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ABSTRACT Complex networks (CNs) have gained much attention in recent years due to their importance
and popularity. The rapid growth in the size of CNs leads to more difficulties in the analysis of CNs tasks.
Community Detection (CD) is an important multidisciplinary research area where many machine/deep
learning-based methods have been applied to map CNs into a low-dimensional representation for extracting
information similarity among members of CNs. Currently, Deep Learning (DL) is one of the promising
methods to extract knowledge and learn information from high dimensional space and represent it in low
dimensional space. However, designing an accurate and efficient DL-based CD method especially when
dealing with large CNs is always an on-going research endeavor to pursue. Meta-Heuristic (MH) algorithms
have shown their potentials in improving DL models in terms of solution quality and computational cost.
In addition, parallel computing is a feasible solution for building efficient DL. models. The algorithmic
principle of MH is parallel in nature; however, its computation framework in DL training that is reported in
the literature is not really implemented in a parallel computing setup. In this paper, we present a systematic
review of CD in CNs from conventional machine learning to DL methods and point out the gap of applying
DL-based CD methods in large CNs. In addition, the relevant studies on DL with parallel and MH approaches
are reviewed and their implications on DL models are highlighted to prospect effective solutions to overcome
the challenges of DL-based CD methods. We also point out research challenges in the field of CD and suggest
possible future research directions.

INDEX TERMS Community detection, deep learning, complex networks, meta-heuristic algorithms, parallel
computing.

I. INTRODUCTION

The study of Complex Networks (hereinafter referred to as
CNis) has gained much attention in recent years due to their
importance and popularity. With the development in science
and technology, a variety of research in the field of CNs have
attracted a considerable amount of attention from the research
community. Recently, unstructured data has increased rapidly
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due to the fast development of Internet technology. A large
part of the data is in the form of CNs. Large complex systems
can also be presented as a CN, such as social networks [1],
biochemical networks [2], protein-protein interaction net-
works [3], computer networks [4], citation networks [5], etc.
CNss consist of interconnected nodes. Due to proliferation of
social networks such as Facebook, Twitter, LinkedIn, etc.,
there are billions of users. The study of user interactions
on these networks is of a great importance to many parties,
including academia, industry, governments, etc [6]. Hence,
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FIGURE 1. Community detection visualizations with three groups of
nodes.

it is worthwhile to understand the relevant literature and study
research insights from the CNs of which their complexities
are ever increasing.

Community detection (hereafter referred to as CD) is one
of the most important research fronts in the field of CNs.
It is also a key multi-disciplinary field of research and is
useful for understanding the structure of networks. [7]. The
idea of CD in CNs is depicted in Fig. 1. The interest of CD
is valuable in several applications. Usually, a CN is divided
into several groups (or communities) so that the number
of relationships among nodes in a group is more than the
number of relationships the nodes between groups. CD is one
of the fundamental tasks in CNs. After the relationship of
nodes within a group and among groups have been identified
through CD, one can analyze and mine the potentially useful
information from different network communities in a CN that
are knowledge representations in many applications such as
social networks, medical science, machine learning, crimi-
nology, and biology [1], [6]. In addition, communities in a CN
can exchange and suggest information due to similar desires
among the members, and this feature is useful for tasks in
a variety of applications which require recommendations,
segmentation, vertex labelling, link inference, and influence
analysis. CD is also helpful to detect subspecies groups or
individuals [8], [9].

A great deal of effort has been devoted to develop new
CD methods to extract meaningful features from a CN
and represent them in a low-dimensional space (sometimes
called learning embedding-based CD); then, clustering algo-
rithms such as k-means are applied to find communities
in the low dimensional space [8], [9]. Many conventional
machine-learning (ML) algorithms were developed to solve
the problem of CD [10], [11]. However, due to the increase
in network size and complexity, the traditional ML methods
such as spectral mapping and non-negative matrix factoriza-
tion methods are no longer viable. Moreover, these methods
can easily provide local optimal solutions and have high
complexity [6], [12]. An alternative way is to introduce deep
learning-based methods to cope with the CD problems and
challenges. This trend has brought deep learning an attrac-
tive solution and research area for addressing the CD prob-
lem [13]. In addition, meta-heuristic algorithms were adapted
to deal with relevant issues of CD [14].
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Deep learning (hereinafter referred to as DL) has become
one of the most active research areas in artificial intel-
ligence and machine learning. It has achieved impressive
results in many areas, such as speech recognition, image
analysis and text comprehension, for both supervised and
unsupervised learning strategies [15]. Unfortunately, due to
the unique properties of graphs, applying DL-based methods
to the CN problems has never been an easy task [16]. The
low-dimensional representation capability of DL-methods in
solving the CD problem was investigated in recent stud-
ies; these DL methods are, for example, stack and sparse
autoencoders [8], [17], graph neural networks [18], [19],
and other variants of DL [6], [20]. Despite the presence of
DL-based CD methods, there is still a lack of finding com-
munities effectively and efficiently, especially when deal-
ing with large CNs. Unfortunately, in reality, the size of
the networks increases considerably. In addition, most of
the existing DL-based CD methods are trained with gradi-
ent decent strategy and backpropagation algorithm, which
have three limitations: (1) training process is slow, espe-
cially with big data; (2) sensitive to parameter initiation; and
(3) the solutions from these methods are likely to fall in local
minima [21], [22].

Meta-heuristic (MH) is a concept of a set of algorithms
including evolutionary algorithms such as naturally inspired
algorithms such as Particle Swarm Optimization [23], and
Genetic Algorithm [24]. MH algorithms have been success-
ful used for optimizing machine learning models. They are
efficient methods to solve complex problems and could find
optimal solutions within an acceptable duration of time.
Nowadays, MH algorithms are the state of the art for various
optimization problems, especially for problems that are very
complex and have high dimensionality [25]; the CD problem
is no exception. MH algorithms were adapted and employed
to address the problem of CD [14]. Even though many effort
have been made to develop effective MH algorithms for the
CD problem, they encounter the problem of low accuracy and
deficiency in dealing with large CNs [14]. On the other hand,
MH algorithms have been applied to optimize DL models,
where the gradient descent optimization is replaced by iter-
ative MH algorithms to optimize the parameters and model
structure [26]. However, the number of paper publications
related to the application of MH in large-scale DL is still
few [21], [22].

The emergence of big data is observed recently. DL is
playing an important role to deal with big data and to har-
vest valuable knowledge from complex systems [15], [27].
On the other hand, the complexity of DL models increases
significantly due to massive computational work and memory
requirements. The development of High-Performance Com-
puting (HPC) devices is helpful to support the development of
large-scale DL models. The utilization of parallel computing
helps to improve the efficiency for the training of large-scale
DL models on big data by dividing a task into subtasks and
solving them simultaneously. Parallel computing improves
the efficiency of large-scale DL models by utilizing Graphics
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Processing Unit (GPU) devices [28], [29], and clusters of
CPUs [30], [31].

A. EXISTING REVIEWS

The field of community detection is developing rapidly and
plays an important role in solving various complex prob-
lems in real life. There are various review articles about the
applications and methods of community detection, most of
them are developed for conventional CD methods [1], [32].
Recently, a few studies review recent techniques, such as
DL and MH. The study by Liu er al. [13] presented a
review on CD with DL. It contains a discussion of deep
graph embedding, deep neural networks, and graph neural
networks. The survey by Jin et al. [9] contained a discussion
of probabilistic graphical model and DL methods. In addi-
tion, Abduljabbar et al. [14] presented a generic overview
Nature-inspired optimization algorithms and their role in
solving CD problems. The heuristic and MH based CD
algorithms were reviewed by Bara’a et al. in [33]. Further-
more, the authors described hybrid MH and hyper heuristic
algorithms for CD. Despite the availability of some studies
in the literature that provide the researcher with valuable
information about CD using DL and MH techniques, there
is still a lack of literature that gives a macroscopic view
of effective and efficient DL- and MH-based CD in large
CNs.

One of our main goals in this paper is to show the DL-based
CD need of MH and parallel approaches to bridge the gap
exist so far in a unified perspective. Our survey differs from
the published ones in four aspects. First, we present a recent
trend in the development of methods for CD, i.e., from con-
ventional to DL, while the others focus mainly on individ-
ual techniques, e.g., conventional [1], [32], DL [9], [13],
or MH [14], [33]. Second, the paper focuses on a survey of
DL and MH- based methods for CD in large CNs that are
defined as a big data problem. The scope of survey is different
from the existing papers [9], [13] where the solutions are not
applied for handling big data. Third, the survey summarizes
recent research work involving the integration of DL and MH.
Fourth, this paper refers to the most successful studies of
using large DL models with MH and parallel techniques in
other domains to encourage researchers to carefully recon-
sider the design of effective and efficient DL-based solutions
for CD in large CNss.

B. CONTRIBUTIONS

This paper presents a systematic review of CD in CNs from
conventional machine learning to DL methods, and point
out the gap of applying DL-based CD methods in large
CNs. In addition, the relevant studies on DL with parallel
and MH approaches in various domains are reviewed and
their implications on DL models are highlighted to prospect
effective solutions to overcome the challenges of DL-based
CD methods. We summarize the contribution of this paper as
follows:

VOLUME 9, 2021

« We provide a comprehensive review of learning-based
CD from conventional machine learning to deep
learning-based methods, considering existing methods
in MH and parallel approaches to deal with large CNs.
To our knowledge, this is the first effort dedicated to
summarize current research work on the application of
the mentioned methods for CD. We also point out chal-
lenges and open research questions related to DL-based
methods for CD.

« We present an overview of recent remarkable studies that
were developed to improve the effectiveness and effi-
ciency of large-scale DL models in various fields, espe-
cially those using MH and parallel approaches to deal
with big data. In addition, the existing challenges and
open issues in such methods are discussed. The aim of
this review is to motivate and inspire the research com-
munity to adapt DL to use MH and parallel approaches
to overcome the existing problems of DL-based methods
in CD, especially applied in large CNs.

o Finally, a summary of review, future directions, and
research gaps in the field of CD are presented at before
the end of the paper, which shed light on future endeav-
ours in developing effective and efficient computing
solutions for large-scale CNs.

C. TERMINOLOGY
A set of acronyms are used throughout the presentation. For
a quick access, Table 1 lists all acronyms used in this article.

D. PAPER ORGANIZATION

The paper is organized as follows. Section II presents a
detailed methodology to conduct this study. The prelim-
inary concepts of CD in CNs with DL are described in
Section III. The technical overview of the research on ear-
lier conventional CD, as well as parallel conventional CD
methods are presented in Section IV. Section V overviews
the research progress on DL-based CD methods. Section
VI overviews the research on DL-based parallel comput-
ing on regular and irregular domains. An overview of MH
algorithms, CD-based MH algorithms, and DL-based MH
optimization methods are presented in Section VII. The open
benchmark datasets that have been used in the area of CD are
presented in Section VIII. Section IX summarizes the review
and point out research challenges involving the use of the
mentioned methods in Section VII for CD. Section X suggests
future research directions. Finally, the paper is concluded in
Section XI.

Il. REVIEW METHODOLOGY

A survey of the literature was conducted to identify pub-
lications describing CD algorithms from conventional to
DL algorithms as well as DL with parallel and MH
approaches. For this purpose, keywords and phrases were
used to search for articles in well-known repositories such
as Google Scholar, IEEE Xplore, Science Direct, Web
of Science, Scopus, and arXiv. The overall procedure
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TABLE 1. List of acronyms.

Acronym Meaning

CN Complex network

CD Community detection

DL Deep leaming

MH Meta-heuristic

ML Machin learning

HPC High-performance computing
GPU Graphics processing unit
SBM Stochastic block model

NMF Non-negative matrix factorization
KL Kullback-Leibler

ANN Artificial neural network
CNN Convolutionalneuralnetwork
GNN Graph neuralnetwork

GCN Graph convolutionalnetwork
SGD Stochastic gradient descent
DNN Deep Neural Network

RNN Recurrent neural network
DBN Deep Belief Network

CAE Convolutionalautoencoder
GA Genetic algorithm

PSO Particle swarm optimization
ACO Ant colony optimization
ABC Artificial bee colony

FA Firefly algorithm

CsS Cuckoo Search

BA Batalgorithm

SA Simulated Annealing

SFSO Sigmoid fish swarm optimization
WWO Water wave optimization
WOA Whale optimization algorithm
GWO Grey wolf optimization

GD Gradient descent

BP Backpropagation

was as follows: first, the identified keywords were
employed along with their synonyms to find relevant arti-
cles. The keywords were set with the following search-
ing criteria: ((“‘community detectionx’> OR “community
discoveryx” OR “deep learning+ community detection”
OR ““metaheuristicx community detection” OR “finding
communitiesx”’) AND (“complex networks” OR “large
complex networks” OR “social networks”) AND/OR
(“‘parallel« deep learningx” OR ‘“metaheuristic x deep
learning”’)). Second, the title and abstract of the articles were
read to remove unrelated articles. Next, the related papers
were selected for full-text reading according to the following
criteria:

o Publications after 2015 were given a higher priority.
If they did not exist, those articles published after
2010 were reviewed. Some remarkable studies before
2010, which were few, were also selected.

« To overcome the language difficulty, only the articles
written in the English language were considered.

o The literature review was based on papers that applied
DL and ML for community detection, and that intro-
duced supporting techniques to improve the efficiency
and scalability of large-scale DL models (such as MH
and parallel techniques).
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As a result, a total number of 184 paper publications were
identified to form the basis for this review. Approximately
two-thirds of the publications (63.2%) were journal articles.
The rest were presented at conferences (34.1%), and book
chapters (2.7%).

The selected papers were studied in details and the key
information were extracted, e.g., the approach of CD and
algorithms, the applications and datasets used and their
attributes, the improvement techniques applied in terms of
efficiency and effectiveness, and merits and demerits of indi-
vidual CD methods.

IIl. PRELIMINARY CONCEPT

A complex network CN (n, m) can be expressed as a graph
G(V,E). Here V represents a set of nodes n, V(G) =
{vi,va, ..., vy} and E represents a set of relations m between
nodes. In the abstract form of the relations, they are con-
sidered as undirected, unweighted and unsigned relations.
The adjacency matrix A = [a;] € R"™ is the most
widely used representation of these relations, where the pair
nodes i and j are represented as a;; and defined as a; =
wij, if (a;j = 1) means the nodes are connected, a;; = 0 the
nodes are disconnected. The number of relationships between
the node v; and other nodes is called node-degree that can be
calculated as:

d(v,-) = Zaij (])

The node with a high degree refers to the importance of the
node in the CN. Another representation is a modularity matrix
B = [b;j] € R™". The element b;; can be expressed as B =
a;j — (kik;/2m), where k; and k; indicate the degree of node i, j
and m is the total number of all edges in the G/CN. Each node
v; has a vector with a length size equals n, which represents
the node i relationships with all nodes in the G/CN, v; j,j =
{1,2,...,n}.

The goal of CD algorithms is to partition a given CN into
a set of k communities C = {cy, ca, ..., ck}, so that the
relationships inside each community, e.g., ¢, is denser than
the relationships between the communities, e.g., ¢; < ¢3.
This is typically calculated by a Q-Modularity function that
should be maximized. The Q-Modularity function is denoted
as:

1 did;
0= Z] (i — = )3, 2

Here, m, d; and A;; are the number of edges between the nodes
in the sub-graph, the degree of the node i, and the adjacency
matrix, respectively. In case of §;; = 1,7 and j are in the same
community, otherwise §;; = 0.

The nodes with a nearly similar vector representation are
assigned to the same community. This can be performed as
follows. First, some nodes are selected as community cen-
ters correspond to k communities ve = {v¢1, Ve2, - -5 Vek }s
usually, by referring to Eq. (1), these nodes have high degree
of relationships. Next, the Euclidean distance between each
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FIGURE 2. Structure of an autoencoder with 3 fully connected hidden
layers.

node v; and all community centers v, is computed according
to the following equation:

vi—vgla, ien jek 3)

dis(vi, vej) =

Nodes v; (where i > 1 and i < n) with a similar rep-
resentation obtain similar distances from the same commu-
nity center v¢j. As a result, they are grouped in the same
community.

The main problem in this process is how to find an effective
low-dimensional representation of the node so that the simi-
larity between the nodes is promoted and the original network
representation is preserved.

DL can effectively extract low-dimensional representation
and find information similarity among nodes of CNs. For
example, the deep autoencoder model reconstructs the output
data so that it is similar to the input data [34]. Figure 2 shows
the general structure of the autoencoder. It has two phases:
(1) The first phase is called encoding, where the hidden layer
h converts the data x and its features n into a latent repre-
sentation with feature spaces d, where d is smaller than n.
The mapping process is conducted with the f 1 function, 7 =
f1(Wix+b1). (2) The second phase is called decoding, which
attempts to reconstruct the original data from the output of the
hidden layer using the 2 function h = f2(Wax + by). The
Sigmoid, Tanh, and Relu activation functions are normally
used with the decoding and encoding functions since they are
nonlinear mapping functions. The parameters of autoencoder
model are referred to as & = [Wy, by, W, b>] and trained by
minimizing the loss function:

1 . i i
J@=;;(x ) 4

with respect to all samples n (i.e., nodes), where x and y
denote the original input data and the reconstruction data,
respectively.

The training steps of autoencoder include a feedforward
process and a backward process. The time complexity of the
autoencoder model is calculated by:

T (Jp + 3Jp) = O(2nho + 2nho) = O(nho) 5)
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where n, h, and o refer to the number of nodes (i.e., sam-
ples of training), the number of neurons in the hidden and
input/output layers. The deep autoencoder requires [/ layers
and ¢ iterations, and this changes the time complexity to
O(tlnho). In CN representation, a node i is represented by a
vector of size n. Therefore, the time complexity is O(tln*h).

The time complexity of assigning nodes to the nearest
community is O(nkd), where n, d, and k denote the number
of nodes, the size of the dimensional representation, and the
number of communities, respectively.

IV. CONVENTIONAL COMMUNITY DETECTION METHODS
A great effort has been devoted for CD using conventional
ML methods. This section presents remarkable and recent
literature studies related to use of conventional ML-based
methods for performing CD.

A. EARLIER CONVENTIONAL COMMUNITY DETECTION
METHODS

In the last two decades, several conventional ML meth-
ods have been developed to address CD in CNs. Spectral
mapping and clustering algorithms were introduced to find
communities in networks. Ng et al. [35] presented a spec-
tral clustering algorithm to detect communities in a CN.
The main idea of the algorithm was to represent the data
of a CN in a small-dimensional space. Then, a clustering
algorithm for the new small dimensional space was used
to discover communities. White and Smyth [11] devised a
spectral clustering algorithm for CD based on the reformula-
tion of eigenvectors of matrices. The study mapped the node
data of the network into Euclidean space and then grouped
them into clusters. The spectral algorithm was improved by
Niu et al. [36]. The authors used the page rank method to
find the core nodes, and then the cores were employed to
initiate the cluster centers in the spectral clustering algo-
rithm. Zhang et al. [37] proposed an extension of the spectral
clustering algorithm to support the detection of overlapping
communities, which included spectral mapping and Fuzzy
c-means clustering [38]. Newman and Girvan [39] proposed
a hierarchical clustering algorithm to solve the CD issue.
It was based on a measurement called ‘‘betweenness cen-
trality” [40]. It started by calculating the betweenness of all
edges. Then, the edges with high betweenness were removed,
and the betweenness for remaining edges was recalculated.
Brandes et al [41] proposed a method for grouping the nodes
of a CN into communities based on the modularity index. The
method was aimed to find the best clustering with maximum
modularity. A Random-Walk algorithm was built based on
a random walk process, which was a process of navigating
node at random [42]. Rosvall and Bergstrom [43] proposed
an algorithm for CD based on flow of information between
nodes, called an Infomap algorithm. They used maps to repre-
sent the flow of information between nodes. A group of nodes
between which information flows were grouped into a single
cluster. A random walk was used as a proxy for information
flow.
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Stochastic Block Model (SBM) is a generative model [44]
to solve the CD problem. The model uses a node membership
probability function to find hidden communities in the net-
work. Karrer and Newman [45] improved the performance of
the SBM model by proposing a new model based on the cor-
rected degree. They overcame the limitations of the original
SBM that used the basic node degrees (i.e., adjacent degrees)
in graph clustering, which were not uniformly distributed.
The study introduced parameter degrees for all nodes that
could scale with edge probabilities and expected a new appro-
priate degree. Non-Negative Matrix Factorization (NMF) is
another Conventional ML method developed for CD [46].
It mapped the topology information of a CN to a latent
low-dimensional space. The new space was soft membership
vectors that assign each node to a particular cluster. Shi
et al. [47] developed a new NMF-based pairwise constrained
method to improve the performance of CD. Wang et al. [48]
also adapted the NMF algorithm to detect overlapping and
non-overlapping communities in CNs.

B. PARALLEL CONVENTIONAL COMMUNITY DETECTION
METHODS

Recently, many researchers have dedicated their efforts in
developing parallel conventional ML methods to find com-
munities in CNs. They use HPC that is available in either CPU
or GPU devices to design parallel computation models. The
research works are reviewed in the following sections.

1) CPU BASED PARALLEL COMPUTATION
Prat-Pérez et al [49] proposed a parallel algorithm based on
optimizing weighted community clustering for CD in large
graphs. The algorithm first used the clustering coefficient as
an evidence to find initial communities, then refined these
communities by moving nodes between them. The calcula-
tion of the clustering coefficient of vertices and the refine-
ment functions were performed in parallel. He et al. [50] pro-
posed a parallel CD algorithm based on the distance dynamics
model [51], which made the interaction scope of each node
is only affected by its neighbors. The algorithm divided the
large network into sub-networks by a divide-and-conquer
strategy. Fazlali et al. [52] proposed a parallel method to
tackle Louvain CD algorithm. The method introduced a
thread level parallelism for the calculation of adding qualified
neighbor nodes to the community in a parallel way. Parallel
processing with a threaded binary trees data structure method
was proposed for CD in [53]. The method was performed over
weighted networks in irregular topologies. The aforesaid CD
methods were evaluated in multi-processors platforms.
Distributed parallel CD algorithm was proposed by
Moon et al. in [54]. The authors developed two parallel
versions of Newman and Girvan’s algorithm [39] to handle
CD in large CNs. MapReduce and the vertex-centric models
were adopted for performing parallelization operations of the
Newman and Girvan’s algorithm. In addition, the algorithms
were implemented together with GraphChi and Hadoop. Sim-
ilarly, a parallel method based on a partitioning algorithm was
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proposed to solve the CD problem [55]. It used a subtree-split
strategy to divide the network into sub-networks. The per-
formance of above algorithms was evaluated on a cluster
of CPUs platform and applied to different large networks.
The experimental results showed that they could give a good
performance in terms of time computation.

2) GPU BASED PARALLEL COMPUTATION
Some researchers have also suggested that the use of GPU
devices could improve the efficiency of CD methods. Soman
and Narang [56] presented a new parallel algorithm for CD
with GPU device. It adopted a weighted-label propagation
algorithm. Li [57] proposed a parallel version of Newman
algorithm based on parallel computing for CD. The algorithm
utilized the architecture of GPU architecture. In the relevant
issue, Al-Ayyoub et al. [58] proposed a parallel algorithm
for CD in social networks. The algorithm used dynamic
parallelism based on GPU device. It provided three paral-
lel implementations of Zhang et al.’s algorithm [37]: paral-
lel CPU, hybrid CPU-GPU, and dynamic parallelism-based
GPU. Mohammadi et al. [59] adapted the Louvain algorithm
for CD in large CNs to perform in parallel with GPU devices.
They used thread-level parallelism and shared memory with
threads in the GPU block. They also proposed parallel imple-
mentations with hybrid CPU-GPU. In [60], Souravlas et al.
proposed a parallel CD algorithm with hybrid CPU-GPU
devices. The algorithm transformed the network nodes into
a set of threaded binary trees. It first made the CPU to take
samples of CN communities and represented them in the form
of threaded-binary-trees, then the GPU read the large load
data and sent it into a path matrix, finally the matrix was
sent back to the CPU to analyze it and find communities. The
results of the above algorithms showed that they achieved a
good speed-up gain compared to non-parallel CD algorithms.
In short, according to the review in Section IV (A and
B), we observed that great efforts have been devoted to
solve the CD issue in CNs by applying conventional ML
methods with both sequential and parallel implementations.
However, these conventional methods could achieve local
optimal solutions, which lead to a decrease in the quality
of CD solutions. In addition, these approaches are highly
dependent on the properties of the data. For example, spectral
mapping methods adopt eigenvectors for CD, but they do
not perform well on sparse networks. These methods also
struggle in the face of today’s complex data and increasing
scaling of CNs and dimensionality of data [13]. Therefore,
researchers were motivated by the success of DL in various
fields and shifted their attention to developing powerful tech-
niques to obtain effective and efficient performance for CD
with feasible computational speed. [6], [9].

V. DEEP LEARNING MODELS-BASED COMMUNITY
DETECTION

DL has become one of the most proactive research areas in
artificial intelligence and machine learning. It has achieved
remarkable success in many domains and applications, such
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as speech recognition, image analysis and text comprehen-
sion [15], communications and networking [61], [62], etc.,
and CD is no exception. In this section, we review studies
that address CD using DL models. The existing DL models
in the field of CD are classified as follows.

A. STACKED AUTOENCODER-BASED COMMUNITY
DETECTION

Tian et al. [17] proposed a CD method using the DL model,
which is one of the earliest studies in this field. They designed
a stacked autoencoder model for learning a nonlinear embed-
ding of the graph. The model was developed by exploiting
the similarity between the spectral clustering algorithm and
the autoencoder model. The model took similarity, D was
diagonal matrix and n nodes. The method then created a latent
representation z with low-dimensional space d, z € R"*? The
model was trained with the loss function that is calculated
with Eq. (4). with respect to all samples m (i.e., nodes.
It also consisted of five layers and adapted Kullback-Leibler
(KL) divergence for sparsity besides loss reconstruct func-
tion. The new loss function was then introduced, as
follows.

_ - i N2 7
Je—ag(x ¥)" + BKL(P||P), (6)

where x and y denote the original input data and the recon-
struction data, respectively, B controls the weights of sparsity,
n

and p is a small constant value, e.g., 0.01 and P = % > hj,
Jj=1

which is the average of activation of units in the hidden

layer (h), and KL(P||P) denotes the KL-divergence and is

formulated as follows:

|P|
n P 1-p
(P||P) = E plog — + (1 —p)log - @)
i=1 Pj 1 —P;

Backpropagation algorithm and greedy layer-wise training
process were used for training the model. Afterward, k-mean
clustering algorithm was applied on the extracted latent repre-
sentation for dividing the graph into groups (or communities).
The results demonstrated that the model outperforms spectral
clustering algorithm.

In the same direction of research work, Yang et al. [8]
developed a stack autoencoder model for CD [63]. They
adopted the modularity matrix B = [b;] € R™" as an
input of the model. Then, the stack autoencoder model was
trained to create a useful hidden representation of the graph
in low dimensional space. The model was extended to a
semi-supervised by incorporating pairwise constraints. Sim-
ilarly, a stacked and sparse autoencoder was developed by
Wang et al. in [12] for CD. The proposed model encapsulated
stack autoencoder as embedding stage and k-means as a
clustering stage. It received a normalized adjacent matrix A
as input. Fei et al. [64] proposed a method for CD using a
deep sparse autoencoder model. In this method, a similarity
matrix S was first constructed. Then, a sparse autoencoder
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was performed to find an effective and low-dimensional fea-
ture space of CNs. Continuing in the same direction, a CD
method based on a denoising autoencoder was developed by
Geng et al. in [65]. A probability transfer matrix 7' of a CN
was first computed. Then, the transfer matrix was nonlin-
early mapped to a new space by the denoising autoencoder
model. Moreover, autoencoder and Convolutional Neural
Network (CNN) models were combined for CD in [66]. The
method extracted the spatial localization features by autoen-
coder and CNN models. The above methods used k-mean
clustering algorithm to group nodes into communities. A set
of experiments were conducted to evaluate the performance
of the aforesaid methods with small-sized real CNs, and the
results showed that the methods were promising for finding
communities in CNs.

The autoencoder based on the integration of the network
topology and content was suggested to solve CD problem.
Cao et al. [67] proposed autoencoder that can utilize network
topology and network content for such problem. Modular-
ity B and Laplacian L matrices were used as input to the
model. Graph regularization was also added to the proposed
autoencoder to achieve robust integration of network content
and topology, even though there was a mismatch in between
them. In [68], the authors proposed an autoencoder model
for CD based on the combination of topology and node
contents. Both Markove M matrix and modularity B matrix
were used as input data to the autoencoder. In the same
direction of research work, Cao et al. [69] proposed a deep
autoencoder model for CD by integrating network structures
and node contents. The autoencoder obtained low dimen-
sional space of the network representation. Modularity B and
Markove M matrices were also used as input data to the
proposed model. The experimental results showed that the
methods gave a more robust performance than some popular
CD methods.

Some researchers have also suggested other variants
of the autoencoder for discovering communities in CNs.
Xie et al. [70] proposed a transitive autoencoder model for
CD. They calculated a new similarity matrix S based on
eigenvectors and eigenvalues, and used them as input to the
transitive autoencoder. The model was trained to obtain a
low dimensional representation of a CN, then the communi-
ties were discovered with the k-mean clustering algorithm.
More recently, Xu et al. [71] proposed a new method for
CD using DL techniques. The method used four similarity
matrices of CNs based on modularity, diagonal, transition
operations, called B, D, T, M. All these matrices were fed
to the model as source and target. Then, a stack autoencoder
and transfer learning were combined to find an efficient
low-dimensional feature space. Finally, several clustering
algorithms were integrated to effectively find communities of
CNs. The algorithms were evaluated on medium to large CNs
and outperformed traditional methods in this area. Table 2
lists research publications relevant to autoencoders -based
CD methods, as well as their merits and demerits and related
properties.
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TABLE 2. Summary of DL-based CD studies (Autoencoders).

Ref. Methods Inputdata Net. size  Efficiency = Remarks("+" refers to the merits and "-" to the demerits)
[17] Sparse Autoencoder D's 5K +The structure of the models was mentioned, and they outperformed
L traditionalspectral clustering.
(8] Stack au.toencoderbased B 27K ow - The cost of the models was not discussed, and it was evaluated with
modularity small datasets.
+ It performed more effectively than the spectral community detection
Deep transitive autoencoder algorithm. .
12 Justeri A 0.11K Low + The model cost was calculated and its structure was presented.
[12] clustering - Performance analysis and comparison of the modelis poor and hasbeen
evaluated on smalldatasets.
[64] Sparse autoencoder N 8K + They outperform traditional ML methods in the field.
[65] Denoising autoencoder T 12K Low - They require high memory, extensive trainable parameters.
J ’ - No improvement in efficiency, and the evaluation was performed with
[66] Autoencoder-based CNN A 0.1K small datasets.
[67] Autoencoder with the B L 0.26K + They can robustly combine network topology and node content,
[68] integration of network M, B 19K Low resgltmg m robustperformance.
tructure and content - Time cost not measured and discussed.
[69] structure and contents M, B 39K - Autoencoder structure was not mentioned.
[70] Transitive autoencoder S 371K + They outperform traditionaland existing methods.
+ They can extractlocaland global network structure effectively.
Moderate Time complexity was not measured and discussed, and extensive
B DT trainable parameters were needed.
[71] Stacked autoencoder M IM - Many data representations are used that require high complexity in

space and time.

B. GRAPH NEURAL NETWORK-BASED COMMUNITY
DETECTION

Graph Neural Networks (GNNs) are a technical merging
of graph mining and DL. The rapid development of GNNs
in recent times is proof of their ability to model and cap-
ture the complex relationships between members of CNs.
Chen et al. [19] developed a GNN model for supervised CD
to perform as a node-wise classification. The model used
an adjacency matrix A to exploit the information of edge
adjacency by including the non-backtracking operator of the
graph. Graph Convolutional Network (GCN) is a popular type
of GNNs models for integrating graphs and supervised DL,
which is developed following the success of CNN in other
domains [72]. Jin et al. [18] proposed a method based on
autoencoder and GCN for CD. The method incorporated net-
work topologies and network contents. It consisted of encoder
model, CD model, which is based on multinomial logistic
regression, and structure reconstruction model. Similarly,
Wang et al. [73] proposed a method based on marginalized
autoencoder and GCN models for CD. GCN was mainly used
for graph classification, the authors adapted GCN to a purely
unsupervised clustering task by applying a stack autoencoder
model. The approach integrated the content and the structure
of the network and supported clustering tasks.

Recently, the GNN model was adapted to data-driven
spectral analysis as well as CD in [74]. The method used a
SBM and generic inference algorithms employing supervised
learning for the data-driven process. In [75], a new GNN
encoding method was proposed for the problem of CD in
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CNs. The method used a multi-objective evolutionary algo-
rithm to solve this problem. In GNN encoding step, the edge
in an attribute network was associated with a continuous
variable, then non-linear transformation was used to transfer a
continuous value into a discrete-values, which indicated com-
munities of a CN. Sun ez al. [76] also proposed a CD method
based on GCN-autoencoder for clustering nodes. The method
extracted the network embedding through the GCN autoen-
coder model. It also used the community structure to max-
imize the modularity index and grouped the network mem-
bers with a clustering algorithm. Similarly, Park et al. [77]
proposed a symmetric GCN autoencoder for learning the
representation of a CN in unsupervised manner. The extracted
new representation was utilized for node clustering.

The performance of the aforementioned methods [69]-[72]
was evaluated on small-sized CNs, and they achieved good
results in terms of accuracy and effectiveness. However, these
methods encounter efficiency issues and are applicable to
deal with small CNs only. Table 3 lists research publications
relevant to GNN and GCN -based CD methods, as well as
their advantages and related properties. properties.

C. OTHER TYPES OF DEEP LEARNING-BASED
COMMUNITY DETECTION

Other variants of DL models were developed to solve the
problem of CD in CNs. For example, Xie et al. [6] proposed
a deep sparse filtering method for this task. In the method,
a new network similarity representation S¥ was proposed
to denote direct and non-direct relationships between nodes.
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TABLE 3. Summary of DL-based CD studies (GNNs and GCNs).

Net. Efficienc

Ref. Methods ) Inputdata
size

Remarks ("+" refers to the merits and "-" to the demerits))

[18, GNN and joint GCN

19]  Embedding 19K

A X Low

+ They havea good performance.

+ Effective performance comparison, analysis and interpretation of
results were performed.

- Time costs were neither computed nordiscussed.

- No improvement in efficiency.

Marginalized
(73] autoencoderbased GCN 4X Low

+ Itachieved good performance compared to othermethodsin the field.
of CD, and it integrated new variant of autoencoderto a GCN.

+ The time taken was calculated and discussed.

- No improvement in efficiency, and only small datasetsare included in
performance evaluation.

GNN 58K A Moderate

[74]

+ Itharvests good performance and can work with medium -sized CNs.
- Time costs have not been introduced and discussed.
- No improvement in efficiency.

Low

[75] GNN-based evolutionary  1.4K

+ Ituses multi-objective function to improve the method effectiveness,
and outperforms traditional ML methods in the field.

- Itdoesn’t suggest improvement in efficiency (time, space
complexity), and performs the evaluation with small-sized CNs.

176 Low

77] GCN-based autoencoder 3K

+ They have the superiority performance.
- They require large memory and extensive trainable parameters.
- No improvement in efficiency, evaluation only with small-sized CNs.

Sparse filtering model was adapted to extract meaningful
features of network and represent them in low-dimensional
space. The k-mean clustering algorithm was used to divide
the network into communities. The authors also incorpo-
rated new constrained similarities of pairwise nodes to the
loss function of sparse filtering. In the same direction of
research, Ye et al. [78] integrated the concept of non-negative
matrix factorization into the layer structure of the autoencoder
model. The encoder and decoder layers were incorporated
in non-negative matrix factorization to form a unified lose
function. The method used adjacency A and non-negative
factor matrices U as input data. A convolution neural network
CNN model was adapted for CD by Sperli [20]. The CNN
model used adjacent matrix A as an input data representation.
The convolution and max pooling layers mapped the similar-
ity graph into the latent representation in a low dimensional
space. A full connected neural network was performed on
the new representation to assign nodes to communities. The
method was trained with a supervised learning strategy to do
a classification task. The mentioned methods were tested on
a set of small-sized CNs, and the results showed that the they
are promising to solve CD compared to conventional method.

In the relevant problem, Zhou et al. [79] proposed an
approach that used an autoencoder to address CD based
on local and global structure of graphs. In this approach,
the graph was first divided into subgraphs and sent to the
autoencoder model to extract graph features and represent
them in a low-dimensional space. Finally, it executed Stu-
dent t-distribution to refine initial K subgraphs clustering.
Recently, in [80], the authors developed a new learning
method for CD in CNs. They divided a given CN into several
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parts and chunks in order to bring them into the autoencoder
model with low trainable parameters. In addition, the pro-
posed method adopted a reduction and sharing of trainable
parameters to improve the efficiency of deep autoencoder
model for such a task. The method used S¢ similarity repre-
sentation as input data representation. Also, a parallel design
was designed in the method. The above methods were evalu-
ated with medium to CNs, and the results showed that they
outperformed existing methods in the field. Table 4 lists
research publications relevant to other variants of DL models
for CD, including those dealing with large CNs, as well as
their advantages and related properties are presented.

In a nutshell, according to the recent studies, we witnessed
acceptable attention has been devoted to CD in CNs using
DL models, especially with an unsupervised approach via
applying autoencoder models. However, most of the exist-
ing methods have a challenge in terms of effectiveness,
efficiency, and scalability. In terms of the efficiency and
scalability, three issues are still open for improving better
solutions: most of current methods confront low efficiency,
where they do not operate in a setup with parallel CPU-GPU
computing; the methods treat an entire CN as a single object;
and they are usually evaluated on small CNs, except for
a few recent methods. Therefore, this paper reviews the
recent and relevant studies on DL with parallel approaches in
Section VI to show how parallel approaches play an important
role in developing efficient large-scale models. The aim of
Section VI to highlight valuable solutions to overcome the
challenges in developing efficient and large-scale DL-based
CD methods. As for effectiveness limitations, all existing
DL-based-CD methods use the gradient descent strategy with
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TABLE 4. Summary of DL-based CD studies (other variants of models, including those dealing with large CNs).

Ref. Methods Is\ili' é?t):t Efficiency Remarks ("+" refers to the merits and "-" to the demerits)
E(;Itlfi:gatwe + Ithaseffective performance compared to traditional methods, and the
[78] . . 19K AU Low analysis was done effectively.
factorization with . . .
- Ithasa high complexity and challenges to dealwith large CNs.
autoencoder
+ It greatly reduced memory consumption.
[20] CNN-based CD S0K A Moderate - Itworked asa classification and has poorperformance. analysisand
comparison.
+ An effective representation of the CN was proposed.
Deep sparse + The performance comparison was effectively analyzed.
[6] filtering 33K 50 Low - The time cost was neither calculated nordiscussed.
- It was inefficient and was evaluated on smalldatasets.
Autoencoder- . .
based CD with + The method reduced the required trainable parameters.
[80] n:ts\;cvork wi 22K SO Moderate +It improved the efficiency using parallel and partitioning methods.
e - It was evaluated with non-large networks.
partitioning
. . . .
Degeneracy for IIt.handled large graphs with samplmg and propagation approache-s“
. - Itis a very tradeoff strategy conflict between effectiveness and efficiency.
[81] graph embedding M G Moderate . . L .
. - Itrequires matrix-multiplications in large graphics, and leads
using autoencoder . . ..
computationally inefficient.
Multiple + Itextracted local and global network structure and scales for large graphs.
(79] Autoencoders-‘ IM TG Moderate - Time complexity was not measured ?md discussed.
based embedding - Autoencoderstructure was not mentioned.

and clustering

- Poor performance analysis and comparison.

the backpropagation algorithm for the training step, which
leads to a fall into local optima (i.e., low effectiveness and
poor CD quality) and slow convergence. Hence, an overview
of combining MH algorithms with DL models is presented in
Section VII to prove the positive impact of these algorithms
in developing global and effective solutions for DL models
and to motivate the research community to integrate MH
algorithms into the DL and CD domain.

VI. PARALLEL DEEP LEARNING
In recent years, it is witnessed the emergence of big data,
which has increased significantly, due to the rapid increase
in most of the real-world data. As a result, the complexity of
DNNs increases as the computational intensity and memory
requirements of DL models increase significantly. The evolu-
tion of HPC devices helps to efficiently design large-scale DL
models by utilizing parallel computing. Parallel computing
plays an important role in designing efficient DL models.

In this section, we list the remarkable and recent studies
related to DL with parallel computing in regular domain (e.g.,
images and speech) and irregular domains (i.e., graphs).

A. PARALLEL DEEP LEARNING ON REGULAR DOMAINS

In regular domains, the underlying data representation often
has a low-dimensional space, a regular and clear grid struc-
ture, which is friendly to hardware accelerators such as the
utilization of GPU [28]. Dean et al. [30] proposed a powerful
framework, called Distbelif. In the framework, large-scale
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clusters of machines were used to distribute and parallel
the training of Deep Neural Networks (DNNs). Two parallel
architectures have been proposed: the first was implemented
on a single machine using multithreading and the other was
on multi-machines. In addition, three parallelism schemas
were performed with this framework: model parallelism,
data parallelism and pipelining parallelism. Two optimization
methods were adopted in Distbelif; the first was named
Downpour Stochastic gradient descent (SGD), which used
multiple replicas of a single model (i.e., a dataset was divided
into several partitions and a copy of the model was exe-
cuted on each partition), while the second optimization called
Sandblaster, which used distributed parameter storage and
manipulation. Similarly, Ma et al. [82] proposed an autoen-
coder model for detecting outliers in large data. They divided
the training data randomly into several parts and learned a
representation by training a replicator autoencoder model
using parallel-SGD for each part. Then the outputs of each
replicator autoencoder were aggregated to detect outliers.
The performance evaluation results showed that the above
frameworks accelerated the training of models with large
datasets.

Other studies also used GPUs to develop an efficient and
scalable DL models. Chen and Huo [83] proposed a dis-
tributed Recurrent Neural Networks (RNNs) and DNNs for
speech recognition applications based on a cluster of GPU
devices. They leveraged data parallelism and intra-block
parallel. Makkie et al. [84] presented a scalable and fast

VOLUME 9, 2021



M. N. Al-Andoli et al.: Review on CD in Large CNs from Conventional to DL Methods

IEEE Access

distributed deep Convolutional Autoencoder (CAE) for
functional magnetic resonance imaging (MRI) with big
data analysis. CAE consisted of convolutional layers and
max pooling operations. Data parallelism was leveraged to
improve the efficiency of the proposed approach by distribut-
ing a copy of the entire model to all executer nodes, and each
executer addresses sub-mini-batches via asynchronous SGD.
In addition, Apache Spark and Tensorflow were utilized.
Harlap er al. [85] suggested hybrid models in parallelism.
They presented a parallel framework for DNNs, named
PipeDream. It used data parallelism, model parallelism, and
pipeline parallelism based on GPUs. A group of layers was
divided into several chunks, and each chunk was assigned
to a single GPU. Forward and backward tasks were pro-
cessed in the chunk. PipeDream produced data parallelism
through processing different mini-batches simultaneously;
while, model parallelism and pipelining were conducted
via overlapping forward and backward tasks. Experimental
results demonstrated that mentioned methods were very effi-
cient and obtained high speedup values.

More recently, Sriram et al. [86] proposed a DL model
for multi-coil MRI reconstruction, called GrappaNet. The
method could generate high quality reconstructions even
at high speed-up factors. This was achieved by integrat-
ing parallel imaging methods into the DL model. In [87],
Park et al. proposed a distributed DL training for CNN model.
In the method, two parallelism schemas were utilized: data
parallelism and model parallelism. In the same direction,
Kim et al. [88] proposed a distributed DL method based
on heterogenous systems. The schema was built by using
multiple heterogenous GPUs that worked together. It also
used data parallelism schema that worked via asynchronous
large mini-batch training mechanism. Four types of GPUs
were utilized for the evaluation process. The methods reaped
a good speedup gains compared to baseline methods.

B. PARALLEL DEEP LEARNING ON IRREGULAR DOMAINS
As for irregular domain, the underlying data representation
often has a high-dimensional space, an irregular and unclear
grid structure, which makes it difficult to perform parallel
computations [28]. Recently, large-scale DL models were
developed in several studies from irregular domains with
a supervised learning strategy (i.e., classification). In [89],
Zeng et al. proposed a scalable GCNs model based on
the combination of sampling and parallelization approaches.
In the method, the graph was divided into sub-graphs and
submitted each subgraph independently to the GCN model to
perform in parallel. The sampling method utilized the frontier
algorithm for the sampling approach [90]. In the training step
was performed in parallel for each subgraph. In the same
way, Chiang et al. [91] extended the variants of GCNs and
designed a new variant of GCN that divided of the graphs
into subgraphs. The partition task was performed as a pre-
processed step by a clustering algorithm. Each a sub-graph
was addressed either as a single batch or multi sub-graphs
in a single batch. The experimental results showed that the
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methods achieved a good improvement in terms of memory
and computational efficiency.

Ma et al. [28] proposed a new framework to support par-
allel neural networks computations to graphs. The authors
investigated the capability of data partitioning, parallelism,
and scheduling of the graph in neural networks in order to
move beyond low dimensional regular grids. It also mini-
mized the communication between GPU and host (CPU) and
maximized the overlap computation. In the same direction,
Liu et al. [92] presented a framework for GNN based on the
GPU device. The framework aimed to improve the efficiency
of GNN training by using parallel graph processing. In [93],
Zeng et al. proposed a new parallel framework for GNN
models. The proposed framework used a parallel sampling
graph approach during the training process. Then, the main
computation steps were parallelized on a shared memory sys-
tem. Data partitioning was utilized in the framework to reduce
memory traffic and improve cash utilization. Experimental
results demonstrated that the methods achieve linear speedup
values.

As for unsupervised learning, relevant works along this
direction are still few. However, some authors have suggested
deep parallel computing to develop large scale- DL mod-
els. For example, Bhatia and Rani [31] proposed a method
for discovering overlapping clustering based on autoencoder
model with distributed parallel computing. Hadoop platform
involved 8 machines was used. An iterative-bulk synchronous
parallel-based graph processing framework Giraph was uti-
lized. The authors extended their work in [94], and applied the
same idea, just added degree metrics to compute the impor-
tance of nodes during cluttering process. The authors tested
their methods on large networks, and the results showed that
the methods achieved an acceptable efficiency.

In a brief, based on the review in this section, we have
found that parallel computing is seen as one of the important
solutions for addressing large-scale DL models. In a regular
domain, it is observed that a great effort has been devoted to
developing large-scale DL models, but in irregular domains,
e.g., graph, less attention is paid to build effective and effi-
cient large DL models. However, there has been few works
related to DL-based graph applications, especially in relation
to the supervised learning techniques, e.g. classification using
GCNs. However, GCN does not fit into the clustering task
because the embedding driven from GCN is not oriented
for CD [18]. In unsupervised DL-based graph applications,
there are very few studies that use parallel approaches, for
example, [31], [94] proposed parallel DL overlapping clus-
tering. However, there are several limitations in these meth-
ods, such as: massive synchronization between nodes, since
bulk synchronous parallel was used; the methods required
extensive trainable parameters; they also did not use GPU
parallelism, model parallelism and also data parallelism.
Moreover, these DL models were optimized based on ran-
dom walk and PageRank techniques, which focused on the
local structure of the network and were considered con-
ventional ML techniques. So, DL-based graph applications
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TABLE 5. Summarization of recent and major studies in DL with parallel computing of regular and irregular domains.

Ref. Methods and Enhancement Techniques Resources dataset Domains Applications Efficiency
- Distributed parallel DNNs. 6000 CPU-
(30] Thread—.level parallelism, distribute-level Machines 16 M Classification Very high
parallelism.
- Data,modeland pipeline parallelism.
-Parallel Autoencoder for outlier detection 32 CPU- . . .
[82] - Data parallelism with Hadoop systems. Machines 32M Outlier detection High
[83] - Distributed DNNs and RNNs. 64 GPU- 1.8K Speech Hich
- Data parallelism. Machines hour recognition e
[84] - Distributed CNNs with autoencoder. 16 GPU- M Analyzing task- Hich
- Data and pipeline parallelism with Apache Spark. Machines Regular based fMRI &
(Image)
35 - Distributed parallel DNNs. 16 GPU- 1.3 M Visual Hich
(85] - Data,modeland pipeline parallelism. Machines recognition '8
36 - Parallel imaging with DNNs. 8 GPU- 1.59 K MRI
(86] - Data parallelism model. Machines reconstruction Moderate
- A distributed CNN 32 GPU- 1.28M e .
(871 - Data parallelism and model. Machines Classification High
- Distributed DL-based on heterogeneous multi- 4 GPU-
[88] GPUs. Machines 0.203K - Moderate
- Itleverages data parallelism.
(89] - Eara]lel GCN based-sampling 40 cores-Xeon 1.4 M Classification High
- Data parallelism. servers
[91] - GCN based d}v1dmg graph 20 cores-Xeon 24 M Classification High
- Data parallelism. servers
- GNN based-data partitioning 28 cores-Xeon High
[28] - Data parallelism servers + 8 §M -
P GPUs
Irregular
- GNN training based on CPU-GPU. 10 cores- (Graph) Classification Moderate
[92] - Data parallelism. Xeon servers 19.7K
+ Tesla GPU
- Parallel framework fortraining of GNNs. 40-core Xeon Classification Moderate
[93] . . o 1.59M
- Data parallelism, data sampling, partitioning.
-Autoencoder based parallel and distributed 8 CPU- Overlapping
[311,[94] computing. Machines 4 M Clustering High

- Data parallelism.

(e.g., DL-based CD in CNs) needs further investigation to
design efficient and scalable DL models. Table 5 provides
summarization of recent and important studies in the area of
DL and parallel computing of regular and irregular domains.

VII. META-HEURISTIC-BASED OPTIMIZATION METHODS
MH is a concept of a set of algorithms including evolution-
ary algorithms such as Genetic Algorithm (GA) [24], and
natural inspired algorithms such as Particle Swarm Opti-
mization (PSO) [23]. MH algorithms have been successfully
applied for optimizing machine learning models and are
known as efficient methods to solve complex problems and
find optimal solutions in a suitable lapse of time. They are
now state of the art methods for solving various optimization
problems, especially for those that are very complex and
high-dimensional spaces, and the detection of communities
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using DL in CNs is no exception [25]. In this section, first the
popular MH algorithms are presented and then conventional
studies-based MH algorithms that have developed for CD
(i.e., without deep learning models), and finally the methods
that have used for training deep neural network models.

A. COMMON META-HEURISTIC ALGORITHMS

GA was developed in the early 1970s [95]. It is the most pop-
ular and most commonly-used evolutionary method. GA uses
of a binary data representation. It can also support other
types of data representations. GA comprises four key parts:
chromosomes (i.e., means solutions), crossover, selection,
and mutation, and fitness procedures. All these procedures
work to get optimal or near optimal solutions. In the crossover
process, the offspring are inherited and formed from two
parents. In the mutation phase, one or more chromosomes
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are randomly selected and altered to increase the diversity of
the population [96]. The algorithm was applied to optimize
solutions to problems in various domains and applications,
e.g., CD in CNs [97], classification in images [98], and DL
applications [99].

PSO algorithm is a population-based optimization algo-
rithm [23], [100]. It uses a stochastic optimization technique
and emulates the behavior of bird swarms to find the solution
to the optimization problem. Many particles are randomly
created over the search space to form a swarm. Each particle is
generated in such a way that it represents a solution candidate
for an optimization problem. The particle moves in the search
space with a specific velocity. The particles can go back to the
best prior position according to their memory, which main-
tains the previous best position. PSO has been successfully
used to provide solutions to optimization problems in various
fields, e.g., CD in CNs [101], [102], images [103], wireless
sensor networks [104], etc.

Ant Colony Optimization (ACO) is a population-based
MH that can be used to find nearly optimal solutions for
difficult optimization problems. It was developed in 1992 by
Dorigo [105] based on the behavior of ants. ACO was inspired
by the behavior of ants in their search for food to find the
optimal path in the search space to solve an optimization
problem. Each ant first explores the search space near its
nest to search for food at random. When the ant returns to
the nest, the path is traced by chemical pheromones. This
helps other ants to find the shortest path to the food source
through chemical pheromones left on the ground. ACO has
been utilized to a variety of optimization problems in vari-
ous domains and applications, e.g., CN applications [106],
DL applications [107], internet-of-things applications [108],
etc.

Differential Evolution (DE) algorithm was introduced
in 1996 by Storn and Price [109]. It is a method that opti-
mizes a problem by trying iteratively to improve a candidate
solution with respect to a given evaluation function. The
optimization process of the algorithm starts with the random
initiation of a solution candidate. Then new individuals are
created by crossing and mutation in the evolutionary process
for each generation. The target individual and the mutated
individual are recombined to create the trial individual con-
taining a useful solution from the prior generation. Some
DL and image applications have been successfully addressed
using the DE algorithm [110], [111].

The Artificial Bee Colony (ABC) is a swarm based on
MH algorithm introduced in 2005 [112]. The algorithm was
developed inspired by the natural performance of the bee
colony. The bee colony method can be effectively used for
the design of intelligent system models as it includes several
features such as foraging, communication, task selection,
group decisions, etc. The model has three main components:
employed and un-employed forager bees, and food sources.
Employed and un-employed forager bees look for plentiful
food sources near their hive. The model also defines two
guiding behaviors required for self-organization and group
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intelligence: the recruitment of feed gatherers for rich sources
of food, leading to positive feed-back, and the abandonment
of poor sources by foragers, leading to negative feed-back.
The ABC algorithm was used for optimization in various
fields, such as image and DL applications [115], [116].

The Firefly Algorithm (FA) is a new MH algorithm based
on the flashing patterns and behavior of fireflies. It was
developed by Yang in 2007 [117]. The brightness of FA
is the objective function. The attractiveness in FA depends
on the brightness, so the less bright firefly will move towards
the brighter one. If it is not brighter, the movement will be
random. FA has been used for CN applications [118], image
and DL applications [119].

Cuckoo Search (CS) is a new MH optimization algorithm
introduced in 2009 [113]. The algorithm uses the breeding
parasitism of some cuckoo species together with Levy flights
that run randomly to solve optimization problems. CS has
been used for optimization in various domains and applica-
tions, e.g., CD in social networks [120], classification and
prediction in images [121], [154]. Bat Algorithm (BA) is a
recent MH algorithm for global optimization. It was devel-
oped by Yang in 2010 [114]. The algorithm is inspired by the
echolocation behavior of micro-bats, which involves the use
of varying pulse rates of emission and loudness. Echolocation
is used to determine distance, and all bats know the difference
between prey and background barriers. BA was applied to
solve optimization problems in various fields, e.g., CD in
CNs [122] and DL applications [123].

Readers can refer to a comprehensive study that is pre-
sented in [124] about the state of art of MH algorithms.
The important advantages and disadvantages of these MH
algorithms are summarized in Table 6.

B. COMMUNITY DETECTION BASED ON META-HEURISTIC
ALGORITHMS

In today’s world, conventional ML studies-based
MH algorithms have received much attention to address the
CD problem, and the literature has expanded with diverse
applications. Important and current methods of CD using MH
algorithms are presented in this section.

In [97], Said et al. proposed an algorithm for CD-based GA
in CNs. The crossover and mutation operations were iterated
until the stopping conditions are met, and selected the best
solutions. The algorithm used a clustering coefficient-based
GA to generate the initial population and mutation method,
and these improved its efficiency and accuracy. It used the
modularity function as a fitness function. Likewise, Zaire and
Meybodi [125] suggested a method to find communities in
CNs based on the integration of GA and object migrating
automata. The method sought to maximize modularity func-
tion. In [126], Rostami et al. developed a new CD based on
GA for feature selection. The method consisted of three steps:
the features were computed and selected, then these features
were clustered; finally select the best clustering by GA.

The PSO algorithm is also applied to solve the community
discovery problem. In [127], Cai et al. developed a PSO
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TABLE 6. A simple comparison of popular MH algorithms.

Algorithm

Merits

Demerits

GA [95]

The complexity of the algorithm canbereduced by parallel computing.

The exact solution is notalways guaranteed.

PSO [23,100]

Itis simply implemented and hasa few parametersto set.

Can perform parallel computations,and converge quickly.

Have higher probability and efficiency in finding the global Optima.
Can be efficient for solving problems thathave difficulty.

to find accurate mathematicalmodels.

Itis a challenge to define initial parameters. May
converge prematurely and be stuck in a local
minimum, particularly in the case of complex
problems.

ABC [112] Itadaptsto the greedy heuristic search, solves the problem quickly andis ~ The initial solution restricts the search space.
able to find global convergence

FA It flexible to address continuous problems, classifications, and clustering, Slow convergence speed and high possibility of being
and combinatorial optimization. trapped in local optimum.

DE [109] Ithas limited hyperparameters. It also used formulti-objective Ithas fallen on early convergence and its parameters
optimization. are fixed.

ACO [105] Itis valuable algorithm for optimizing parameters (i.., weight). Unstable time convergence.

CS[113] Ithas flexible parameters thatlead to an efficient and effective the algorithm is inefficient, it hasa slow convergence.
optimization.

Bat[114] Itis a newer and more promising algorithm due to its good results Itis inefficient in terms of storage space.

compared to otheralgorithms.

algorithm to find communities in social networks. The PSO
particles were adapted to a discrete scenario. The update
rules used by the method depend on the greedy strategy
and the network topology. It found communities in large
social networks. A discrete PSO-based multi-objective opti-
mization algorithm was developed by Gong et al. [101]
to discover communities in CNs. The method attempted
to minimize the two objective functions: Kernel k-means
and Ratio cut functions. It dealt with signed and unsigned
networks. In [128], Liu et al. presented a multi-objective
PSO algorithm for extracting network embedding and find-
ing communities. The method mapped the nodes in a
low-dimensional space. Thus, this led to an increase in search
efficiency as the search space was reduced. Another variant
of PSO algorithm was developed for CD in [129], called
Sigmoid Fish Swarm Optimization (SFSO). The algorithm
used the sigmoid function for different fish movements in a
swarm. It outperformed the traditional PSO algorithm in this
task.

The Firefly algorithm (FA) has been adapted for CD in
CNs. Amiri et al. [118] developed a CD method based on
FA optimization. The method used multi-objective optimiza-
tions so that a set of solutions with Pareto optimum can be
obtained. The parameters were tuned based on self-adaptive
probabilistic mutation and a chaotic mechanism. Similarly,
Del Ser et al. [130] proposed a CD method based on FA
algorithm. It emulated the behavioral patterns of fireflies that
attract each other while flying, which was used for numerical
optimization. In [131], Jaradat and Hamad also used an FA
optimization algorithm to solve the CD problem. They also
proposed a parallel approach to perform this task. The above
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FA-based CD methods have been evaluated in real and syn-
thetic CNs, and their results were promising for this task.

BA is another MH algorithm that has been used to
develop and improve CD methods. In [132], Hassan et al.
proposed a new CD method based on discrete BA opti-
mization. The method used the modularity function as a
fitness function to maximize. It did not require prior infor-
mation about the number of communities, which can be
inferred based on the locus-based adjacency coding scheme.
Likewise, Song et al. [133] solved the CD problem with a
discrete BA optimization. The method found the global opti-
mal solution, and it automatically determined the number of
communities. Doush et al. [122] also adapted multi-objective
BA optimization to address the CD problem. The concept
of Pareto dominance was used to select the optimal solution
in multi-objective optimization. The results of the above
methods showed that BA optimization is able to find the
communities in CNs, and showed a better performance of the
CD.

ACO algorithm has also attracted the attention of
researchers to address the CD problem. In [134], Chen et al.
proposed an algorithm based on ACO to solve this prob-
lem. The algorithm used artificial ants traveling on a logical
digraph to generate CD solutions. Each ant chose a path
according to the heuristic information about each path. The
degree of association was used as heuristic information. Sim-
ilarly, Guo et al. [135] adapted ACO to find communities
in CNs. The algorithm included initialization, and three var-
ious of searching; employed bee, onlooker, and scout bee.
The CD solutions were first initialized and then tuned and
addressed by the three search phases. In the same direction,
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the multi-objective ACO algorithm has been adapted to dis-
cover communities in CNs in [106]. Two objective func-
tions were used: community score and community fitness,
which measured the density of groups and minimized the
external relations, respectively. During the process of the
algorithm, a Pareto was considered to store non-dominated
solutions. The results showed that these above algorithms
successfully detect community structures and competitive
CD performance was achieved.

CS algorithm has also been successfully used to solve
the CD challenge. Zhou et al. [136] proposed a discrete
multi-objective CS algorithm for CD. Two objective func-
tions were minimized, namely negative ratio association and
ratio cut. It found high-quality communities without prior
information. On the same topic, Babers and Hassanien [120]
proposed a CS algorithm for CD in social networks. The
method used the modularity function as an objective function.
The locus-based adjacency scheme was used to represent
individual solutions in the network and community structure.
The results of the mentioned algorithms show that the CS
algorithm is promising to solve the CD problem.

In a nutshell, remarkable efforts have been made to develop
conventional ML-based MH algorithms for CD. These
algorithms have global search capabilities and good local
learning, and can deal with a wide range of CD problems.
Moreover, they can automatically determine the number of
communities and they can be implemented in parallel and
efficiently. However, they have shortcomings of achieving
low accuracy and efficiency, especially when dealing with
high dimensional and complex data, such as large CNs [14].
Therefore, the development of effective and efficient algo-
rithms is of greater interest and worth considering, especially
when dealing with large and complex data. Therefore, in the
next subsections, the studies on the integration of MH algo-
rithms and DL models in different domains are reviewed
to offer interested researchers the opportunity to bridge the
existing gap in the CD field.

C. META-HEURISTIC ALGORITHMS INCORPORATING
WITH DEEP LEARNING

Recently, several studies have proposed MH algorithms for
optimizing parameters and hyperparameters of DL mod-
els to create effective and efficient models. The success
of the MH algorithms in optimization tasks has prompted
the research community to solve large and difficult prob-
lems. In the field of DNNs, the Gradient Descent (GD) is
replaced by iterative MH algorithms for tuning parameters,
e.g., weights. The main purpose of using the methods is to
overcome limitations of gradient descent methods (i.e., Back-
propagation (BP)). Three shortcomings exist in GD-based
BP algorithm: training process is slow, especial with big
data, sensitive to parameter initiation and has fallen to local
minima, which leads to a drop in performance [21], [22].
In this subsection, we outline the recent and important studies
that used MH algorithms for training and optimization of
DL models.
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1) DEEP LEARNING BASED ON META-HEURISTIC
ALGORITHMS

An earlier study adapting GA for training Artificial Neural
Networks (ANNs) was proposed by Leung et al. in [137].
The authors developed an improved version of GA to train
neural networks. All functions of GA were redefined, includ-
ing crossover, mutation operations and fitness function. The
authors showed that the parameters of the neural network
can be efficiently tuned using the improved GA algorithm.
In the same research direction, recently, GA was adapted to
optimize the structure and hyperparameters of deep CNNs
in [138]. The proposed method was evaluated for the amyloid
brain images dataset for disease diagnosis. Pan er al. [98]
also adapted GA to optimize deep CNNs for classification
in multi-unmanned aerial vehicles. GA obtained the scenario
states and path segments to train CNNs. Then, the CNN
reproduced the path planning resulting from GA’s experience.
Similarly, David and Greental [99] incorporated GA in a deep
autoencoder. The GA was used to optimize parameters (i.e.,
weights) of autoencoder. The proposed method overcame the
problem of tied weights of encoder and decoder models to
enhance the accuracy of classifications. The experimental
results indicated that the GA algorithm was promising to
optimize DL models.

PSO algorithm was adapted for optimizing DL models.
Gudise and Venayagamoorthy [139] developed a PSO-based
population algorithm to train ANNs [140]. The fitness value
of each particle is the value of the cost function, which was
evaluated by the current position and corresponded to the
weight matrix. The authors presented a comparative study of
training neural network based on PSO and BP algorithms.
Recently, Rajagopal et al. [103] proposed a deep CNNs
for scene classification in unmanned aerial vehicles. The
authors developed the optimization of the model depending
on a multi-objective PSO algorithm. The method allowed the
vehicle to acquire videos, then the pre-processing step was
applied to the videos. Then the training step was performed
with the CNN-based multi-objective PSO model. Finally,
the images were classified. In [141], Band et al. proposed a
new DNN approach for modelling gully erosion susceptibil-
ity. The approach used PSO optimization in the training step.
The experimental results showed that PSO was effective and
efficient for training DL models.

Mavrovouniotis and Yang [107] incorporated ACO algo-
rithm in feedforward neural network models. They proposed
two optimization algorithms: firstly, the model was trained
with a stand-alone ACO optimization algorithm, secondly
GD-based BP and ACO were combined for an optimization
process to train the model. Both optimization algorithms
were evaluated on several datasets for pattern classification.
The result showed that the ACO algorithm could achieve
efficient performance especially when integrating ACO and
GD. Recently, Zhang et al. [142] proposed DNN-based ACO
optimization to forecast the cost of mining projects. BA was
also adapted to optimize ANNs by Jaddi ef al. [123]. It opti-
mized the structure of and the parameters of ANNs models.
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The algorithm improved the effectiveness and reduce the
complexity of such models. The authors also proposed two
modifications of the bat algorithm (namely MBatDNN and
MeanBatDNN) to improve optimization process. The results
demonstrated that the proposed methods outperformed tradi-
tional optimization algorithms.

Other MH algorithms were also adapted to train ANNS.
For example, Karaboga et al. [115] suggested to train ANNs
based on ABC algorithm. It was the first study that trained
ABC based on neural networks. Recently, In [116], ABC
was combined with DL model to detect the pattern of
COVID-19 patients. In this method, the deep CNN model
was used to extract the features of the X-ray images, then
the ABC algorithm refined the features to select the best
ones. CS algorithm [143] was also adapted to optimize
ANNs structure and parameters to improve the accuracy
and the efficiency of the model. In [144], Cristin et al
proposed a DL method for plant disease determination and
prediction. The method used a Deep Belief Network (DBN)
model for this task, and the model was optimized by inte-
grating Reiter optimization algorithm and CS algorithm.
Another algorithm was proposed by Zhou et al. [145] to
optimize DNNs, called water wave optimization (WWO).
The method was used to solve the high-dimensional opti-
mization problem. Similarly, FA algorithm was proposed by
Strumberger et al. [119] to select optimal CNNs stricture.
The hyperparameters were tuned by FA, including number
of layers, kernels, kernel size. In the same research direction,
Rere et al. [146] used Simulated Annealing (SA), which
was a single solution-based algorithm [147] for optimizing
CNNs models. The experimental results showed that the
above-mentioned methods achieved good performance and
were more effective than other optimization techniques in
regular domains (e.g., Images-classification). Table 7 lists
research publications relevant of DL-based standalone MH
optimization algorithms.

2) DEEP LEARNING BASED ON HYBRID META-HEURISTICS
AND GRADIENT DESCENT ALGORITHMS
Several studies have suggested an optimization process
by integrating MH algorithms with GD-based algorithm.
Bakhshi et al. [121] proposed GA to explore a suitable CNN
architecture tune hyperparameters such as learning rates,
number of layers. In the method, the hyperparameters and
parameters (i.e., weights) were optimized by GA and BP
algorithms, respectively. Lander and Shang [110] proposed
a new evolutionary framework (called EvoAE) to optimize
autoencoders. EVoAE evolved a population of autoencoders
and searched for structures and features at the same time.
It learned different features from large datasets and reduced
training time. The EvoAE generated new autoencoder models
from crossover and mutation operations with chromosomes.
It also supported training with BP algorithm.

In the same research direction, in [111], Sui et al. incorpo-
rated PSO into marginalized stacked denoising autoencoder
for tuning parameters. PSO could hold the best configuration
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of the marginalized autoencoder. Similarly, Silhan ez al. [148]
suggested an approach to tune the hyperparameters of stack
autoencoder model by using evolutionary algorithms. The
results showed that the methods could find the best hyperpa-
rameters, but the training time of the model increased approx-
imately threefold. Similarly, Zhang et al. [149], integrated
between PSO and BP to work together for neural network
training. This integration aimed to take advantage of both
algorithms, with PSO performing a global search at initial-
izing phase of the weights. The BP algorithm then performed
a local search around the global optimum. The experimental
results showed that the combination of the algorithms was
better in terms of efficiency and effectiveness than the appli-
cation of standalone algorithm, PSO, or BP.

Yi et al. [22] proposed an incorporation method between
BP and CS algorithms for the optimization of regression
neural network model. CS assisted BP in weigh initializa-
tion. In addition, FA [150] was adapted to optimize the
parameters (i.e., weights) and thresholds between the input
layer and the hidden layer of neural networks. Similarly,
Rojas-Delgado et al. [151] also proposed an approach that
included three MH algorithms: PSO, FA and CS algo-
rithms. They have added a continuation method to the
above-mentioned algorithms, where the problem was solved
by moving it progressively from the simple to the actual prob-
lem. The approach was evaluated using public benchmark
datasets and the experimental results showed that continua-
tion method of the three studied MH algorithms could reduce
the execution time in by 5-30% as compared to standard
MHs.

More recently, there are new hybrid optimization of gra-
dient descent and MH algorithms. Yadav [152] developed a
hybrid optimization of ANNs models for medical diagnostic
applications. The method integrated PSO and GA algorithms
to BP algorithm with Adam optimizer. The PSO and GA
algorithms overcame the shortcoming of the BP algorithm.
In [153], the PSO algorithm was also integrated to the BP
algorithm to perform hybrid optimization for wind power pre-
diction. A good comparison was made with BP and GA-PB
algorithms. The PSO-BP outperformed the others. In [154],
the PSO algorithm was combined with the GD-BP algorithm
to train a radial basis function (RBF) neural network. The
purpose of this combination was to take advantage of the two
in the meantime. Similarly, Mohapatra et al. [155] integrated
PSO to BP-Adam optimizer to train ANNs for mathemati-
cal equivalence of error gradients. Seifi and Soroush [156]
proposed an ANN-based MH algorithm for climate predic-
tion. The method used three MH algorithms: GA, Whale
Optimization Algorithm (WOA) and Grey Wolf Optimiza-
tion (GWO) algorithms with ANN models for the estima-
tion process. Tran-Ngoc et al. [157] also developed ANNs
for damage detection based on a hybrid MH optimization
algorithm. The method combined GA and CS algorithms
to quickly find the best solution and avoid local solutions.
In addition, the method used a vectorization technique for
the objective function to reduce the computational cost. The
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TABLE 7. Summarization of studies in deep learning-based standalone MH optimization algorithms.

Ref. Methods Applications Remarks ("+" refers to the merits and "-" to the demerits)
+ Ittunes the parameters and structure of neural networks.
137 ANNs using GA Benchmark-dataset- + Itis more effective than the BP algorithm.
[137] algorithm prediction - Poor performance analysis and comparison.
- Neural network structure used was simple.
Deep CNNs, + They achieve superior performance on a classification task.
[138] e .
autoencoder-based-GA  Images-classification - Time cost was not measured clearly.
[98,99] . .
algorithm - Poor performance comparison.
+It is more efficient than the BP.
[139] ANNs using PSO Synthetic dataset + Training recurrent neural networks hasbeen performed.
- Neural network is messed, and poor performance comparison was done.
Deep CNN-based multi- + The method is effective, and it uses multi-objective optimization.
[103] objective PSO Images-classification + Itrequires less computation time.
algorithm - Neural network is messed, and poor performance comparison was done.
[141] DNN-based PSO Ima ses-prediction + Itshows good performance.
algorithm gesp - Time cost was not measured clearly, and DNN structure is not clear.
+ Hybrid ACO-BP shows superior performance.
[107] ANNSs using ACO and Benchmark-dataset- + Itcandeal with large dimensionalproblems.
BP algorithms Classification - ACO Standalone doesnotachieve a good result.
- The structure of the neuralnetwork is simple.
DNN-based ACO Benchmark-dataset - + DNN-based ACO harvests superior perfomjancc
[142] leorith F " + Good performance comparison and analysis.
algorthm orecasting - Time cost was not measured clearly, and DNN structure is simple.
ANN using Bat ' ' + 1t can successfully predict the future.vglues‘ S '
[123] leorith time series datasets + Itis alsoless complex than some existing optimization algorithms.
algorthm - Ithandles low-dimensional data,and cannot extend to large data.
ANNs with ABC Benchmark-dataset for T Itis anearly study using the ABC f(.)r training neuralnetworks.
[115] . e + It outperforms the BP and GA algorithms.
algorithm Classification Iti . .
- Itis approached with a very simple neural network.
. + Itachi iti .
Deep CNNs with ABC Images-pattemn achieves gooq recognition accuracy ‘
[116] . % - Neural network is messed, poor performance comparison.
algorithm recognition .
- Time cost was not measured clearly.
ANNs with CS Video- emotion + Itprovides accurate andfast c]asmﬁcat'lon.
[143] . e - Poor performance analysis and comparison.
algorithm classification .
- Time cost was not measured clearly.
DBN-based Rider-CSA - + Itoutperforms qther existing methodsin the same fle!d‘
[144] . Images-classification - Neural network is messed, Poor performance comparison.
algorithm .
- Time cost was not measured clearly.
DL with WWO Benchmark-dataset- Tt Performed.bette.r than.BP. L
[145] . e + Itcan solve high-dimensional optimization problems.
algorithm classification . L
- Ithashigh consumption time compared to BP.
CNNs-based FA o Itachieves promising performance in images classification.
[119] . Images-classification - Ittunes only hyperparameters.
algorithm .
- Time cost was not measured.
I . . .
[146] CNNs-based SA Images-classification It optimizes CNNs effectively.

algorithm

- Poor performance analysis.
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TABLE 8. Summarization of studies in DL-based hybrid gradient decent and MH optimization algorithms.

Ref. Methods Applications Remarks ("+" refers to the merits and "-" to the demerits)
+ Itcan explore CNN structure effectively.
[121] CNN with GA and BP Image- classification - Itrequires high computation time.
- Poor performance comparison and analysis.
Autoencoders based hybrid Image-dataset for * Training time of autoencoderis reduced. . .
(110] lutionary-BP i lassification + A population of autoencoders can be executed simultaneously in parallel.
;\;?)XE(; ary- € classiticatio - Poor performance comparison, and modelstructure was not mentioned.
- CS is only used for initialization.
Mareinalized denoisin Images- feature + Itachieves an improvement in accuracy compared to otherautoencoders.
. extraction an + Itcanreduce the training time.
1 auto%:rlllcoderusm PS(% i d I d h ining ti
& classification - Poor performance comparison, and time costs were not introduced.
. Images- feature + Iteffectively finds suitable sets of hyperparameter values.
. . extractionan + Itimproves the performance of the model.
g Sadelivosndenih tonand o e perfomanceofhernodd
= classification - The modelloses 3-time efficiency.
Optimization of neural Benchmark data for + It gets higher training accuracy than the PSO and the BP.
(149] networks with hybrid PSO- classification problem + Time cost was computed,and it per‘fom}ed betterthan the BP.
BP - Neural networks structure was not mentioned.
- Performance comparison to other MH algorithms is low.
[22] ANNs-based CS-BP Benchmark datasets- + Ittrains fast,can obtain the global optimalsolution.
algorithms regression - Neural networks structure was not mentioned.
ANNs-based FA BP + It has superior performances for forecasting task.
150 . - time series- forecastin + Effective performance analysis and compassion.
algorithms & P Y P
g - Time and space consumption were neither calculated nor discussed.
+ A continuation approach improved the modelefficiency significantly.
[151] ?ﬁtﬁ;iiigsr?; lFoA;itEris Brzr(lici?g;irk datasets - + Time consumption was calculated and discussed.
g p - Poor performance analysis and comparison.
. + The hybrid optimization outperformed the traditional one.
[152] aAlN(I)\II;EﬁISleSd on PSO-GA-BP gr;agiss-i;nedlcal + Ituses multi-heuristic algorithm foroptimization.
S en - Poor performance comparison, and time cost was not measured.
ANN-based on PSO-BP wind power- + The hybrid optimization outperformed the traditional one.
153 p y p p
[153] algorithms forecasting + Good performance comparison, and time cost was not measured.
+ The method is superior to traditional ANNS.
[1155545’ aAlN(I)\:tﬁ);ssed PSO-BP - - Ithas probability to fall into the local minimum.
& - Poor performance comparison, and time cost was not measured.
[156] ANNs-based GA, GWO Climates- estimation + They achieve a good level of accuracy,and have a good performance analysis.
WOA algorithms - Time cost was not measured.
+ The method is superior to traditional ANNs.
[157] ANNs-based GA-CS Damage-detection + Itis effective and efficient,and time cost was measured.

- Itdeals with simple ANNs, and no deep ANNs.

above hybrid optimization algorithms were compared to tra-
ditional GD-BP optimizers, the theory and algorithmic per-
formance were supported by promising results. Table 8 lists
research publications relevant of DL-based hybrid GD and
MH optimization algorithms.

3) LARGE SCALE DEEP LEARNING-BASED META-HEURISTIC
ALGORITHMS

A few MH algorithms and DL techniques are used for the
analysis of big data. Hegde and Mundada [158] presented a
method for the analysis of big data based on PSO and DL.
The meaningful features were extracted by PSO algorithm,
and DL model was applied for the classification task. The aim
was to produce high classification accuracy. Cao et al. [159]
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extended the combination of PSO and BP for building a
distributed parallel computing of them and improving the per-
formance and efficiency. The parallel model was designed on
MapReduce on Hadoop platform. The proposed model was
evaluated on images classification. The result showed that the
proposed method received high classification accuracy and
efficiency. Recently, Saranya and Nagarajan [160] proposed
a large-scale MH optimization for DNNS training. The model
was used to deal with large data for predicting agricultural
yields using the Hadoop framework in parallel. The model
was evaluated on large data from plant images.

Coelho et al [161] proposed DL-based MH algorithm
for time series forecasting with GPU device. With this
method, a multithreaded GPU-based strategy was developed
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TABLE 9. Summarization of studies in DL-based MH optimization methods with big data.

Ref. Methods Applications Remarks ("+" refers to the merits and "-" to the demerits)
+ Itcan examine large amounts of data to extract valuable information
DL- based PSO forthe  Feature extraction from big effectively. - . . .
[158] . . - The method lacks an efficient technique that supports the handling of big
analysisof Big Data data . .
data (ie., parallel computing).
- Time and space were not discussed.
N I . .
Paralle] PSO-BP with . It hasthe ability to process and analysis the b.1g data. .
[159] Hadoop fortraining Scene-image-dataset for + Itis scalable and can extend to several machines to run in parallel.
ANN Classification - The size of the evaluated dataset and the dimensional feature space is small.
s - PSO algorithm cannot find the global optimalsolution quickly and simply.
+ Itis scalable and support massive parallelism based-GPU.
[161] ANNs-based MH Electricity datasetfortime =+ Itused the GPU global memory.
using GPU series forecasting - Information about the MH algorithm used is not provided.
- Itdependsonly on level-thread parallelism (i.e., only one machine).
. . + It optimizes neural networks effectively and efficiently.
[160] ANNs-based MH Images-agricultural yield + It processes large data usingparallel computing.

using Hadoop prediction

- Itlacks information about efficiency (i.e., time and space complexity).

to improve the efficiency of the DL-based MH model. The
experimental results showed that the proposed method was
scalable and efficient and achieved with GPU high speed-up
as compared to a sequential implementation with CPU.
Table 9 lists recent studies about the application of DL-based
MH optimization methods in big data research.

In a short, it is clearly shown that the incorporation of MH
algorithms with DL models is attracting increasing attention
in the literature. We observe that MH algorithms play an
important role in improving the performance and efficiency
of DL models. Some of them work as stand-alone optimiza-
tion algorithms, others are combined with gradient descent
optimization (i.e., BP algorithm). Most of the existing algo-
rithms could perform with low accuracy and efficiency, espe-
cially when dealing with large and complex data. Therefore,
the development of effective and efficient DL-based meta-
heuristic algorithms is of a greater interest for dealing with
large and complex data. To our best knowledge, no study was
suggested to apply DL and MH algorithms for performing
community detection.

VIIl. OPEN DATASETS FOR COMMNITY DETECTION

Open datasets are available to encourage and facilitate
research in CD. These datasets can be categorized into two
groups: synthetic datasets and real datasets.

A. SYNTHETIC DATASETS

Synthetic dataset is artificially produced rather than collected
from real events. In the field of CD, there are two widely used
synthetic networks with known community structure, i.e., the
Girvan Newman (GN) [162] and Lancichinetti—Fortunato—
Radicchi (LFR) [163], [164] synthetic networks. The GN is a
small synthetic network consisting of 128 nodes divided into
four communities where 32 nodes belong to each community.
Each node in the GN network has an average of 16 relations,
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including relations with nodes in the same community and
in different communities. The LFR network is more compli-
cated than the GN network. It has important properties like
real world networks, such as scaling of network size and
heterogeneity in the distributions of node connections and
community sizes. These distributions can be tuned according
to a power law with different exponents. The LFR is a popular
benchmark synthetic dataset in community detection than
others because of these good properties.

B. REAL-WORLD DATASETS

Real-world datasets are more effective and accurate bench-
marks for evaluating the performance of algorithms for CD.
In this subsection, we introduce real-world datasets from
27 remarkable and common open real networks, which are
classified into four categories: social networks, citation net-
works, collaboration networks, and others. These datasets are
listed in Table 10. All ten datasets (numbered from 1 to 10
in Table 10) consist of numerical records of individuals and
their relationships in a social network. The eight datasets
of Citation networks (numbered from 11 to 18 in Table 10)
consist of records for papers or patents and their relation-
ships, such as citations. The four datasets from collaboration
networks (numbered from 19 to 23) comprise relationship
records about scientists and their collaborations. Another four
datasets (numbered from 24 to 27) are the records from
other types of community network. The size of these datasets
ranges from small to large in each category in terms of the
number of nodes and edges.

IX. SUMMARY AND CHALLENGES

The review first presented the important conventional meth-
ods proposed to solve the problem of CD in CNgs, i.e., without
using DL techniques in Section IV. It is shown that great
efforts have devoted to the CD issue on CNs by applying early
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TABLE 10. Information of real-world datasets.

Categories Index Datasets #Nodes #Edges
1 Karate [165] 34 78
2 Dolphins [166] 62 159
3 School6 [167] 68 220
4 school7 [167] 68 220
. 5 Football[162] 115 613
Social
6 Facebook [168] 4039 81800
Networks
7 Wikipedia [169] 7100 107000
8 Artists [170] 50515 819306
ComputerBib
9 317080 1049866
[171]
10 Youtube [172] 1134890 2987624
11 Small-hepl 397 812
12 Pol-blogs [173] 1490 16,718
13 Cora [174] 2708 5429
Citations 14 Citeser [174] 3312 4732
Networks 15 Large-hepl 11752 134956
16 Pubmed [175] 19729 44338
17 arXiv 576000 6640000
18 US patents [176] 3700000 16500000
19 Net-science [177] 379 914
Computer-science
20 22000 96800
Collaboration [178]
Networks 21 Engineering [178] 14900 49300

22 Chemistry [178] 35400 157400
23 Medicine [178] 63300 810300
24 Pol-books[63] 105 441
Other 25 Amazon [179] 410236 3356824
Networks 26 Web-Google [180] 875713 5105039
27 RoadNet-PA? 1088092 1541898

conventional methods as presented in Subsection IV (A).
However, most of these methods face challenges in dealing
with large network efficiently. Then, efficient methods that
adopted parallel computing for handling such task were intro-
duced in Subsection IV (B). However, these conventional
methods could not perform CD effectively and efficiently
on CNs where the datasets have features in high dimension-
ality and diversity. In addition, they have high probability
to get into local optimal solutions and struggle in the face
of today’s complex data and increasing scaling of CNs and
dimensionality of data [13]. Hence, researchers were moti-
vated by the success of DL applications in several fields and
recently moved their attention to investigating effective and
efficient solutions using DL models, especially with the use
of autoencoder models for CD.

Section V presented the literature proposed for DL-based
solutions for CD. After review, we found that an acceptable
effort was devoted to develop unsupervised autoencoder mod-
els, GNNSs, and other variants of DL models for CD. All these

1 https://www.cs.cornell.edu/projects/kddcup/datasets.html
2http:// snap.stanford.edu/data/roadNet-PA.html
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works were summarized in Tables 2, 3, and 4, respectively.
However, most of the existing methods show shortcomings in
terms of low efficiency and scalability, and in addition, they
were evaluated on small-scale networks with at most a few
thousand nodes. A few studies were proposed for address-
ing the mentioned problem in the field such as [31], [94].
However, these methods still showed other drawbacks, e.g.,
they require extensive trainable parameters, use massively
synchronization between nodes through applying -bulk syn-
chronous parallel. In addition, DL-based CD methods were
not deployed in GPU parallelism and model parallelism. The
other method was proposed to tackle such problem by a
sampling approach, which was a speed—accuracy trade-off
strategy [81]. Moreover, all existing DL-based CD methods
depend on GD with BP optimization algorithm. Thus, there
are three inherent limitations: the training process is slow,
especially when processing large datasets; the method is sen-
sitive to parameter initialization; and the solutions provided
by the method could lead to local minima, which reduce the
quality of CD.

Section VI presented a simple review of different DL
models that use parallel computing methods in both regular,
and irregular fields, which were listed in Table 5. According
to the review of this Section, it is clearly that the paral-
lel computing is considered a better solution for DL on a
large-scale data. In regular areas (i.e., clear and grid structure,
low-dimensional space) we have seen great efforts to develop
large-scale models for DL based on parallel computing.
Asinirregular areas (i.e., unclear structure, high-dimensional
space such as graphs or CNs), an acceptable effort has been
made to use parallel computing to improve the efficiency of
DL-based graph applications, especially in supervised learn-
ing methods, such as classification with GCNs. On the other
hand, only very limited studies were proposed to improve
unsupervised DL methods (i.e. stack autoencoders for CN
clustering) such as [31], [94], however, there is a gap in
deploying these unsupervised DL methods in a parallel com-
puting framework. For example, no GPU parallelization or
efficient partitioning technique was used, and parallel com-
puting also suffers from high synchronization overheads.

Section VII introduced the common MH algorithms. Their
advantages and disadvantages are summarized in Table 6.
Then the section presented the utilization of MH algorithms
to solve the problem of CD. According to the review in
Subsection VII (B), it is clear that the MH algorithms have
global search capabilities and good local learning, and can
deal with a wide range of CD problems. Moreover, they
can automatically determine the number of communities and
they can be implemented in parallel and efficiently. How-
ever, they show low capabilities of achieving high accu-
racy and efficiency, especially when dealing with large and
CN:s.

Section VII also presented the integration of MH algo-
rithms into DL models for the optimization process. The
optimization of DL models could be based on stand-alone
MH algorithms, or on a hybrid of gradient descent and MH
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algorithms, which were summarized in Table 7 and 8 respec-
tively. In addition, some methods have been introduced to
integrate parallel computing and MH algorithms with DL
models to process big data more efficiently (see Table 9 ). The
MH algorithms have demonstrated their ability in improv-
ing the performance of DL models in various applications.
However, most of the existing methods focus on improving
the effectiveness of DL models and ignoring their efficiency
in terms of space and time complexities, especially when
the models are applied to handle large datasets. Nonetheless,
some studies have been developed to improve the efficiency
of DL models. MH algorithms have been blended into parallel
computations to improve a DL model’s efficiency, but the
number of such research work across different application
domains is still very few. Likewise, in the CD field, the use of
MH algorithms for optimizing DL models in CN applications
(either oriented on clustering or classification) is still very
rare, and DL-based CD is no exception.

X. FUTURE DIRECTIONS AND PERSPECTIVES

Despite the fact that DL-based CD has shown superior per-
formances, there are several problems that are still open
and have not been fully solved. In this section, we briefly
discuss these future prospects that can help overcome these
problems.

One of the main challenges of CD is to efficiently identify
communities in large-scale CNs. Many existing DL-based
CD methods are inefficient when dealing with large CNs due
to prohibitive demands on memory and computation (see Sec-
tions V and VI). However, nowadays, large networks exist in
many real-world CNs, e.g., Facebook and Twitter networks.
Therefore, novel DL-based CD methods shall be developed
to efficiently and effectively utilize the rich information of
large CNs. One possible direction is to develop DL-based CD
methods that can achieve HPC with three features: efficient
sub-network training, data and model parallelisms, the use
of both CPU and GPU devices. In addition, a wise consid-
eration is to develop methods from a parallelism approach
to reduce the synchronization and communication opera-
tions and increase the asynchronization while focusing on
improving the performance of CD. Memory consumption is
an important issue that has not yet been fully addressed. CNs
are usually available in a high-dimensional feature space,
which leads to the generation of massive number of train-
able parameters for refinement as well as requiring a large
amount of memory for storage and computation. Thus, it is
worthwhile to utilize techniques such as data partitioning
and sharing the trainable parameters to reduce the trainable
parameters [80].

MHs are promising algorithms used for optimizing the
parameters of DL models. However, most of the existing
algorithms show shortcomings in terms of low accuracy and
efficiency when dealing with data that are collected from
large and complex problems. Several possible research direc-
tions are suggested to explore for research in the future. In the
research direction of improving effectiveness of a machine
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learning or DL model, a long-term goal is to develop powerful
MH algorithms that can be saved from the trap of local
optimum and premature convergence. This can be achieved
by integrating different MH algorithms together or integrat-
ing MH with a GD-BP algorithm. Moreover, considering the
continuation approach’ ability to solve the optimization prob-
lem [151], [181], its ability in optimizing DL models shall be
further investigated. Objective functions play an important
role in guiding a search process for high quality solutions.
Many efforts have been made to formulate a single objective
solution, but multi-objective functions are still rarely used.
Thus, it is worthwhile to further investigate the develop-
ment of DL based on MH algorithms with multiple objective
functions [98].

MH algorithms are known as a time-consuming process,
especially for big data. Thus, we find that most of the DL
with MH algorithms are evaluated with small sized problems.
Since time is a very crucial factor, this is an important issue
since the real world is full of big data, especially in CN appli-
cations. In the research direction of improving efficiency,
parallel computing with CPUs and GPUs will be an essential
solution to overcome this problem. In addition, scalability is
another important issue as real-world data is growing rapidly
and the dimensions of the data are very huge. Therefore, effi-
cient and scalable MH algorithms are long-term preferable
solutions used for training large-scale DL models.

For CNs and their applications, the use of DL models with
MH algorithms is rather new and there are no studies that
propose to solve CNs problems, e.g., CD, with those meth-
ods. Therefore, several possible research directions can be
explored in the future, e.g., optimization of model parameters,
automatic definition of model structure, reduction of dimen-
sional space to reduce computational cost. In addition, it is
worthwhile to investigate the possibility of integrating MH
algorithms into DL-based CD models. Furthermore, the MH
algorithms could be integrated into GD-BP algorithms to
improve the effectiveness and efficiency of such models.
Finally, since CNs in real words are often large, it is worth
to explore the integration of parallel computing, including
CPU, GPUgs, or hybrids thereof, to improve the efficiency and
scalability of DL-based CD models with the MH algorithms.

Finally, there are general issues related to DL-based CD
models in CNs that need further investigation. Most of
the existing models deal with complete, static, or homoge-
neous networks. However, in the real world, many networks
are incomplete, dynamic, or heterogeneous. Incomplete net-
works [182] are those that lack of information about topology
or features. Dynamic networks [183] incorporate topology
and attributes that shall be updated over time. Heterogeneous
networks [184] contain members belonging to different types,
e.g., images and texts. These complex structures in networks
cannot be solved with the algorithms proposed for complete,
static and homogeneous networks. As a result, several issues
arise. For example, for incomplete networks, the entire net-
work structure cannot be learned and discovered; for dynamic
networks, the network structure shall be re-learned and
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re-explored, which is computationally costly; the network
members of different types require complex algorithms to
deal with their features and topology. Unfortunately, it is
rarely possible to find accurate and complete networks with-
out noise in the real world. Therefore, it is worthwhile
to investigate the performance of DL and MH algorithms
in community detection with noisy networks, which are
characterized as incomplete, dynamic, and/or heterogeneous
networks.

XI. CONCLUSION

In this paper, we present a literature review of CD in CNs
from conventional ML to DL methods and point out the gap
of applying DL-based CD methods in large CNs. In addition,
the relevant studies on DL with parallel and MH approaches
are reviewed and their implications on DL models are high-
lighted. One of our main goals is to present and organize most
of the work done so far on DL-based CD methods, as well as
on DL with MH and parallel computing approaches, in a uni-
fied perspective. This is intended to encourage the research
community to bridge the gap between DL-based CD and DL
with MH and parallel computing approaches. Specifically, we
have reviewed the recent literature on CD methods, including
those using early classical ML and MH approaches, as well
as more recently DL approaches, and presented their mer-
its and demerits. Despite considerable research efforts have
been made to propose solutions for this topic, there are still
lack of effective and efficient methods that can fully meet
performance requirements, particularly when large CNs are
involved. Therefore, this paper presents an overview on the
success of integrating DL. models with MH algorithms and
parallel computing in different domains, explains their pros
and cons. How DL with MH and parallel computing methods
could contribute to improve the effectiveness and efficiency
of DL models in the CD field has also been discussed. Finally,
we summarize the work and point out some research direc-
tions for bridging the gaps between DL-based CD methods
with MH and parallel computing approaches to deal with
large CNss effectively and efficiently.
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