Analysis and Com-
puter Aided Diagnosis. San Diego, CA, USA: Academic, 2019.

[38] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), vol. 2015, 2015, pp. 1–14.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethink-
ing the inception architecture for computer vision,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Dec. 2016, pp. 2818–2826, doi:
10.1109/CVPR.2016.308.

[40] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[41] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, ‘‘Squeeze-and-excitation
networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020, doi: 10.1109/TPAMI.2019.2913372.

[42] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), in Lecture
Notes in Computer Science, vol. 11211, 2018, pp. 3–19, doi: 10.1007/978-
3-030-01234-2_1.

[43] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ Int. J. Comput. Vis., vol. 128, no. 2,
pp. 336–359, Oct. 2019, 10.1007/s11263-019-01228-7

YANG LIU was born in Lanshan, Linyi, Shandong,
in 1997. He received the bachelor’s degree,
in 2019. He is currently pursuing the master’s
degree in mineral engineering with the Wuhan
University of Science and Technology.

From 2019 to 2020, he participated in various
experiments related to machine vision-based ore
sorting system and written the related articles.
His research interests include deep learning-based
mineral image classification systems and deep

learning-based ore image segmentation systems. He learned several kinds
of programming software and drawing software in two years.

ZELIN ZHANG was born inWuhan, Hubei, China,
in 1988. He received the B.S. degree in bioengi-
neering and the Ph.D. degree in mineral process
engineering from the China University of Min-
ing and Technology, Xuzhou, China, in 2009 and
2014, respectively.

Since 2014, he has been an Associate Professor
with the Wuhan University of Science and Tech-
nology, Wuhan. He has presided over and partic-
ipated in a number of national scientific research

projects and published more than 30 academic articles. His research interests
include the development of green remanufacturing of mineral processing
machinery, green remanufacturing services, and intelligent mineral process-
ing technology and equipment.

Mr. Zhang has won the National Scholarship of China.

98108 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.powtec.2018.11.056
http://dx.doi.org/10.1007/s12517-017-3116-8
http://dx.doi.org/10.1007/s12517-017-3116-8
http://dx.doi.org/10.1016/j.chemolab.2019.04.006
http://dx.doi.org/10.3390/geosciences10020063
http://dx.doi.org/10.1016/j.cageo.2019.07.004
http://dx.doi.org/10.1017/S0373463318000504
http://dx.doi.org/10.1109/ACCESS.2020.2964070
http://dx.doi.org/10.1017/S0373463319000900
http://dx.doi.org/10.1016/j.ifacol.2019.09.171
http://dx.doi.org/10.1016/j.cageo.2019.02.002
http://dx.doi.org/10.2110/sedred.2019.2.4
http://dx.doi.org/10.3390/s19183914
http://dx.doi.org/10.1016/j.cageo.2019.104330
http://dx.doi.org/10.1155/2020/2616510
http://dx.doi.org/10.1016/j.mineng.2019.04.032
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.ifacol.2017.12.003
http://dx.doi.org/10.5194/isprs-archives-xliv-m-2-2020-51-2020
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1007/978-3-030-01234-2_1


Y. Liu et al.: Deep Learning Based Mineral Image Classification

XIANG LIU was born in Wuhan, Hubei, China,
in 1983. He received the M.S. degree in control
engineering from the Wuhan University of Sci-
ence and Technology, Wuhan, in 2009, where he
is currently pursuing the Ph.D. degree in indus-
try engineering. Since 2012, he has been a Lab
Technician with the Wuhan University of Science
and Technology. He has participated in a number
of national scientific projects and published more
than 20 academic articles. His research interests

include computer vision technology applied in green remanufacturing or its
services and intelligent vision processing technology and equipment.

WANG LEI was born in Hubei, China, in 1987.
She received the B.S. degree in electrical engi-
neering and automation, in 2008, the M.S. degree
in mechanical manufacturing and automation,
in 2010, and the Ph.D. degree in industrial engi-
neering, in 2017.

From 2010 to 2017, she was an Engineer with
the Wuhan University of Science and Technology,
mainly engaged in the design and development of
manufacturing execution and information system

and electronic circuit. Since 2017, she has been an Associate Professor
with the Department of Industrial Engineering and Manufacturing, Wuhan
University of Science and Technology. From 2019 to 2020, she was a Visiting
Research Fellow at IFM, Cambridge University. She is the author of six
books, more than 50 articles, and more than ten inventions. Her research
interests include manufacturing systems engineering and remanufacturing
service.

Dr. Lei was a recipient of the Second Prize of Hubei Science and Technol-
ogy Progress Award for Green Manufacturing Technology and Application
of Typical Mechanical Parts, in 2014. She was awarded as the Young Talent
of Hubei Province, in 2019.

XUHUI XIA was born in Hubei, China, in 1966.
He received the B.S. degree in mining machin-
ery from Hubei Polytechnic University, in 1988,
the M.S. degree in metallurgical machinery from
the Wuhan University of Science and Technology,
in 1997, and the Ph.D. degree in mechanical engi-
neering (industrial engineering) from Chongqing
University, in 2003.

From 2003 to 2006, he was an Associate Pro-
fessor with the College ofMachinery and Automa-

tion,WuhanUniversity of Science and Technology. Since 2006, he has been a
Professor with the Department of Industrial Engineering andManufacturing,
Wuhan University of Science and Technology. He is the author of six books,
more than 100 articles, and more than 20 inventions. His research interests
include manufacturing/remanufacturing systems engineering, reverse supply
chain, and related services.

Prof. Xia’s awards and honors include the Second Prize of Hubei Science
and Technology Progress Award, in 2002, the Second Prize of Hubei Science
and Technology Progress Award, in 2006, the Third Prize of Hubei Technical
Invention Award, in 2006, and the First Prize of Hubei Science and Technol-
ogy Progress Award, in 2010.

VOLUME 9, 2021 98109


