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ABSTRACT To provide information for 360-degree visual space exploration, we design experiments to
measure and analyze object-centric visual preference. After defining the static and dynamic properties of
the objects of interest, we collect real-shot 360-degree videos and synthesize computer-generated 360-degree
videos so that the objects have different combinations of static and dynamic properties. From headmovement
trajectories of subjects wearing head-mounted displays and watching 360-degree videos, we compare visual
preference between objects with different static and dynamic properties. The experimental results indicate
that subjects have visual preference for certain static and dynamic properties of objects over others; with
this knowledge we can construct visually salient viewports by detecting and comparing static and dynamic
properties of objects in a 360-degree video.

INDEX TERMS 360-degree video, visual attention, visual preference, static property, dynamic property.

I. INTRODUCTION
Recently, realistic media services such as virtual reality, aug-
mented reality, and 360-degree videos are drawing attention
as state-of-the-art services in the 5G era. Realistic media
refers to media that maximizes realism and immersion. It is
being used in various industries such as entertainment, edu-
cation, training, commerce, and health care to create new
types of services. The core of the realistic media, 360-degree
videos, is the stitching of videos taken simultaneously in all
directions using multiple cameras with wide angles. Such
360-degree videos are rapidly being developed in various
fields, including content production, video rendering plat-
forms, and video imaging equipment.

Since 360-degree videos can be viewed from all direc-
tions, viewing methods are also changing to Head-Mounted
Displays (HMDs) or mobile handsets. Users watching con-
ventional videos with normal field-of-view (FoV) are free
from the burden of choosing viewports because these videos
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deploy stories to the intent of video directors or produc-
ers on fixed screens. However, 360-degree videos feature
realism and immersion and tell stories by user-driven video
space exploration. Because 360-degree videos can have
time-varying contents, the value of the contents can be
increased if viewers can explore the 360-degree visual space
that they are interested in at a specific time.

However, some papers have presented negative findings
on HMD-based 360-degree video viewing and have called
for improvement [1], [2]. If a network cannot meet the
high bandwidth demand during 360-degree video playback,
the viewport response speed in response to head move-
ment may slow down, resulting in simulation sickness (SS).
In addition, the following hypothesis has been verified:When
the use of an HMD completely obscures the surrounding
field of vision, motion sickness is more common than when
the surrounding area is partially visible [1]. Although an
HMD provides an excellent sense of immersion for studying
people’s 360-degree video viewing patterns, it can cause
simulation sickness, physical discomfort, and high cognitive
burden [2].
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While various playback environments of 360-degree
videos are likely to coexist, many users are believed to prefer
viewing over flat screens, except for short-length video appli-
cations in particular fields, due to the aforementioned limita-
tions in theHMDplayback environment. Besides, 360-degree
video users have to choose which direction to watch, but if
the camera moves or fast storytelling takes place, they may
miss critical or exciting events, leading to user confusion.
Therefore, a service study for 360-degree videos is needed
to automatically select or recommend viewports on mobile
or large flat displays rather than an HMD, depending on the
visual preference of the general public or an individual user.

Some studies produced visual saliency maps in a way
that statistically measures or predicts visual saliency in clas-
sical images or videos [3]–[10], [13]. Research societies
have provided head or eye movement datasets and reference
visual saliency maps for visual saliency study of 360-degree
image/video [3]–[7]. Several research teams proposed pre-
diction methods of visual saliency for 360-degree images
and videos [8]–[10]. A visual saliency map represents which
pixels or areas are more visually attractive, and can be used
to optimize a source coding algorithm, reduce bandwidth
for viewport rendering, protect important areas during trans-
mission, and enhance quality of experience to viewers for
360-degree video services. A visual saliency map is the sta-
tistical figure for visual attention not the explicit fixation or
preference for specific objects or regions. Therefore, it is
limited to use for constructing a viewport among multiple
visually salient regions far from each other in 360-degree
videos. It does not reflect the tendency of a group or an
individual user to prefer a specific color, object type, or event
existing in 360-degree videos.

Foreground objects or events with these objects can be the
visual targets for watching, i.e. the viewport construction.
No visual saliency study has considered high-level abstrac-
tion of scenes, especially the object-level visual preference
by users. Although the static and dynamic properties of
objects, such as type, color, andmovement, may impact visual
saliency, a visual saliency map cannot provide information on
specific properties of objects in reverse.

The field-of-view of the 360-degree video is beyond the
human eye, which has increased the burden of viewers’ explo-
ration in 360-degree visual space. In the case of 360-degree
images with sufficient viewing time, the viewer’s exploration
in 360-degree image space may not be burdensome. How-
ever, the viewer’s burden for exploring the 360-degree videos
increases proportionally with the speed of change in contents,
such as the number of events, the pace of events, or envi-
ronmental changes over time in the 360-degree visual space.
Therefore, if high-level information or visual preference for
objects could be provided, it would help users to efficiently
explore 360-degree videos or service providers to generate
viewports for specific groups or users.

In this study, we measured and analyzed the visual pref-
erence for objects and events, according to the properties
of the objects and events, to provide 360-degree video

exploration information. We defined an object’s static and
dynamic properties by analyzing the objects and events in
existing 360-degree videos. 360-degree videos were collected
from the Internet or created by computer graphics tools to
measure the visual saliency between different properties or
different property values within the same property of objects.
When subjects watch these 360-degree videos, their head
trajectories for viewport change are measured and used to
determine the visual preference. Finally, we analyzed the
visual preference for objects of static and dynamic proper-
ties through intra-static, inter-static, and dynamic property
comparison.

This paper is organized as follows. Section II explains
the existing studies related to a viewer’s behavior measure-
ment and analysis of 360-degree image/video and the studies
related to visual saliency prediction. Section III defines the
static and dynamic properties of objects in the 360-degree
visual space and proposes an experimental method and a
list of experimental contents designed for visual preference
measurement. Section IV presents the comparison results of
visual preference for intra-static, inter-static, and dynamic
properties of objects. Finally, section V concludes this paper.

II. RELATED WORKS
Visual saliency prediction aims to estimate the areas of
an image that attract the attention of people. It is useful
for applications such as content-aware image/video com-
pression and transmission, object and motion detection,
and image/video search. The positions from which human
observers watch images/videos are often used as the ground
truth of image/video saliency. The computational model that
estimates saliency value at each pixel of the image/video is
called the saliency model.

A. VIEWER BEHAVIOR DATASETS FOR 360-DEGREE
IMAGES/VIDEOS
Several studies have helped the 360-degree research com-
munity to study users’ exploration behavior as they watch
omnidirectional images or videos [3]–[7]. These studies pre-
sented datasets consisting of 360-degree images or videos,
their associated head and eye trajectories, scan paths, and
visual saliency maps.

Rai et al. presented a dataset of sixty 360-degree images
with the associated head-eye tracking data recorded from
63 viewers [3]. The authors examined the variation of explo-
ration strategies with time and the viewer’s expertise and the
effect of eye-movement within the viewport. They found sev-
eral differences in the final head-eye saliency map compared
to the head-movement only saliency map.

Lo et al. presented datasets consisting of 360-degree
videos, the associated sensor data, the saliency maps,
and the motion maps for possible use in the design
of 360-degree video systems and algorithms [4]. The authors
collected ten 360-degree videos from the Internet consisting
of computer-generated (CG) and natural video sequences.
Theymeasured head position and orientation from 50 viewers
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wearing HMDs and generated saliency maps and motion
maps from the 360-degree videos using the Convolutional
Neural Network (CNN)-based method in [14] and the optical
flow based method in [15].

David et al. presented a dataset of head and eye tracking
data from 57 observers for research on exploring behaviors
with 360-degree videos [5]. The authors classified nineteen
360-degree videos gathered from YouTube into several scene
categories, such as indoor/outdoor, urban/rural, people faces,
and water to indicate some high-level properties. They com-
pared the head-only and head-and-eye saliency maps by nor-
malizing the saliencymaps and argued that the differences are
from the information lost in head-only saliency maps, but that
they can be simplistically modeled by a larger Gaussian ker-
nel during the creation of the saliency maps. They argued that
the saliency map difference caused by different longitudinal
starting positions disappears after 5 seconds of exploration.

Corbillon et al. presented a head movement dataset sam-
pled from 59 users watching five 70-sec long 360-degree
videos on an HMD [6]. The authors extracted statistics from
the dataset to provide information on the users’ behavior and
the video characteristics for a viewport adaptive streaming
scenario.

Fremerey et al. recorded a dataset for twenty 360-degree
videos with 48 participants wearing VR headsets and ana-
lyzed head rotation and exploration over time [7]. More than
half of the subjects exploredmore than 330 degrees of the hor-
izontal area of the videos. Almost 90% of the subjects were
comfortable within a pitching angle of up to 100 degrees.
However, participants spent 90% and 40% of time on areas
from -30 to 30 degrees of pitch and yaw, respectively. Hence,
almost half of the time, people keep watching the 360-degree
video in the initial position and do not explore the video
further.

B. VISUAL SALIENCY PREDICTION FOR 360-DEGREE
IMAGES/VIDEOS
Several studies have recently been performed to pre-
dict visual saliency maps for 360-degree images and
videos [8]–[12]. These studies mostly apply or mod-
ify conventional visual saliency prediction algorithms
such as boolean map based saliency (BMS), operational
block description length (OBDL), or saliency in context
(SALICON) models for 360-degree videos [16]–[18].

Monroy et al. presented an architecture extended from
the CNN to refine traditional 2D saliency prediction
for 360-degree images [8]. The authors subdivided the
360-degree images into undistorted patches and predicted
these patches’ saliency by providing the spherical coordi-
nates of each pixel in the patches to the CNN. Assens et al.
proposed a deep neural network, SaltiNet, to predict the
scan path on 360-degree images. The network is based
on a temporal-aware representation of saliency information
named saliency volume [9]. Lebreton et al. addressed the
problem of extending 2D saliency prediction algorithms to
support 360-degree images [10]. Djemai et al. proposed a

framework to apply any 2D saliency prediction method to
360-degree images [11]. 2D saliency models are used for
generating saliency maps for faces in a cube map projection
(CMP) 360-degree image format, and the CNN merges them
to obtain one saliency map. Based on the observation that
the moving objects draw more visual attention, Jiang et al.
designed an object-to-motion CNN and a saliency structured
convolutional Long Short Term Memory (LSTM) network to
generate saliency maps for 360-degree videos [12].

Especially for videos, conventional studies on saliency pre-
diction only encoded each video pixel’s probability of captur-
ing the user’s visual attention. These studies did not provide
information on the order in which these pixels are scanned
and the duration of the fixation. The generated or predicted
visual saliency map may have information on salient objects
or events at the pixel level and can be used for efficient video
compression or streaming of 360-degree videos. However,
in other 360-degree applications such as automatic viewport
generation or multiple story-telling, these pixel-level saliency
maps are limited because they do not have the high-level cues
that draw visual attention, such as foreground objects and
events that occur in 360-degree videos.

With the era of virtual reality with 360-degree video, recent
studies have called attention to the need for order in which
pixels may be scanned or the fixation duration. Predicting
the navigation pattern that people follow in 360-degree visual
space can be more accurate if high-level cues can be used in
addition to the pixel or region based saliency.

C. AUTOMATIC VIEWPORT GENERATION
Studies are currently underway to automatically select and
play the viewports of 360-degree videos. This frees viewers
of the burden of exploring the 360-degree visual space and
provides one or multiple videos with a regular field-of-view
for rendering on normal displays.

Su et al. defined the Pano2Vid problem to automati-
cally control the pose and motion of a virtual narrow-field-
of-view (NFOV) camera within a 360-degree video [19].
In [20], the authors generalized the task of Pano2Vid to
allow changes in the FOV in addition to the spatial selections
within the 360-degree video. They also presented a coarse-
to-fine search approach that iteratively refines the camera
control while reducing the search space in each iteration.
Hu et al. proposed a deep learning-based agent that navigates
a 360-degree sports video and smoothly captures interest-
ing moments [21]. The authors used an object detector to
identify candidate objects of interest, recurrent neural net-
works (RNNs) to select the main object among the candidates
and predict the viewing angle. Xu et al. proposed a deep
reinforcement learning (DRL) based head movement predic-
tion (DHP) approach with offline and online versions [22].
In the offline DHP, an HM heatmap is generated using the
HM positions determined by multiple DRL workflows at
each 360-degree video frame. In the online DHP, the next
HM position of a subject is estimated given the current
HM position. Wang et al. proposed an attention-based deep

98028 VOLUME 9, 2021



M.-S. Lee et al.: Analysis of Object-Centric Visual Preference in 360-Degree Videos

reinforcement learning approach which incorporates saliency
detection to select NFOVs in a 360-degree video [23]. The
authors proposed a new reward function for the DRL frame-
work which considers the saliency values, ground truth and
smooth transition for NFOV selection.

These existing studies took different approaches for auto-
matic viewport generation; most of them learned view-
ports from NFOV videos [19], [20], main objects [21], and
saliency [22], [23]. It is still challenging to predict viewports
online for a generic panoramic video, which may include
multiple competing salient objects. None of them studied
which object or regions of objects should be selected for
viewports in the event of competing multiple salient objects.

III. VISUAL PREFERENCE EXPLORATION FOR STATIC AND
DYNAMIC PROPERTIES OF OBJECTS
A. MOTIVATION
Fremerey et al.’s experiment [7] found that almost half of the
time people keep watching the 360-degree videos around the
initial position and do not explore the video further. On the
other hand, the viewers’ behavior when watching limited
areas within a 360-degree visual space can be interpreted as
viewers continuing to look at the area they first saw because
they do not know where else to look. For example, when
some people go to a festival or event site full of fun things to
see, theymay sometimes get information from accompanying
friends looking at something other than what they are looking
at. Sometimes their friends’ recommendations may be more
interesting thanwhat they have seen, so theymay change their
visual target to these.

In other words, the field-of-view of 360-degree videos is
too wide for viewers to judge where to look. It would be
possible to efficiently explore the 360-degree visual space
if more high-level abstraction of viewers’ visual preferences
were provided.

B. STATIC AND DYNAMIC PROPERTIES OF OBJECTS
In this study, we propose to provide high-level abstraction
of viewers’ visual preference in the forms of events to help
select viewports based on events in 360-degree visual spaces.
For event-oriented viewport selection in 360-degree videos,
it is necessary to analyze which event has a high visual
preference in various in-video events that coincide. Events
in 360-degree videos are defined as acts caused by a single
object or multiple objects, including standstills. Each object
in events has static and dynamic properties. An object’s static
properties do not change over time, such as the type, the sex,
and the color of the object. An object’s dynamic properties
represent a type of the object’s movement over time, such as
appearing, disappearing, approaching, receding, etc.

Existing studies [3]–[6] classified 360-degree videos
with high abstraction levels, such as indoor, outdoor,
people-containing scenes, graphic contents, and real-shot
contents, which cannot measure the amount of visual atten-
tion on a particular object appearing in the 360-degree

TABLE 1. Static and dynamic properties of objects.

videos. To investigate which properties of objects draw
more visual attention by analyzing the available real-shot or
CG 360-degree videos from the Internet including foreground
objects, we defined the static and dynamic properties of
objects in the video frames as given in Table 1.When describ-
ing scenes in analyzed videos, nouns, adjectives, and verbs
are usually used for describing foreground objects in the
scenes. We classified these parts of speech into static and
dynamic property groups. Associations and independence
among these parts of speech within each property group are
analyzed to establish final properties and property values.
Methods of describing an object’s behavior can define myr-
iad dynamic properties depending on what level of abstrac-
tion it should be. Thus, we defined the objects’ movement
methods in videos with respect to a camera or a specific
object as dynamic properties. A sequence of defined dynamic
properties can represent an object’s high-level behavior. For
360-degree videos without foreground objects, few changes
were made in the video, or only changes were present
due to the camera’s movement. We did not consider these
videos because it was unlikely that the viewer will miss the
time-varying event in the video.

In existing 360-degree videos, various objects, such as
people, cars, airplanes, and animals, appear and generate var-
ious events, such as conversation, dance, music performance,
exercise, driving, and flying. Each static property of objects
has property values: the size of a crowd has 1 or 3, type of
colors has R, G, or B, type of objects has people, vehicle,
or animal, and sex has male or female for human objects.
We classified the dynamic properties of objects into four
categories: activity, proximity, existence, and density. Each
dynamic property had the property values standstill and loiter,
approach and recede, appear and disappear, gather and scatter.

C. VISUAL PREFERENCE MEASUREMENT FOR DIFFERENT
OBJECT PROPERTIES
For the analysis of viewers’ viewing patterns for the proper-
ties of objects appearing in 360-degree videos, we designed
experiments of visual preference measurement consist-
ing of intra-static, inter-static, dynamic property compari-
son. Intra-static property comparison measures the visual
preference for property value changes within an object’s
static property. Inter-static property comparison measures
the visual preference across the object’s static properties.
Dynamic property comparison measures the visual pref-
erence between two dynamic property values. For these
experiments, we collected real-shot 360-degree videos and
synthesized CG 360-degree videos. Some examples are
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FIGURE 1. Real-shot and computer-generated 360-degree video sequences. Real-shot: the 1st and the 2nd columns, CG: the 3rd column.

presented in Fig. 1, including multiple objects with static and
dynamic properties as defined in Table 1.
Real-shot 360-degree videos with different background

complexities were collected with the following criteria: First,
360-degree videos with little background change were col-
lected to focus only on comparing objects’ properties in the
videos. Second, videos of two or more objects were collected
to compare which objects’ properties were more visually
attractive. Third, video clips with no scene change were
collected to measure successive changes in visual saliency.
Fourth, high stitching quality videos were collected for
viewers’ immersion. Fifth, a crowd of people at a distance
was considered part of the background. The final real-shot
360-degree videos collected totaled 30, as shown in Table 2,
with a frame rate of 30 Hz, resolutions of 2880 × 1440,
3840× 1920, 3840× 2160, and lengths of 17-45 seconds.
Computer-generated 360-degree videos were created to

measure which objects’ properties draw more visual atten-
tion than others. Eight 360-degree test videos for intra-static
property comparison, twenty-four inter-static property com-
parison, and twenty-eight for dynamic property comparison
were produced. Object 1 and object 2 with different static
and dynamic properties are located on the left and right sides
of the center of the initial viewport, respectively, to receive
visual selection by the subject’s head movement.

To determine whether the background complexity affects
the visual attention on the object’s static properties,
we graphically synthesized test videos with simple and com-
plicated backgrounds for the same foreground objects in
intra-/inter-static property experiments. We created simple
background 360-degree videos with objects with different
static properties in the default empty background. We also
created complicated background 360-degree videos by com-
bining these simple background videos with a complex back-
ground. To create CG 360-degree videos, we used a 3D
graphic authoring tool that can configure 3D visual space and
set properties of 3D object models.

Viewers’ visual fixation in 360-degree videos occurs more
at the equator and has a uniform distribution in the longitudi-
nal direction [3]. Thus, in this study, the objects were initially
placed at 0 degree of latitude and ± 25 degrees of longitude,
as shown in Figs. 2(a) and (b), so that viewers would pay
attention only to object properties, excluding equatorial cen-
tric bias during their visual preference measurement.

Ninety-two CG 360-degree videos were created, as shown
in Table 3. Their frame rate, resolution, and lengths were
30 Hz, 4096 × 2048, and 5 or 10 seconds, respectively,
depending on the object’s dynamic properties.

CG01b-CG08b sequences were created for comparison of
intra-static properties. In this case, static properties other than
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TABLE 2. The list of real-shot 360-degree video sequences.

FIGURE 2. Background frames and foreground objects for CG 360-degree video.

the one being compared were set to have the same property
values. CG01b is a sequence for measuring the visual prefer-
ence between three people and a single person in the crowd
property. CG02b is for measuring visual preference between
male and female in the sex property. CG03b-CG05b are for
measuring visual preference among R, G, and B colors in the

color property. Each static property has at least two property
values. Increasing the number of property values increases
the number of property value combinations for measurement
of visual attention. Therefore, only a few property values
clearly distinguished in each static property were included for
effective experiments.
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TABLE 3. Computer generated 360-degree video sequences.

CG09b-CG32b sequences were created for comparison of
inter-static properties to measure the visual attention accord-
ing to each property value change for two selected static
properties. Whether one static property draws more visual
attention than another can be measured by analyzing the
measurement results on two compared objects having every
combination of the compared static property values.

For each dynamic property, we defined two opposite prop-
erty values. Although an object can have multiple static
properties and values, it cannot simultaneously have multiple
dynamic properties. Unlike static properties, it is possible to
compare property values across dynamic properties. Thus,
with two property value combinations from the dynamic
properties, CG33-CG60 sequences were created for visual
preference measurement.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENTS
To calculate the visual saliency map and visual preference
for real-shot and CG 360-degree videos, we sampled the
head movement trajectory of subjects wearing an HMD
using the visual fixation collection system in Fig. 3. The
HMD had a resolution of 2100 × 2100, a field of view
of 110-degree, and a frame rate of 90 Hz. The system was
designed with a high-performance multi-core processor and
a GPU for smooth playback of 360-degree videos.

FIGURE 3. Visual fixation collection system.

The subjects consisted of 25 men and 25 women. The
average age of this group was 24.04 years old, with an aver-
age of 1.02 VR experience. Before starting the experiment,
we explained the purpose of this study and the experimental
procedure to the subjects.1

Experiments were conducted on subjects, each designed
differently for real-shot and CG 360-degree videos. The
subjects were allowed to watch real-shot 360-degree videos
freely. On the other hand, for CG 360-degree videos, subjects

1This experimental study for human subjects was approved by Public
Institutional Review Board Designated by Ministry of Health and Welfare
of the Korea government (P01-201908-13-002).
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were guided to momentarily determine objects of greater
visual preference in the videos being played and move their
heads or bodies so that they could look directly at them. For
a free viewing experiment, a 360-degree rotating chair was
provided. A free rest was given to the subjects after watching
each 360-degree video. The 360-degree videos were played
without sound so that the measured data was only affected by
the visual preference.

The experiment consisted of four parts: a free viewing
experiment on real-shot 360-degree videos, two experiments
comparing objects’ intra- and inter-static properties for CG
360-degree videos with the simple and complicated back-
grounds, and an experiment comparing objects’ dynamic
properties for CG 360-degree videos with the simple back-
ground. Each subject participated in the experiment for about
50 minutes, including a break.

B. VISUAL FIXATION COLLECTION SYSTEM
A visual fixation collection system was constructed to com-
pare objects’ static and dynamic properties in real-shot and
CG 360-degree videos. Because the HMD used for this study
has no eye-tracking sensor, we regarded the sampled head
pose vectors as both the centers of the viewports and the eye
fixations. Therefore, in this study, we defined visual fixation
as the state of a head in which the sampled head pose vectors
remain at a particular visual target for more than a specified
period.

Subjects’ HMD sensor data are sampled while the
360-degree videos in Table 2 and 3 are played. HMD sensor
data include time stamps and subjects’ head pose vectors
consisting of the roll, pitch, and yaw angles.

After the speed between two consecutive sampled head
pose vectors in the spherical coordinate system is calculated,
the visual fixation can be detected if the speed is below a
threshold; the speed of the head movement is calculated by
dividing the spherical distance between two samples with the
sampling time interval [5] as follows.

v = arccos(n1 · n2) · fs, (1)

where n1 and n2 are normals to the unit sphere at the two
sample positions 1 and 2, and fs is the sampling frequency.
Each sampled position is considered the fixation if its arriving
speed is less than 80◦/s [5].
The visual fixation collection system was written in soft-

ware using a 3D graphic authoring tool and an HMD’s SDK.
Time stamp and HMD head pose vectors were recorded in
text file format at 75 Hz.

C. VISUAL SALIENCY MAP GENERATION
Visual fixation detected from the sensor data is used to ana-
lyze the visual saliency change due to the static and dynamic
properties of objects and to calculate the visual preference
between two compared properties.

To visually analyze the visual saliency change, we created
a visual saliency map for each 360-degree ERP frame, which
is commonly used in existing studies. A visual saliency map

is generated by the accumulation of per-subject fixation maps
and its convolution operation with a Gaussian kernel [13].

The visual fixationmap of subject i for an ERP video frame
is given as follows.

fi(p) =
M∑
k=1

δ(p− pf (k)), (2)

where pf (k) and M represent the location of the k th fixation
and the number of fixations in an ERP frame, respectively.
δ(p) represents the Kronecker delta function.

The visual fixation map for N subjects for the ERP video
frame is given as follows.

f (p) =
1
N

N∑
i=1

fi(p). (3)

The visual saliency map is calculated by the convolution
of a two-dimensional Gaussian kernel with the visual fixation
map [2].

S(p) = f (p) ∗ Gσ (p), (4)

where Gσ (·) is the 2D Gaussian kernel with the standard
deviation of σ . The standard deviation was set to 1 degree
in our experiment.

D. QUALITATIVE ANALYSIS ON VISUAL PREFERENCE FOR
REAL-SHOT 360-DEGREE VIDEOS
To analyze the time-varying visual attention in 360-degree
videos according to the static and dynamic properties of
objects, we generated a visual saliency map for each ERP
video frame using the method in subsection IV-C. Fig. 4
shows the visual saliencymap generated for the real-shot 360-
degree video sequences RS05, RS06, RS10, RS19, and RS29.

In the RS05 sequence in Fig. 4, five person objects with dif-
ferent static properties perform at fixed positions. All objects
have the dynamic property of standstill. From the visual
saliency map of the RS05 sequence, subjects initially have
great visual attention to human objects located at the center of
the frame. However, over time they find their preferred human
objects and fixate visual targets.

In the RS06 sequence, a human object feeds two lion
animal objects, with dynamic properties close to standstill.
The visual saliency map of the RS06 sequence tends to focus
on preferred objects, the lions, as time goes by.

In the RS10 sequence, two shark animal objects and
thousands of small fish animal objects move fast. The
RS10 sequence has static properties such as crowd, type, etc.,
and dynamic properties, such as approach, recede, gather, etc.
Its visual saliency exists mainly around the movements of
large sharks and the small fish group.

In the RS19 sequence, six human objects with different
static properties perform dancing. The objects’ actions are to
appear at the door, dance, move from one another, and dis-
appear behind the door. The objects’ dynamic properties are
combinations of standstill, loiter, approach, recede, appear,
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FIGURE 4. Saliency map for real-shot 360-degree videos.

and disappear. The approach dynamic property in which
human objects move to the camera at the center of the ERP
frame has relatively higher visual preference than the other

dynamic properties. Thus, unlike the visual saliency map of
the RS05 sequence, the visual saliency map of RS19 tends
to spread less left and right and concentrates more in the
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FIGURE 5. Saliency map for computer generated 360-degree videos.

middle. This tendency is because objects’ movements mostly
happened at the center gate, and some objects approached the
camera for dancing.

In the RS29 sequence, dozens of elephant animal objects
of the same static properties exist. While one elephant object
approaches the camera, others move from left to right. The
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TABLE 4. Visual preference comparison for intra-static property.

elephant objects far from the camera may have either single
or group static properties. The visual saliency map of the
RS29 sequence shows great visual attention to the elephant
object approaching the camera.

In real-shot 360-degree video sequences, foreground
objects are found to draw greater visual attention than back-
ground because most of the strong saliency is formed on
the foreground objects. However, it is not easy to measure
the visual preference between two properties because more
than two objects of different static property combinations
may coexist and their dynamic properties vary over time.
Moreover, the objects appear far from each other, which
makes it difficult for viewers to determine their visual targets.
When objects do not move, visual preference is determined
by their static properties. As objects move, the visual prefer-
ence is formed on an object or group of objects approaching
the camera in the sequences. Quantitative analysis was not
possible because it was hard to find real-shot 360-degree
videos containing such objects with the compared properties.
This qualitative analysis is aimed to identify which parts of
the ERP frame get more visual preference. This analysis can
be the starting point for comparing visual attention between
two properties in CG 360-degree videos.

E. QUANTITATIVE ANALYSIS OF VISUAL PREFERENCE FOR
CG 360-DEGREE VIDEOS
In CG 360-degree video viewing experiments, it was pos-
sible for us to directly compare which object’s property
affects visual attention more because subjects visually select
more stimulating objects by moving their heads or bodies.
This section analyzes the subjects’ viewing behavior for
CG 360-degree videos containing two objects with different
properties for visual preference comparison.

Tables 4 to 6 show the experimental results after
we compared objects’ static and dynamic properties for
CG 360-degree videos that summarized how object 1
with a particular combination of static properties and a
dynamic property value draws more visual attention than
object 2 with another combination. The comparison results
are expressed using inequality or approximately equivalent
symbols. We determined that two objects draw similar visual
attention if the subjects’ selection ratio for a particular object
is within 5% of that for another object.

Each CG sequence in Table 3 is synthesized for an exper-
iment selecting a more visually attractive object or group
from the scene. So, the statistically significant level of the

TABLE 5. Visual preference comparison for inter-static property.

TABLE 6. Visual preference comparison for dynamic property.

comparison results in Tables 4 to 6 is related to the size of
the set of the subjects. Although each experiment requires
a different size of the set of the subjects to guarantee the
same significant level of the comparison result, we used
the same size of the set for all the experiments because of the
limited research resources. The comparison results of most
experiments in Tables 4 to 6 are statistically significant with
the current size of fifty subjects. However, in the experiments
with a selection ratio of about 50%, a larger set of the subjects
should be constructed for the statistical significance of the
comparison results.
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1) INTRA-STATIC PROPERTY COMPARISON
The results of measuring the visual preference for property
value changes within an object’s static property are shown
in Table 4. A group object has higher visual preference than
a single object for the crowd static property. The visual
preference for a female object was higher than that for a
male object in the sex static property. In the color static
property, blue objects have a similar visual preference with
other color objects, while red objects have nearly twice as
high visual preference as green objects. In the type static
property, the visual preference was measured higher in order
of animal, vehicle, and human objects.

2) INTER-STATIC PROPERTY COMPARISON
The results of comparing the visual preference across the
object’s static properties are shown in Table 5. The compar-
ison across static properties composes object 1 and object
2 to have property values from two different static properties
respectively, and we asked subjects to determine which static
property affects the visual preference more. For example,
from the CG09b sequence experiments, three females had
higher visual preference than one male. In this case, it is not
knownwhich of the sex and crowd static properties affects the
visual preference more. However, from the CG10b sequence
experiments, we can infer that the sex static property affects
the visual preference more than the crowd property because
one female’s visual preference is higher than that of three
males.

The experimental results of CG09b-CG32b sequences
indicated that sex over color, crowd over type, sex over color,
and type over color had a higher visual preference. In sum-
mary, the visual preference was higher in order of sex, crowd,
type, and color.

3) DYNAMIC PROPERTY COMPARISON
It is impossible to express an object’s behavior with the
combination of several dynamic properties as in static prop-
erties. Thus, for the dynamic property comparison, we con-
ducted experiments for two different property values from
any dynamic properties.

The experimental results of CG33-CG39 sequences,
as shown in Table 6, clearly show that objects with dynamic
properties, such as loiter, approach, recede, appear, disap-
pear, gather, and scatter, have a significantly higher visual
preference than standstill objects.Moreover, the experimental
results of the CG33-CG60 sequences revealed that the visual
preference was higher in order of gather, approach, appear,
scatter, loiter, and disappear.

F. DISCUSSION
Real-shot 360-degree videos should only be used for exper-
iments as given, and cannot be used for arbitrary property
comparison as in CG 360-degree videos. However, we com-
monly obtained the following results from both real-shot and
CG 360-degree video experiments:

1) First, foreground objects draw greater visual attention
than background.

2) Second, objects with dynamic properties draw greater
visual attention than stationary objects.

3) Third, for objects with the same static properties, each
object’s visual attention is determined by its dynamic
property.

4) Fourth, the visual preference for foreground objects is
not affected by the complexity of the background.

5) Fifth, there exist visual preference for certain static or
dynamic properties over others.

It was common in both real-shot and CG 360-degree videos
that viewers had greater visual preference for dynamic prop-
erty values, such as gather and approach, and static property
values, such as female and animal. Furthermore, the visual
preference was higher in order of gather, approach, appear
and scatter, loiter and disappear, and recede.

G. PROPOSAL TO USE THE VISUAL PREFERENCE FOR
360-DEGREE VIDEO SERVICES
Existing visual saliency studies have focused on the probabil-
ity that each pixel will receive visual attention and they cannot
provide explicit information on which objects or regions to
watch in the video. Suppose objects’ static and dynamic prop-
erties can be obtained from 360-degree videos using object
detection, tracking, and behavior analysis techniques. In that
case, this study’s results can be used to recommend view-
ers multiple object-centric viewports in the order drawing
more visual attention for 360-degree video exploration or to
generate object-centric viewports automatically for streaming
services. If specific preference by groups or users on object
properties, such as color, object type, or event, can be given,
group- or user-specific automatic viewport generation is pos-
sible, and it will generate different viewports for groups or
users from the same 360-degree videos.

V. CONCLUSION
We measured and analyzed the visual preference for
objects of different static and dynamic properties to provide
360-degree video exploration information. We defined an
object’s static and dynamic properties by analyzing the
objects and events that appear in existing 360-degree videos.
Our experiments were designed for intra-static, inter-static,
and dynamic property comparison, which compared the
visual preference between two objects with different static
and dynamic properties in real-shot and CG 360-degree
videos.

Our experimental results confirmed that foreground
objects draw greater visual attention than background, and
objects with dynamic properties draw more visual attention
than stationary objects. In addition, by analyzing our exper-
imental data, we determined the order of static and dynamic
properties that draw more visual attention. Our results can be
used to recommend viewers objects that attract more visual
attention or generate object-centric viewports of normal
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field-of-view if the static and dynamic properties of objects
can be obtained from 360-degree videos using object detec-
tion and behavior analysis techniques.
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