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ABSTRACT This paper proposes a method for efficient Direction-of-Arrival (DOA) estimation of coherent
and non-stationary sources under adverse noise conditions. The method consists of three main parts:
1) derivation of Spatial Time-Frequency Distribution (STFD)matrix; 2) application of the forward-backward
spatial smoothing technique; 3) estimating the angles of arrival by solving for the roots of the polynomial. The
key significance of the proposed method is that the combination of existing methods and techniques allows
an estimation of DOA angles for both coherent and non-stationary source signals under noise. Whereas the
individual use of the existing methods does not show adequate performance under these conditions. The
experiments allow studying the performance of the proposed method for 1) both coherent and non-coherent
clean sinusoidal signals; 2) noisy non-stationary chirp signals; 3) coherent and non-stationary signals
under noise. Furthermore, extensive simulations have been carried out to compute the root mean square
error (RMSE) performance of the proposed method in comparison with the existing ones. The experiments
have been designed for varying number of microphones, level of noise, and value of the time-frequency
threshold. As a result of the experiments, we observe the efficacy of the proposed method in comparison
with the conventional Root-MUSIC and Time-Frequency MUSIC (TF-MUSIC) methods.

INDEX TERMS Direction-of-arrival estimation, MUSIC, Root-MUSIC, TF-MUSIC, sound source
localization.

I. INTRODUCTION
Sound Source Localization (SSL) has been one of the actively
studied array signal processing problems. It aims to determine
the positions of sound sources via processing the signals,
which are recorded by an array of sensors, in terms of two
components of a source position: Direction-of-arrival (DOA)
estimation and Distance estimation [1]. Fig. 1 illustrates the
DOA angle θ as well as the distance d from the sound source
to the receiver. Henceforth, the receiver will be represented
by a microphone array. DOA estimation finds its applications
in many areas, viz. human-robot interaction [1], rescue sce-
narios with poor visual contact [2], target tracking tasks [3],
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smart road crossing systems [4], etc. In real-life scenarios,
DOA estimation methods should be capable of estimating
more than one active sound sources in the environment, which
increases the complexity of the problem.

There are many approaches to tackle the DOA estimation
problem, which can be divided into four broad categories:
time delay-based, beamforming-based, learning-based, and
subspace-based approaches. The type ofmethod that provides
a high angular resolution relies on the beamforming. Among
many beamforming-based methods, researchers are prone
to investigate the followings: Bartlett [5], Capon [6], and
Minimum Variance Distortionless Response (MVDR) [7].
With the recent advancements of machine learning meth-
ods, numerous learning-based methods have started to gain
popularity. One of such approaches uses a data-driven
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FIGURE 1. A pictorial representation of Sound Source Localization where
θ denotes the DOA and d is the distance between source and receiver.

Neural Network (NN), the accuracy of which is solely con-
tingent upon the availability of training data rather than
pre-assumptions about array geometries [8]. The methods,
falling in the subspace-based category utilize the orthogo-
nality property of source and noise subspaces: Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [9], minimum variance [10], autoregressive sig-
nal model [11], subspace fitting DOA estimation [12], and
MUltiple SIgnal Classification (MUSIC) [13]. Particularly,
the MUSIC method, which is the classical approach to
estimate spatial spectrum of signals, was initially proposed
in [13]. The method relies on the orthogonality property of
signal and noise subspaces derived as a result of performing
the eigenvalue decomposition (EVD) on an input covariance
matrix. The scope of the paper is thus concerned with the
subspace-based DOA estimation techniques.

Amethod with less computational complexity compared to
the originalMUSICmethod is known as Root-MUSIC, which
estimates the DOA by determining the roots of a polynomial
formed from the noise subspace [14]. The aforementioned
methods assume narrowband, non-coherent and stationary
signal sources with low-level noise for accurate performance,
however, these conditions are idealised and rarelymet in prac-
tical scenarios. The coherent signals are known for having
similar frequency components, which can degrade the perfor-
mances of the frequency estimating methods. Therefore, it is
suggested to apply the spatial smoothing technique to circum-
vent the restriction of non-coherence [16], [17]. Furthermore,
the most of the real-world signals, e.g., human speech, are
non-stationary, which significantly reduces the effectiveness
of the conventional methods. Thus, an advanced approach
that leverages the properties of spatial time-frequency (TF)
distributions is proposed by [18], [19]. The main advantage
of this method is the effect of denoising, which separates
components of recorded signals from those of additive noise.

The main contribution of this paper is to propose a
method for DOA estimation with good performance for both
coherent and non-stationary sources and under noisy condi-
tions. The existing solutions fail to show proper results in

such conditions when used separately. Hence, the proposed
method incorporates key features of several recent and earlier
studies. Instead of the regular covariance matrix, the spatial
time-frequency distribution (STFD) matrix is computed. The
authors of [20] suggest that the latter one provides improved
signal selectivity and noise reduction due to different TF
signatures of non-stationary signals corrupted with noise.
However, the main contribution of this study is in the applica-
tion of the forward-backward spatial smoothing technique to
the derived STFD matrix, which makes the method immune
to coherent as well as to non-stationary signals. Last but
not least, the principle of Root-MUSIC is employed which
results in an efficient DOA estimation as compared with the
spatial spectrum search-based approaches as in [16]- [19].
Hence, the method discussed in the paper expands the scope
of aforementioned methods by simultaneously addressing
both non-stationary and coherent signals under severe noise
conditions.

The remaining of this paper is organized as follows.
Sections II and III present the signal model and overview of
baseline methods and techniques, respectively. The prelimi-
nary TF concepts, key features of the proposed method, and
computational complexity analysis are discussed in details
in Section IV. Section V reports on the simulation setup and
the obtained results. Finally, Section VI concludes the paper
and defines the future study direction. Enriched with more
simulation results under various conditions, the paper can
be viewed as an extension to a short version presented at a
conference [21].

II. SIGNAL MODEL
The model comprises of an M -element Uniform Linear
Array (ULA) that receives the signals from a P number of
sound sources. The study in [22] recommends setting the
array spacing d equal to the half of the signal wavelength for
higher angular resolution. ConsideringN time samples (snap-
shots) of signals, an instantaneous mixing model can be
written as

xxx (t) = AAA (θ) sss (t)+ nnn (t) , t = 1, . . . ,N , (1)

where t represents the discrete-time given in time-samples,
sss(t) is CP×1 vector containing pure source signals, nnn(t) is
CM×1 vector for additive white Gaussian noise, and AAA(θ ) is
CM×P propagation matrix which contains the delay infor-
mation of each signal source at every array element. The
described basic array signal model will be used in all of
the upcoming methodologies with additional assumptions
introduced in corresponding sections.

A coherent signal is often formed when a signal is reflected
from surfaces before reaching the microphone array. The
reflected sound wave has the same properties as the origi-
nal signal but arrives from a different direction. According
to [23], the high resolution subspace-based techniques
assume that the covariance matrix of the sources P is non-
singular. As this property does not hold when the sources are
coherent, the spatial smoothing technique should be applied.
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The signals may also display a form that can be described as
non-stationary: e.g., a chirp signal, the frequency of which
changes linearly with time. The study of [24] represents a
collection of TF techniques to process these signals. How-
ever, the Wigner-Ville distribution is of major interest for this
paper.

III. OVERVIEW OF BASELINE METHODS
AND TECHNIQUES
A. TIME DIFFERENCE OF ARRIVAL (TDOA)
The concept of TDOA has been actively used in many
advanced DOA estimation methods. It is defined as the
delay-time needed for the sound wavefront to propa-
gate through the distance between two receiving micro-
phones [25]. The schematic diagram in Fig. 2 represents the
simplest case with one dimensional DOA estimation of a
single acoustic source S with a microphone array consisting
from only twomicrophonesm1 andm2. The assumption of the
far-field environment is satisfied by considering the distance
from the sound source to the array much larger than the array
spacing d . From the geometry of the formed right triangle,
it is straightforward to get the expression for TDOA T as
follows

T =
1l
c
=
d sin (θ)

c
= Tmax sin (θ), (2)

where 1l difference is the propagation distance, c is the
speed of sound, and Tmax represents the maximum possible
delay when θ equals −90o. This expression of the delay
will be further used to describe the phase information in the
subspace-based methods.

FIGURE 2. A diagram illustrating the principle of TDOA between two
microphones.

B. MUltiple SIgnal CLASSIFICATION (MUSIC)
MUSIC is a subspace-based high-resolution method initially
developed in [13], which has become the classical approach
to spatial spectrum estimation. It requires a covariance matrix

RRRxx of size CM×M to be calculated from the instantaneous
mixing model in (1) as

RRRxx = E[xxxxxxH ] = E[(AAA(θ )sss+ nnn)(AAA(θ)sss+ nnn)H ]
= AAA(θ)RRRssAAA(θ)+ σ 2

n III , (3)

where E[·] indicates the expectation operator, H represents
the conjugate transposition,RRRss is theCP×P covariancematrix
of the source signals, σ 2

n is the additive noise variance, and III is
theRM×M identity matrix. TheMUSICmethod leverages the
orthogonality property of signal and noise subspaces derived
from Hermitian matrixRRRxx . The right-hand-side (RHS) of (3)
is known as the form of a matrix after performing EVD. As a
result, one obtains M number of eigenvalues given as the
entries in the diagonal matrix RRRss as well as corresponding
eigenvectors stored as the columns of the matrix AAA(θ) [26].
Hence, the eigenvectors are functions of DOA angles. When
the eigenvalues are put in ascending order, the first P eigen-
values carry sound source information, and the rest belong to
noise:

λi =

{
vi + σ 2 for i = 1, 2, . . . ,P
σ 2 for i = P+ 1,P+ 2, . . . ,M .

(4)

Let us denote all the eigenvectors ofRRRxx by qqq1,qqq2, . . . ,qqqM
each of size CM×1. Among these eigenvectors, the ones that
correspond to first eigenvalues P eigenvalues in (4) form the
source subspace and are denoted as

eeej = qqqj for j = 1, 2, . . . ,P. (5)

The above-mentioned orthogonality property of theHermi-
tian covariance matrix results in the following expressions:

eeeHj qqqi = 0 for i = P+ 1,P+ 2, . . . ,M

j = 1, 2, . . . ,P. (6)

The expression in (6) can be regarded as the Discrete
Time Fourier Transform (DTFT) performed on the noise
eigenvector:

DTFT{qqqi} =
M−1∑
k=0

qqqi(k)ejωjk = eeeHj qqqi

for i = P+ 1,P+ 2, . . . ,M

j = 1, 2, . . . ,P. (7)

The usefulness of this property becomes clear when (7) is
applied to spatial spectrum power function as

PMUSIC(θ ) =
1∑M

i=P+1

∣∣eeeHqqqi∣∣2
=

1∑M
i=P+1 eee

HqqqiqqqiHeee
=

1
eeeHQQQQQQHeee

, (8)

where QQQ denotes the CM×M−P noise subspace matrix [15],
given by:

QQQ =
M∑

i=P+1

qqqi. (9)
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The function in (8) is evaluated for each DOA angle of θ .
Whenever the correct source angle is found, the denominator
of the function drops to zero, giving a rise to a peak. Although
it results in a high angular resolution in a spectrum, the pro-
cess of checking each angle is time-consuming and can be
ineffective in real-time applications.

IV. PROPOSED METHOD
A. SPATIAL SMOOTHING TECHNIQUE
Coherent signals are important to consider as they repre-
sent the effect of reverberation [16]. However, the classical
MUSICmethod requires the covariance matrix to be full rank
to keep the noise subspace orthogonal to the signal subspace.
The full-rank assumption becomes no longer valid when two
or more signals are coherent [17]. Thus, there is a need to
apply spatial smoothing technique, which is dedicated to
diagonalize a matrix and decorrelate the signal sources [27].

The technique divides the ULA into L overlapping subar-
rays of size K ∈ [P+ 1;M ]. The subarrays can be created in
twoways depending onwhether themicrophones are grouped
in a forward or a backward direction. In the forward direction,
the received signal vector similar to (1) is formed at l-th
subarray as

xxx l (t) = [xl(t), xl+1(t), . . . , xl+K−1(t)]T = UUU lxxx(t), (10)

where UUU l = [000K×(l−1) IIIK 000K×(M−K−l+1)] is the selection
matrix which is used to select the sensors from l to l+K − 1
when multiplied to complete array model [16], [28]. Separate
covariance matrices can be found for each of these subarrays.
Hence, the total covariance matrix of the forward smoothing,
RRRf , is derived by averaging all covariance matrices of L
subarrays:

RRRf =
1
L

L∑
l=1

RRRfl =
1
L

L∑
l=1

UUU lRRRxxUUUH
l , (11)

where RRRfl is the covariance matrix of lth subarray in forward
smoothing.

In contrast, the microphones are selected in reverse order
in backward smoothing. Therefore, the l-th subarray includes
microphones numbered from l+K−1 to l. The output vector
of the subarray, yyyl (t), is found as

yyyl (t) = UUU lJJJxxx∗ (t) , (12)

where JJJ is an CM×M exchange matrix which has ones as
anti-diagonal entries and zeros as others, and ∗ depicts the
conjugation. Thus, the counterpart of (11) for backward
smoothing is expressed as

RRRb =
1
L

L∑
l=1

RRRbl =
1
L

L∑
l=1

UUU lJJJRRRHxxJJJUUU
H
l , (13)

where RRRbl is the covariance matrix of lth subarray in back-
ward smoothing, and RRRHxx is the conjugate transpose of the
non-smoothed covariance matrix in (3).

In the end, the spatially smoothed covariance matrix is
found by averaging (11) and (13):

RRRfb =
RRRf +RRRb

2
. (14)

The smoothed covariance matrixRRRfb has the full rank when
the number of subarrays L is equal to the half of the number of
coherent sources. For example, when there are two coherent
sources, the value of L becomes equal to unity. At this point,
all the eigenvalues become non-zero, which confirms the
decorrelation ability of the spatial smoothing technique [17].

B. ROOT-MUSIC
Similar to conventional MUSIC, Root-MUSIC is devised to
work with non-coherent and stationary signals only. It was
shown that the classical MUSIC estimates the DOA angles by
performing a spatial search through all angles. Root-MUSIC
takes a different approach to estimate the DOA angles by
determining the roots of a polynomial formed from the noise
eigenvectors [14]. In fact, the denominator of the power
function in (8) can be regarded as the Z-transform of qqqi

Qi(z)|z=ejw1 =
M−1∑
n=0

qi (n) z−n= eee1Hqqqi = 0. (15)

Thus, it is evident that Root-MUSIC considers the denom-
inator of (8) as a polynomial in Z-domain

F(z) = eeeH (z)QQQQQQHeee(z)

= eeeH (z)CeCeCe(z), (16)

where eeeH (z) = [1 z−1 z−2 . . . z−(M−1)], and CCC is the
C(M−1)×(M−1) matrix containing the information about the
coefficients of the polynomial.

Ideally, after solving the polynomial, there will be P num-
ber of roots that would lie on the unit circle and represent
the DOA angles for the incoming signals [29]. However,
the presence of noise might deviate the roots from the unit
circle. The actual angles of the sources are determined for
each root as

θk = arcsin[
λ

2πd
arg(zk )], k = 1, . . . ,P, (17)

where arg(zk ) is the argument of the kth root on the unit circle,
λ is the signal wavelength, and θk is the corresponding DOA
angle for kth source. The method provides faster solution
to the DOA estimation problem, eliminating the burden of
spectral search present in the classical MUSIC. Moreover,
Root-MUSIC is often preferable as it gives the DOA angles in
scalar numbers in contrast to the spectral peaks in the classical
method.

C. TF CONCEPTS
Time-frequency (TF) distribution of a signal can be derived
using different approaches, which include Short Time Fourier
Transform (STFT), Spectrogram and Gabor Transform,
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Rihaczek Distribution and Wavelet Transform [30]. How-
ever, the smoothed version of the Wigner-Ville Distribu-
tion (WVD) is used in this paper. The main reason for using
the WVD is that it represents a basic TF distribution, which
can be transformed into other distributions by applying a
certain kernel. We denote an analytic associate of the source
signal s(t) received by a microphone as z(t). Assuming that
z1(t) and z2(t) are two microphone signals, their distributions
can be defined by the smoothed cross-WVD [30]:

Dz1 z2 (t, f ) = Fτ→f {G(t, τ )~ (z1(t +
τ

2
) z∗2(t −

τ

2
))}

= Fτ→f {G(t, τ )~ Kz1z2}, (18)

where f is the discrete frequency definedwith frequency bins,
τ is the time lag, Fτ→f stands for the Discrete Fourier Trans-
form (DFT) operator, and ~ is the convolution operation.
Kzz(t, τ ) is known as an instantaneous autocorrelation func-
tion (IAF). The time-lag kernel, G(t, τ ), is applied to reduce
the unnecessary artifacts of cross-terms in the TFD [31].
In fact, the time-lag kernel acts as a filter implemented by
different window functions such as Hann and Hamming,
Rectangular, Flat-top and other windows.

D. TF-MUSIC
TF-MUSIC method proposed in [18], [20] is the varia-
tion of the classical MUSIC method. The method incor-
porates the knowledge in the TF domain to preprocess
the signals such that it has better noise performance for
non-stationary sources. The TF preprocessing stage implies
the operations performed on the conventional covariance
matrix. As a result, the covariance matrix is replaced with
a spatial time-frequency distribution (STFD) matrix. The
STFD matrix contains auto- and cross-TFDs of signals from
all array elements. As the matrix accounts for the number
of microphones, the third spatial dimension is introduced.
If the stationarity assumption is removed [31], the covariance
matrix in (3) becomes time-dependent:

RRRxx (t, τ ) = AAA(θ )RRRss (t, τ )AAA(θ )H + σ 2
n III , (19)

where RRRxx (t, τ ) is the CM×M covariance matrix of the
recorded signals at specific time instant and corresponding
time-lag, RRRss (t, τ ) is the RP×P covariance matrix of the
source signals, σ 2

n is the additive noise variance, and III is the
RM×M identity matrix.

The covariance function can also be described as

RRRxx (t, τ ) = E {KKK xx (t, τ )}

= E
{
xxx
(
t +

τ

2

)
xxxH

(
t +

τ

2

)}
, (20)

where KKK xx is the matrix with the IAF of the corresponding
signals as each entry. Rewriting the expression in (19) by
using (20) and (18), the STFD matrix of the recorded signals
can be derived as

DDDxx (t, f ) = AAA(θ )DDDss (t, f )AAA(θ )H + σ 2
n III . (21)

whereDDDss(t, f ) represents the STFDmatrix of the source sig-
nals, where the diagonal and off-diagonal entries correspond
to auto-TFDs and cross-TFDs, accordingly.

At the moment, the structure ofDDDxx (t, f ) is different from
conventional covariance matrix in a way that each entry of
the STFD matrix is a TF distribution. Therefore, there is a
need to reduce the distributions to a scalar number, which is
done by following four important steps. The first step is to
find the averaged distribution of diagonal entries of (21). The
cross-terms in the spectrum are reduced thanks to this spatial
averaging, which is given by

DDDavg (t, f ) =
1
M

M∑
m=1

DDDmm(t, f ), (22)

where DDDavg represents the averaged TFD, and DDDmm(t, f ) is
the TFD of the mth sensor signals. This effect is explained
by averaging the auto-terms located on the same spots on
the TF planes while the cross-terms are allocated in different
spots. The second step is to reduce the noise in the TF
distribution by applying a threshold to the energy of each TF
point in DDDavg (t, f ). The idea is to select those points with
energies higher than a user-defined threshold, 8, and reject
the ones with low energies that may come from noise [31].
The threshold is given by

8 = φ max(DDDavg (t, f )), (23)

where φ denotes the threshold in percents. The third step is to
multiply the averaged TFD to all entries of DDDxx (t, f ) as if it
were a TF kernel. This allows reducing the noise in all TFDs.
The final step for obtaining the STFDmatrix, which would be
suitable for the DOA estimation, is determining the averages
of the chosen TF points after setting the threshold:

DDDxx =
1
V

V∑
i=1

DDDxx (ti, fi) , (24)

where V represents the total number of TF points. After these
steps, the derived DDDxx matrix has scalar values as entries
similar to the conventional covariance matrix. Therefore,
the same subspace methods can be applied to the STFD
matrix. According to [20], the STFDmatrix guarantees better
signal selectivity thanks to different TF signatures of source
signals. Moreover, it is advantageous in terms of noise sup-
pression as the power of noise is spread over the entire TF
plane.

E. SPATIALLY SMOOTHED TF-ROOT-MUSIC
Several variations of the conventional MUSIC method were
discussed in the previous section. As they involve certain
signal processing occurring at different stages of the method,
their combination produces anmethod that promises to simul-
taneously handle both coherent and non-stationary and to
have a better noise performance. The distinctive feature of
the method is related to the spatially smoothed STFD matrix.
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TABLE 1. The computational complexity analysis of the proposed method in comparison with the methods discussed in this paper.

After the TF preprocessing of the input audio signals,
the STFDmatrixDDDxx is derived as in (24). The spatial smooth-
ing technique is further applied to the matrix in contrast to
the immediate spectral estimation step in TF-MUSIC. Hence,
the total STFDmatrices of the forward and backward smooth-
ing, DDDf and DDDb, which represent the counterparts of (11)
and (13), are derived by averaging all STFD matrices of L
subarrays:

DDDf =
1
L

L∑
l=1

DDDfl =
1
L

L∑
l=1

UUU lDDDxxUUUH
l , (25)

DDDb =
1
L

L∑
l=1

DDDbl =
1
L

L∑
l=1

UUU lJJJDDDHxxJJJUUU
H
l , (26)

where DDDfl and DDDbl are the STFD matrices of lth subarray in
forward and backward smoothing, respectively, and DDDHxx is
the conjugate of the non-smoothed STFD matrix in (24). The
following step involves averaging (25) and (26) to find the
spatially smoothed STFD matrix as

DDDfb =
DDDf +DDDb

2
. (27)

The aforementioned properties inherent to the smoothed
covariance matrix in (14) also apply to the smoothed STFD
matrix. However, the main distinction is that the latter allows
to estimate the DOA angles not only of coherent signals
but also of non-stationary signals. After having the matrix
formed, the actual DOA angles are estimated using the rules
of Root-MUSIC method. The pseudo code for the proposed
method (spatially smoothed TF-Root-MUSIC) is given in
Algorithm 1.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
In practice, the computational complexity of themethods is as
important as their DOA estimation performance. This section
is thus dedicated to analyse and compare the computational
complexity of the proposed and baseline methods. The com-
putational complexity analysis is carried out on the basis of
the number of multiplications required per iteration of the
respective algorithms, and is summarized in Table 1 where
B, M , P, and N denote the sampling grid of potential DOA
angles, the number of microphones, the number of sources,

and the snapshots, respectively. Here the last two columns
represent numerical examples for the simulation situations
considered later. It can be observed that TF-MUSIC and the
proposed method are computationally more complex than
MUSIC and Root-MUSIC as they include TF preprocess-
ing. When comparing MUSIC and Root-MUSIC, the cost of
the former one is larger due to the spectral search, i.e., the
evaluation of (8) on the sampling grid of B > M spatial
frequency. It is noticed that the Root-MUSIC offers the low-
est computational complexity, followed by that of the basic
MUSIC method. TF-MUSIC and the proposed methods offer
a comparable computational complexity, which is in fact,
higher as compared with the computational complexity of
the basic MUSIC and Root-MUSIC methods. The reason for
this high computational complexity lies in the fact that these
methods require TF preprocessing and the spatial search.

As demonstrated by extensive computer simulations
(described later in Section V), the basic MUSIC and
Root-MUSIC may fail in many practical scenarios for DOA
estimation. Furthermore, the proposed (spatially smoothed
TF-Root-MUSIC) method outperforms the TF-MUSIC
method for coherent and both stationary and non-stationary
signals with low SNR. It is also more precise compared
to MUSIC and TF-MUSIC as it does not depend on the
resolution of the spatial grid. Therefore, the increased com-
putational complexity may be considered as the price paid
for an improved performance not achievable with the basic
methods.

V. SIMULATIONS
To test the performances of the discussed and the proposed
methods, the simulation setup in Fig. 3 is used as a baseline.
Depending on the type of a case study, additional assumptions
and settings will be applied.

In the ULA, there areM omnidirectional microphones. The
number of sound sources is equal to P. The relevant assump-
tions about the types of arriving signals from these sources
will be discussed separately in the upcoming simulations. The
reference direction is chosen from the geometrical middle
of the microphone array and is labelled as θref = 0o. The
field-of-view is considered to be 180o from −90o to 900.
To simulate the noisy environment, the white Gaussian noise
will be added to the source signals. The assumptions of
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Algorithm 1 Pseudo Code of the Proposed Method for DOA Estimation Using Spatially Smoothed TF-Root-MUSIC
Input:

SSS← the matrix containing all microphone signals
Output:

DOA← a vector containing angular directions of all sources
Parameters:

N← the length of signals
M← the number of microphones
P← the number of sources
d← the array elements spacing
w← time-lag window
φ← the percent value of the threshold
DDDTL← time-lag matrix

1: for i = 1 toM do
2: for j = 1 toM do
3: s1 = SSS(i, :)
4: s2 = SSS(j, :)
5: K = 2 (2nextpow2(N )) F new signal length for FFT calculations
6: S1 = fft(s1,K )
7: S2 = fft(s2,K )
8: if f ≤ K/2 then
9: double S1(f ) and S2(f )

10: else
11: set S1(f ) and S2(f ) to zero
12: end if
13: z1 = ifft(S1) F find the analytic associate signal
14: z2 = ifft(S2)
15: DDDTL(τ, t) = w(τ )~ z1(t + τ/2)~ (z2(t + τ/2)′

16: DDD(i, j) = fft(DDDTL,K/2) F time-frequency representation of s1 and s2
17: end for
18: end for
19: DDDavg← average of diagonal entries ofDDD
20: 8 = φ max(DDDavg) F user-defined threshold
21: if abs(DDDavg(t, f )) ≥ ε then
22: DDDavg(t, f ) = 1
23: else
24: DDDavg(t, f ) = 0
25: end if
26: for m1 = 1 to M do
27: for m2 = 1 to M do
28: DDD(m1,m2) = (1/npoints)sum(DDD(m1,m2)DDDavg)
29: end for
30: end for
31: JJJ= flip(eye(M )) F exchange matrix
32: DDDy = JJJ(DDD)′JJJ
33: DDDfb =DDD +DDDy F forward-backward spatially smoothed STFD matrix
34: qqq← eigenvectors ofDDDfb

35: QQQ=qqq(:,P : M ) F noise subspace
36: CCC =QQQQQQ′ F matrix with diagonal entries representing the polynomial coefficients
37: BBB← store the diagonal elements ofCCC
38: rrr← solve for roots of BBB and store P number of roots close to unit circle
39: for p = 1 to P do
40: DOA(n) = arcsin (phase(rrr(p))λ)/(2πd) 180/π
41: end for
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FIGURE 3. Simulation setup diagram with ULA microphones.

free- and far-field propagation space are made in the model.
The size of subarrays, K , is equal to the number of micro-
phones in all experiments where the spatial smoothing is
applied.

The performances of the discussed methods will be exam-
ined throughout several experiments. The Root Mean Square
Error (RMSE) is chosen as the performance metric in all
simulations, given by

RMSE =

√√√√√ 1
P

P∑
p=0

(θ̂p − θp)2, (28)

where θ̂p and θi represent the predicted and ground truth DOA
angles of the source sp. Being the difference between two
angles, RMSE is measured in degrees.

A. CASE 1: STATIONARY SINUSOIDAL SOURCES
In this case study two experiments have been performed. The
first experiment is dedicated to study the behaviours of the
methods for P = 2 non-coherent and stationary sinusoidal
source signals arriving from θ1 = −40o and θ2 = 20o.
The signals are considered to be clean. The array consists
of M = 6 microphones. The angular frequencies of the
signals are equal to π/2 and π/4. It should be noted that
as the outputs of the classical MUSIC and TF-MUSIC are
the spectral plots, their peak values are manually selected.
Fig. 4 represents the spectral plots for the first simulation. The
numerical results of Root-MUSIC and the proposed methods
are derived and presented in Table 2. It is observed that
all four methods estimate DOA values accurately primarily
thanks to the simplicity of the applied signal conditions.

The second experiment aims to observe the results of the
methods when given P = 3 sinusoidal sources arriving from
θ1 = −40o, θ2 = 20o, and θ3 = 30o, where the first
and the last sources are coherent. Hence, the corresponding
angular frequencies are equal to π/2, π/4, and π/2. The
spectral plots of MUSIC and TF-MUSIC for this scenario
are given in Fig. 5. Both of the methods failed to locate the
coherent sources at−40o and 30o. The results of all methods

TABLE 2. The numerical results of the methods for clean, non-coherent,
and stationary sinusoidal sources in Case 1.

FIGURE 4. Spatial spectrum plots of MUSIC and TF-MUSIC for clean,
non-coherent, and stationary sinusoidal sources in Case 1.

FIGURE 5. Spatial spectrum plots of MUSIC and TF-MUSIC for clean,
coherent and stationary sinusoidal sources in Case 1.

are illustrated in Table 3. Although Root-MUSIC determined
all three source signals, there are some discrepancies with the
first and the third sources. In contrast, the proposed method
is the only one which estimated all DOA values accurately.

B. CASE 2: NON-STATIONARY SOURCES
This case study also comprises of two experiments simulated
to observe the effects of: 1) non-coherent and non-stationary
sources, and 2) coherent and non-stationary sources, both
corrupted with noise. The first experiment considers P = 4
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TABLE 3. The numerical results of the methods for clean, coherent and
stationary sinusoidal sources in Case 1.

FIGURE 6. TF distribution of the signals with different threshold values φ

for signals in Case 2.

Linear Frequency Modulated (LFM) source signals arriving
from θ1 = −40o, θ2 = 20o, θ3 = 30o, and θ4 = 38o

to the array of M = 6 with the white Gaussian noise of
SNR = −5 dB. The angular frequencies of the signals were
linearly modulated from [π5 , π,

π
5 ,

3π
5 ] to [ 4π5 ,

2π
5 ,

3π
5 ,

π
5 ].

The effect of noise threshold on the TF distribution of the sig-
nals are depicted in Fig. 6. It is noticed that the contribution of
noise is removed when the threshold 8 is around 25% of the
maximum TF point. By setting the threshold to this value, the
corresponding spectral plots of MUSIC and TF-MUSIC are
shown in Fig. 7. It can be seen that the conventional MUSIC
fails to locate the sources at 20o and 30o, whereas TF-MUSIC
shows the peaks at correct angles as a result of the applied
TF threshold. The overall results in Table 4 suggest that
both TF-MUSIC and the proposed TF-Root-MUSIC show
accurate performance for non-coherent and non-stationary
sources due to the presence of TF preprocessing step.

In the second experiment, P = 4 acoustic sources are
considered coherent and non-stationary corrupted with the
noise of SNR = −5 dB. There are M = 6 microphones
receiving the signals from θ1 = −30o, θ2 = −25o, θ3 = 40o,
and θ4 = 80o. The angular frequencies linearly vary from
[π5 , π,

π
5 ,

3π
5 ] to [ 3π5 ,

2π
5 ,

3π
5 ,

π
5 ]. The threshold value for

the TF preprocessing is remained as 25% of the maximum TF
point’s value. The spectral plots of MUSIC and TF-MUSIC
are represented in Fig. 8 and the corresponding numerical
results for all methods are presented in Table 5. Fig. 8 shows

TABLE 4. The numerical results of the methods for non-coherent and
non-stationary sources under noise of SNR = −5 dB in Case 2.

FIGURE 7. Spatial spectrum plots of MUSIC and TF-MUSIC for
non-coherent and non-stationary sources under noise of SNR = −5 dB in
Case 2.

FIGURE 8. Spatial spectrum plots of MUSIC and TF-MUSIC for coherent
and non-stationary sources under noise of SNR = −5 dB in Case 2.

that bothMUSIC and TF-MUSIC could not locate the sources
at −30o and 40o. The numerical results in Table 5 demon-
strate that only the proposed method accurately estimates
DOA values of all coherent and non-stationary sources under
noisy conditions.

C. CASE 3: EFFECT OF NUMBERS OF MICROPHONES
One of the several parameters that influence the performance
of subspace-based methods is the number of microphonesM .
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FIGURE 9. Performance of the methods for various numbers of microphones in Case 3 for: a) non-coherent and stationary sinusoidal signals;
b) coherent and stationary sinusoidal signals; c) non-coherent and non-stationary chirp signals; d) coherent and non-stationary chirp signals.

TABLE 5. The numerical results of the methods for coherent and
non-stationary sources under noise of SNR = −5 dB in Case 2.

However, the methods discussed in this paper operate only
when the number of microphones is larger than the number
of sources M > P, which is known as the over-determined
case. Thus, the RMSE values for different values of M − P
are calculated and illustrated in Fig. 9. The methods were
tested with four different signals: 1) non-coherent and station-
ary sinusoidal signals; 2) coherent and stationary sinusoidal
signals; 3) non-coherent and non-stationary chirp signals;
4) coherent and non-stationary chirp signals. The common
trend for all subplots is the decrease in error with the increase

ofM−P value. Considering the details, Fig. 9(a) suggests that
all methods perform similarly for the non-coherent and sta-
tionary sinusoidal signal. The highest error does not exceed
0.5o even when the number of microphones is more than that
of sources by one. From Fig. 9(b), it can be observed that the
proposed method continues to show excellent performance
for coherent and stationary sinusoidal signals, whereas other
methods have errors around 15o mainly due to the lack of
spatial smoothing. When non-coherent and stationary sig-
nals are applied, we notice from Fig. 9(c) that MUSIC and
Root-MUSIC methods do not perform well in contrast to the
proposed method and TF-MUSIC. In the case of coherent
and non-stationary chirp signals, the results in Fig. 9(d) are
similar to Fig. 9(b), where the proposed method outperforms
the other three methods.

D. CASE 4: EFFECT OF SNR
Although the case study 2 considered the effect of noise to
a certain extent, the performances under various SNR values
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FIGURE 10. Performance of the methods at different levels of noise in Case 3 for: a) non-coherent and stationary sinusoidal signals;
b) coherent and stationary sinusoidal signals; c) non-coherent and non-stationary chirp signals; d) coherent and non-stationary chirp
signals.

should be rigorously addressed. The number of microphones
is set as M = 6 and the threshold value is kept at 25%.
The results for SNR values between −20 dB and 30 dB
with a step of 10 dB are illustrated in Fig. 10. It can be
observed from Fig. 10(a) that for non-coherent and station-
ary sinusoidal signals all methods have similar performance.
All methods achieve significantly low error values at high
SNR. However, the error values start increasing starting from
SNR = 0 dB. At SNR = −20 dB, the proposed method
has the lowest error of 1.19o, followed by Root-MUSIC
with 1.36o, TF-MUSIC with 1.62o, and MUSIC with the
highest error of 1.879o. Overall, due to the simplicity of
the signal model, all four methods perform comparably. The
methods show different results when processing coherent and
stationary sinusoidal signals as illustrated in Fig. 10(b). The
major observation is that the proposed spatially smoothed
TF-Root-MUSIC has the lowest errors throughout all SNR
values thanks to the application of spatial smoothing tech-
nique. Whereas the other methods have errors around 15o

even at SNR = 30 dB. For non-coherent and non-stationary
chirp signals, the results are given in Fig. 10(c). One can

observe that TF-MUSIC and TF-Root-MUSIC perform sim-
ilarly, almost reaching RMSE value of 2o under these con-
ditions. Whereas the values for MUSIC and Root-MUSIC
start increasing significantly after SNR = 10 dB, reaching
the error value of 10.87o and 8.98o. Such a high difference in
performance is owing to the TF preprocessing steps present
in both TF-MUSIC and TF-Root-MUSICmethods. However,
the proposed method surpasses TF-MUSIC and other meth-
ods when working with coherent and non-stationary chirp
signals as shown in Fig. 10(d). The trends are similar to
the results in Fig. 10(b), where the proposed method have
the lowest errors at all SNR values. However, the differ-
ence is that the error increases notably after SNR = 0 dB
for the proposed method, resulting in an error of 11.73o at
SNR = −20 dB.

E. CASE 5: EFFECT OF THRESHOLD φ

The performance of the proposed spatially smoothed
TF-Root-MUSIC depends on the value of the user-defined
threshold. This case study aims to observe the impact of
changing its value. The signal model is maintained the same
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FIGURE 11. Performance of the proposed method at different threshold
values in Case 5..

as in the second experiment of the case study 2. The results
are depicted in Fig. 11. It is observed that the lowest error cor-
responds to the threshold value around 25% of the maximum
TF point. At this value, most of the contributions of the noise
and cross terms are eliminated. Hence, the noise performance
of the method is increased in contrast to the classical MUSIC.

VI. CONCLUSION
A method for efficient sound source DOA estimation is pro-
posed in the paper. From the simulation results, it can be
observed that it performs comparably or better than other
existing methods when given signals such as non-coherent
sinusoidal and LFM signals. However, it outperforms them
when handling both coherent and non-stationary sources
under severe noise conditions. The paper discussed the details
of three main constituent parts of the method, which are
the derivation of STFD matrix, application of the spatial
smoothing technique, and solving the polynomial to obtain
numerical estimates of DOA values. The basic simulations
showed the method’s robustness in various types of source
signals and different configurations of other parameters such
as the threshold value and the number of microphones. The
case studies illustrated solid RMSE performances for varying
number of microphones as well as SNR levels. An optimal
threshold value was empirically found for the given sig-
nal settings. The possible application of machine learning
algorithms to select the optimal value of the user-defined
threshold is planned to be investigated in the future.
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