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ABSTRACT Channel estimation for hybrid Multiple Input Multiple Output (MIMO) systems at Millimeter-
Waves/sub-THz is a fundamental, despite challenging, prerequisite for an efficient design of hybrid MIMO
precoding/combining. Most works propose sequential search algorithms, e.g., Compressive Sensing (CS),
that are most suited to static channels and consequently cannot apply to highly dynamic scenarios such as
Vehicle-to-Everything (V2X). To address the latter ones, we leverage recurrent vehicle passages to design a
novel Multi Vehicular (MV) hybrid MIMO channel estimation suited for Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Network (V2N) systems. Our approach derives the analog precoder/combiner through aMVbeam
alignment procedure. For the digital precoder/combiner, we adapt the Low-Rank (LR) channel estimation
method to learn the position-dependent eigenmodes of the received digital signal (after beamforming), which
is used to estimate the compressed channel in the communication phase. Extensive numerical simulations,
obtained with ray-tracing channel data and realistic vehicle trajectories, demonstrate the benefits of our
solution in terms of both achievable spectral efficiency and mean square error compared to the unconstrained
maximum likelihood estimate of the compressed digital channel, making it suitable for both 5G and future
6G systems. Most notably, in some scenarios, we obtain the performance of the optimal fully digital systems.

INDEX TERMS Low-rank channel estimation, hybrid MIMO systems, millimeter-wave, sub-THz, V2X,
5G new radio, 6G.

I. INTRODUCTION
Recent advances in millimeter-wave (mmW) hardware [1]
and the potential availability of spectrum has encouraged
the wireless industry to consider mmW, for the Fifth Gen-
eration of cellular systems (5G) [2] and, in particular, for
Vehicle-to-Everything (V2X) applications [3], [4]. Following
the same trend, sub-THz are envisioned for 6G systems
[5]–[7]. Due to the increased carrier frequency,
e.g., 24.25 − 52.6 GHz for 5G New Radio (NR) Frequency
Range 2 (FR2) and >100 GHz for sub-THz, mmW/sub-THz
signals experience an orders-of-magnitude increase in
free-space path loss compared to the current majority
of wireless systems, resulting in highly sparse channels
[8], [9]. Multiple Input Multiple Output (MIMO) systems
are a redeeming solution that can provide a beamforming
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gain to overcome the path loss and establish links with a rea-
sonable Signal-to-Noise Ratio (SNR). Additionally, MIMO
systems enable precoding and combining of multiple data
streams which could significantly improve the achievable
data rate [10], [11].

While the fundamental theory of MIMO precod-
ing/combining is the same regardless of the carrier frequency,
the hardware in the mmW/sub-THz band is subject to a set of
non-trivial practical limitations. The processing in traditional
MIMO systems is performed digitally at baseband, which
requires a dedicated Radio Frequency (RF) chain for each
antenna element. Unfortunately, due to the high number of
elements required in mmW (even more at sub-THz), this
implies a high cost and power consumption, which makes
it unpractical [12].

A promising solution to these problems lies in the con-
cept of hybrid arrays, which use a combination of analog
beamforming in the RF domain and digital beamforming
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FIGURE 1. Block scheme of the FC-HBF (1a,1b) and SC-HBF (1c,1d) hybrid MIMO system.

in the baseband, with a reduced number of RF chains.
Hybrid Beamforming (HBF) was first proposed in [13].
It is driven by the practical fact that the number of RF
chains is only lower-limited by the number of transmit-
ted data streams, while the beamforming gain and diver-
sity order is given by the number of antenna elements
if proper precoding/combining is applied. Analog precod-
ing/combining is often implemented using phase shifters
[14], [15], switches [16], or lenses [17]. A HBF based on
phase shifting network imposes the constraint of constant
amplitude on the elements of the RF precoder. Moreover,
there are two main HBF architectures, as shown in Fig. 1:
(i) a Fully-Connected (FC-HBF) architecture, where each RF
chain connects to all antenna elements of the array; and (ii) a
Sub-Connected (SC-HBF) architecture, where the RF chains
connect to disjoint subarrays. Consequently, deriving the
hybrid precoder/combiner is a complex, non-convex problem
and therefore it is mathematically intractable [18].

A. RELATED WORKS
Most works on hybrid precoding/combining design [18]–[20]
require the knowledge of the full MIMO channel at both
Transmitter (Tx) and Receiver (Rx). The presence of ana-
log precoders/combiners implies that the digitally-observed
channel is limited to a portion of the fullMIMOone, introduc-
ing an equivalent analog compression which cannot be han-
dled with conventional channel estimation approaches [21].
From the analytical point of view, the channel decompression
can be achieved by applying the hybrid echoing method pro-
posed in [22], which consists of consecutively transmitting
and receiving training sequences, while using all possible
analog precoders/combiners (obtained, for example, from a

subset of a Fourier basis) and decompressing the channel
after the concatenation of the received signals for each subset.
However, this approach turns out to be infeasible for practical
systems due to (i) mobility of the terminals and (ii) the low
SNR resulting from mismatched Tx-Rx beams.

The authors in [23] and [24] propose a grid-based method
for FC-HBF architecture, by first estimating the Angles of
Arrival/Departure (AoAs/AoDs) of the channel through a
closed-loop beam training, after which the path gain of each
pair AoA/AoD is derived. In [25], [26], a similar approach is
proposed for SC-HBF architecture under practical hardware
impairments. In both architectures, the performance tends to
be limited by the codebook resolution, while the complexity
increases with the number of users. A different approach is
based on Compressed Sensing (CS) techniques, that impose
a structured sparsity in the channel estimation problem [27].
In [21], the CS-based open-loop approach is used to explicitly
estimate the full channel, with a dictionary of quantized
AoAs/AoDs. The results show the capability of CS to cap-
ture the full MIMO channel features allowing for the joint
optimization of both analog and digital precoders/combiners.
However, the CS algorithm requires an a-priori knowledge of
the number of channel paths, and its performance is affected
by the true sparsity level of the channel. Moreover, the joint
optimization of both analog and digital precoders/combiners
increases the complexity and the cost of the implementation
in practical high-mobility systems, as the channel is rapidly
time-varying. Finally, as any grid-based technique, CS has a
significant drawback in the high sensitivity to array calibra-
tions [28], which is critical in hybrid systems [29].i

Low-Rank (LR) methods approach the MIMO
channel estimation by exploiting the invariance of
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Spatial-Temporal (ST) channel features (i.e, AoA/AoD
and delays) across different MIMO channel realizations,
extracting a modal filtering on the received signal. LR are
algebraic-based methods that leverage on the sparsity of the
MIMO channel, as opposite to CS. Originally proposed in
[30]–[33] for lower-spectrum systems, where the channel
is not sufficiently sparse to boost the LR application to
practical systems, the LR has recently been resumed for
mmW/sub-THz systems, for Fully Digital (FD) systems only
[28], [34]. In particular, the work in [28] demonstrates that
LR methods attain similar performances to CS with lower
sensitivity to hardware impairments. In [28], the LR channel
estimation is enabled by consecutive transmissions of training
blocks, that limits the application to static or low-mobility
scenarios.

B. CONTRIBUTION
In mobility, AoAs and AoDs describe an algebraic span
of MIMO channel that has a LR, with a set of subspaces,
and for mobile-to-fixed links, both approaches are location
dependent. Differently from [34], we adapt this concept to
Multi-Vehicular (MV) LR and we specialize the channel
estimation to high-mobility hybridmassiveMIMO systems in
mmW/sub-THz bands, e.g., Vehicle-to-Infrastructure (V2I),
considering both FC-HBF and SC-HBF architectures. In this
context, this paper proposes a training process for an alge-
braic estimation of the single-user spatial hybrid MIMO
channel in a mobile scenario. In the first stage (Section III),
we determine the optimal analog precoder/combiner at both
Mobile Station (MS) and Base Station (BS) through a MV
codebook-based beam alignment procedure, while in the sec-
ond stage (Section IV) the BS learns the algebraic channel
subspace structure (eigenmodes) from the received train-
ing signal, observed at the digital side, used to obtain the
LR-estimated channel and the digital precoders and combin-
ers. The key novelty of the proposed method is the exploita-
tion of the position-invariant spatial features of the MIMO
channel, i.e., AoAs/AoDs, leveraging on multiple repeated
vehicle passages. A notable advantage is that, at the end of the
training procedure, the BS stores a dataset of optimal analog
precoders/combiners and digital channel eigenmodes, which
do not require to be updated unless macroscopic changes in
the environment occur. Therefore, after learning, during the
communication phase, the beam alignment can be avoided,
thus reducing the control signaling overhead.

Extensive numerical simulations, based on ray-tracing-
generated channel data [35] and realistic vehicle tra-
jectories [36], show that the proposed LR channel
estimation method outperforms the UnconstrainedMaximum
Likelihood (U-ML) in terms of Mean Square Error (MSE)
on channel estimation and Spectral Efficiency (SE) for both
FC-HBF and SC-HBF architectures. Furthermore, we prove
numerically that the MSE of the LR attains the theoretical
MSE lower bound derived in [28] for structured MIMO
channels as considered here. In particular, for a target SE,
both architectures and LR methods achieve an SNR gain up

to 15 dB in single-path and up to 10 dB in multipath sce-
narios. In general, the performance of the proposed channel
estimation is proportional to the sparsity degree of theMIMO
digital channel (after analog beamforming), which is high at
mmW, and it is even more prominent at sub-THz [9], making
it suitable for 6G systems.

C. ORGANIZATION
The paper is organized as follows: Section II introduces the
system and the channel model that are used throughout the
paper. Section III describes the proposed MV analog beam
alignment, while Section IV details the LR approach for
hybrid MIMO systems. Section V reports the numerical
results validating our work. Finally, Section VI draws the
conclusions.

D. NOTATION
Bold upper- and lower-case letters describe matrices and col-
umn vectors. [A]i,j denotes the (i, j) entry of matrix A, while
A(i) is the i-th column. Matrix transposition and conjugate
transposition is indicated as (·)T and (·)H, respectively. ‖·‖
denotes the Frobenius norm. tr (A) and rank (A) extracts trace
and rank ofmatrixA, respectively, while eigr (A) is the collec-
tion of r eigenvectors of A. ⊗, � and � denote, respectively,
the Kronecker, the Kathri-Rao and the element-wise prod-
uct between two matrices. vec(·) denotes the vectorization
by columns and vec−1(·) its inverse operation for proper
dimensions. span(A) denotes the subspace spanned by the
columns of A. A† is the Moore-Penrose pseudo-inverse of A.
diag(·) denotes either a diagonal matrix or the extraction of
the diagonal of a matrix. The following properties of the vec-
torization are used in the text: vec(ABC) = (CT

⊗A)vec(B),
vec(AB) = (BT

⊗ I)vec(A). With a ∼ CN (µ,C) we
denote a multi-variate circular-symmetric complex Gaussian
random vector a with mean µ and covariance C. E[·] is the
expectation operator, while R and C stand for the set of real
and complex numbers, respectively. δn is the Kronecker delta.

II. SYSTEM AND CHANNEL MODEL
We consider the single-user hybrid mmWave MIMO system
depicted in Fig. 1. The Tx is equipped with NT antenna
elements and NRF

T RF chains, that is communicating NS data
streams. TheRx hasNR antenna elements andNRF

R RF chains.
The hybrid hardware configuration consists in NRF

T < NT
and NRF

R < NR, while the number of parallel data streams
NS is upper-bounded as NS ≤ min(NRF

R ,NRF
T ). For the

sub-connected configuration, the Tx and Rx antennas are
grouped into sub-arrays ofNB

T and NB
R antennas, respectively,

each one connected to a single RF chain, i.e., NB
T = NT /NRF

T
and NB

R = NR/NRF
R . The NS complex symbols to be trans-

mitted are s ∈ CNS×1 ∼ CN
(
0, INS /NS

)
, and are precoded

using the cascade of FBB ∈ CNRF
T ×NS , obtaining the digital

signal vector s̃ = FBB s ∈ CNRF
T ×1, and of FRF ∈ CNT×NRF

T

in the analog domain. The discrete-time transmitted signal is
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therefore given by:

x = FRF s̃, (1)

where x ∈ CNT×1. For channel estimation, an orthogonal
training sequence v ∈ CNRF

T ×1, detailed in Section IV,
is transmitted without the digital precoder FBB, i.e., s̃ = v.

Since FRF is implemented using analog phased shifters,
its elements are constrained to have the same norm,
i.e., [F(i)

RFF
(i),H
RF ]k,k = 1/NT , while the Tx total power con-

straint is enforced by designing FBB such that ‖FRFFBB‖2 =
NS . In the SC-HBF configuration, the NB

T N
RF
T ×N

RF
T analog

precoding matrix FRF is block-diagonal:

FRF =


f(1)RF 0 · · · 0

0 f(2)RF · · · 0
...

...
...

...

0 · · · 0 f
(NRF

T )
RF

 , (2)

where 0 ∈ CNB
T×1 is a vector with zero-elements and f(n)RF ∈

CNB
T×1, n = 1, . . . ,NRF

T is the beamforming vector for the
n-th Tx sub-array.

The transmitted signal is assumed to propagate in a
spatially-sparse channelH ∈ CNR×NT affected, for simplicity,
by block-fading [18]. After the time-frequency synchroniza-
tion, the received signal is:

y = Hx+ n (3)

where the additive noise n ∼ CN (0,Qn) is assumed to be
zero mean with covariance matrix Qn = E[n nH] that is
generally not white due to the presence of directional interfer-
ence. Similarly to the Tx, the Rx applies the cascade of analog

and digital combiners, here indicated with WRF ∈ CNR×NRF
R

andWBB ∈ CNRF
R ×NS , respectively. The (compressed) digital

signal ỹ ∈ CNRF
R ×1 after the analog combinerWRF is:

ỹ =WH
RFHFRF︸ ︷︷ ︸

H̃

s̃+ ñ (4)

where:
• WRF compressing the analog signal is subject to the

same constraint of FRF , i.e., [W
(j)
RFW

(j),H
RF ]l,l = 1/NR;

• H̃ ∈ CNRF
R ×N

RF
T is the equivalent and compressedMIMO

channel observed at the digital side;
• the noise after the analog beamforming is ñ =WH

RF n ∼
CN (0, Q̃n), with Q̃n =WH

RFQnWìRF .
Similarly to FRF , the analog combiner WRF for SC-HBF
architectures is block-diagonal.

Finally, the received data flows z ∈ CNS×1 after the digital
combinerWBB are:

z =WH
BB̃y =WH

BBH̃ s̃+WH
BBñ. (5)

Derivation of FBB,FRF ,WBB,WRF has been investigated
in depth in [18]. Here, the analog precoders/combiners FRF
and WRF are derived from a MV codebook-based beam

alignment procedure. After, the digital precoders FBB and
combiners WBB are computed employing the LR training in
the second stage, as detailed in Section IV. The aforemen-
tioned system model refers, for instance, to one sub-carrier
of an OFDM system and temporal processing over the
sub-carriers is not detailed herein.

A. CHANNEL MODEL
As customary in mmW/sub-THz links, we consider the
spatially-sparse clustered MIMO channel model [37], [38].
The channel matrixH can be written as the sum of P paths as

H =
P∑
p=1

αp aR(ϑp)aTT (ψp), (6)

where: (i) αp is the complex gain of the p-th path;
(ii) aT (ψp) ∈ CNT×1 and aR(ϑp) ∈ CNR×1 represent,
respectively, the Tx and Rx and array response vectors to
p-th path, function of the AoDs ψp = [ψaz,p, ψel,p]T and the
AoAs ϑp = [ϑaz,p, ϑel,p]T.

Without loss of generality, we assume the faded channel
to be normalized such that E[‖H‖2] = NTNR. The channel
matrix (6) can be rewritten in compact form as:

H = AR (ϑ)DAT
T (ψ) , (7)

where AT (ψ) =
[
aT (ψ1), . . . , aT (ψP)

]
∈ CNT×P and

AR (ϑ) = [aR(ϑ1), . . . , aR(ϑP)] ∈ CNR×P are two matrices
identifying the Tx and Rx beam spaces, and diagonal matrix
D = diag (α1, . . . , αP) ∈ CP×P collects all the channel
amplitudes, obeying theWide-Sense Stationary Uncorrelated
Scattering (WSSUS) model [39]:

E
[
DnDH

n+m

]
= Pδn−m, (8)

with P = diag (P1, . . . ,PP) containing the paths’ powers,
normalized such that

∑
p Pp = 1, and n, m denoting two

different channel realizations in either time (different fading
blocks) or space (different locations).

Matrices AT (ψ) and AR (ϑ) allow to define the diversity
orders of channel H for Tx (rT ) and Rx (rR)

rT = rank(AT (ψ)) ≤ min (NT ,P) , (9)

rR = rank(AR (ϑ)) ≤ min (NR,P) , (10)

i.e., the number of resolvable spatial paths according to the
number of Tx and Rx antennas.
The analog precoder/combiner pair FRF and WRF mod-

ifies the beam spaces and the diversity orders of the
digitally-equivalent channel H̃, whose structure is:

H̃ =WH
RFAR(ϑ)DAT

T (ψ)FRF . (11)

The diversity orders, namely number of resolvable paths
given the Tx and RX HBF configurations, now become:

r̃T = rank(AT
T (ψ)FRF ) ≤ min (rank(FRF ), rT ) , (12)

r̃R = rank(WH
RFAR(ϑ)) ≤ min (rank(WRF ), rR) , (13)
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where, in general,

rank(FRF ) ≤ NRF
T , rank(WRF ) ≤ NRF

R . (14)

As will be shown in the following, as the full MIMO
channel cannot be directly estimated, [18], [23], we exploit
the algebraic structure of the digitally-observed channel H̃
to improve the channel estimation. As opposite to existing
works [21]–[24], we propose a learning-based approach, tai-
lored for both static and dynamic scenarios (e.g., V2I/V2N
scenarios). A MV codebook-based beam alignment proce-
dure selects the analog precoder/combiner pair FRF , WRF
(Section III); then, a second MV-LR method learns the alge-
braic spatial eigenmodes of the digital compressed channel H̃,
which are used to derive digital precoders/combiners FBB and
WBB from the LR-estimated equivalent compressed channel
(Section IV).

III. MULTI-VEHICULAR CODEBOOK-BASED ANALOG
BEAM ALIGNMENT
The hardware constraint and the low SNR in the
mmW/sub-THz bands makes the derivation of analog pre-
coder/combiner in hybrid systems a complex non-convex
problem [40]. A conventional solution is to use a fixed code-
book and a beam alignment strategy to appropriately scan
the full channel (both AoA and AoD) and to select the best
beam pairs that satisfy some criterion, such as to maximize
the received power, the SNR, or the achievable rate. The
trade-off between complexity and resolution must be taken
into account when designing the codebook [41].We elaborate
further below from this beam-alignment approach tailored for
vehicular use cases.

In a quasi-static propagation environment, different vehi-
cles crossing the same location in space with slightly different
co-directed trajectories (as commonly happens in urban sce-
narios) experience the same angles (AoD/AoA) in commu-
nicating with the BS and different fading amplitudes made
varying by the Doppler [42]. Therefore, by leveraging this
property, we explore a set of MIMO channel snapshots of
recurrent vehicle passages to design a self-learning multi-
vehicular codebook-based analog beam alignment procedure
for dynamic scenarios, characterized by the mobility of one
of the terminals, as in V2I/V2N communications. We assume
the Rx, e.g., a BS, with a fixed position and a set of collab-
orative vehicles, both equipped with hybrid antenna arrays.
In particular, all the MSs have the same array equipment, and
their positions p` and headings θ` are known, with a reason-
able accuracy, for each training block (`-th MS). The way the
position and orientation are obtained is out of the scope but to
exemplify one can use (i) a Radio Access Technology (RAT)-
based localization and tracking algorithms [43], or (ii) some
signaling from the vehicle’s onboard sensors (e.g., Global
Navigation Satellite System (GNSS)). The estimated posi-
tion’s accuracy, regardless of the technology used, affects the
system performance as discussed in Section V.

The Tx analog codebook is designed from a 2D
Fourier basis that for a N1 × N2 Uniform Rectangular

Array (URA) with half-wavelength spaced antennas config-
uration becomes:

B2D (N1,N2) = B (N1)⊗ B (N2) , (15)

where B (N ) ∈ CN×N is the DFT matrix with entries

[B (N )]m,n =
1
√
N
e−j

2πmn
N , (16)

and dimensions are

N1 = N az
T , N2 = N el

T for FC-HBF,

N1 = NB,az
T , N2 = NB,el

T for SC-HBF (17)

in which N az
T , N el

T denote the number of Tx antennas along
the azimuth (horizontal) and elevation (vertical) direction of
the URA (NT = N az

T × N el
T ), and N

B,az
T , NB,el

T the same for
each sub-array (NB

T = NB,az
T × NB,el

T ). The Rx codebook is
analogously obtained.

The learning stage of the MV codebook-based beam align-
ment procedure is depicted in Fig. 2 and it consists on the
following steps, that involve the usage of a low-frequency
signalling link (e.g., 5G NR FR1):

1) the BS commands each collaborative MS entering the
BS’s coverage area to use a certain analog beam fRF
(e.g., codebook index from B2D (N1,N2)) and the rela-
tive training sequence. Additional information, such as
position p` and heading θ`, could be requested to the
MS by the BS;

2) the collaborative `-th MS, while moving in the BS’s
coverage area, transmits training sequences accord-
ing to the BS using the fixed analog beam (see
Figs. 2a, 2b, 2c). The position and heading, if requested,
are related to the instant in which the training sequence
is transmitted;

3) themeantime theMSmoves, the BS continuously scans
all the analog beams wRF of the Rx codebook. In the
event of a match between BS and MS` analog beams,
the BS stores: (i) the received power PR, (ii) the MS`
analog beam fRF , (iii) the BS analog beam wRF , and
(iv) position p` and heading θ`;

4) the BS, after the training period for multiple MSs, each
with different precoder fRF , groups received powers in
clusters based on positions and headings of the moving
MSs and it generates the position/heading associated
ensemble received powermatrixPR

(
p̄, θ̄

)
, where p̄ and

θ̄ are the reference position and heading respectively.
Fig. 3 shows an example of PR

(
p̄, θ̄

)
for FC-HBF and

SC-HBF architectures.

The optimal analog precoders/combinersFRF andWRF for
each position are those maximizing the ensemble received
power in matrix PR

(
p̄, θ̄

)
, learned from multiple passages

illustrated in Figs. 2a, 2b, 2c. The problem consists in select-
ing themaxima ofPR

(
p̄, θ̄

)
corresponding to the true channel

paths. In hybrid systems, however, as the full channel matrix
H is unknown and cannot be directly estimated, it is not
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FIGURE 2. Graphical representation of the MV codebook-based beam
alignment: the BS assigns different analog beams to different MSs
(2a,2b,2c), collecting a set of position-related power measurements used
to progressively filling matrix PR . At the end of the procedure, the MV
beam alignment selects the best analog beam pairs (i.e., analog
precoder/combiner pair) (2d).

possible to approach the maximization analytically. Further-
more, heuristic approaches are disadvantageous, since the
ensemble power matrix PR

(
p̄, θ̄

)
has several local maxima,

FIGURE 3. Example of PR , with NT = 64, NR = 128 and NRF
T = 4, NRF

R = 8
hybrid array configuration, for FC-HBF (3a) and SC-HBF (3b) architecture.

due to LoS/NLoS spatial components of the channel (when
they match with the selected beams) and their related grating
lobes as can be observed in Fig.3. Here, we select the set of
beam pairs for FRF and WRF by searching for the first NRF

T
and NRF

R maxima over the rows and the columns of PR
(
p̄, θ̄

)
independently. This ensures that the analog beams at MS and
BS are not repeated. Therefore, the analog precoder FRF and
combinerWRF matrices are full-rank, maximizing the system
performance by exploiting all the available spatial diversity
orders.

Finally, the BS defines a list LF of optimal analog pre-
coders with the associated reference positions and headings,
such that:

[LF ]k =
{
FRF,k ,

(
p̄k , θ̄k

)}
(18)

and similarly for the optimal combiners, with list LW .

IV. LOW-RANK ESTIMATION OF DIGITAL
COMPRESSED CHANNELS
In the second stage of channel estimation, the BS has
to learn the eigenmodes of the equivalent compressed
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channel H̃. Again, we exploit recurrent vehicle passages. The
BS sends the optimal analog precoders list LF defined in
the first stage to all collaborative MSs entering its coverage
area. The `-th collaborative MS, while moving, transmits
M consecutive training sequences v` ∈ CNRF

T ×1, such that
S̃` =

[
v1,`, v2,`, . . . , vM ,`

]
∈ CNRF

T ×M . We assume the
training sequences are chosen to be uncorrelated in both space
and time and also mutually uncorrelated among different
MSs, i.e., E[̃S`S̃Hs ] = σ 2

s INRF
T
δs−` and E[̃SH` S̃s] = IMδs−`,

where σ 2
s denotes the Tx power [44]. As pointed out in [44],

choosing uncorrelated training sequences in time and space
maximizes the channel estimation performance. This solution
is currently adopted in 5GNR standard [45]. The optimal ana-
log precoder FRF used for transmitting the training sequences
is selected from the received list LF based on the current MS
position p` and heading θ`.
TheBS follows the same principle and it selects the optimal

analog combiner WRF from the list LW defined in the first
stage, obtaining:

Ỹ` = H̃` S̃` + Ñ` (19)

where the noise is spatially correlated E[Ñ`ÑH
s ] = Q̃nδs−`

and temporally uncorrelated E[ÑH
` Ñs] = IMδs−`. At the

end of the procedure, the set of received training sequences
{Ỹ`}`=L`=1 for each position and heading is used to retrieve the
compressed channel eigenmodes accounting for the spatial
correlation of the noise Ñ` and the LR-estimated channel
through algebraic manipulations, detailed in the following.
In particular, two solutions are provided: (i) optimal LR esti-
mation, i.e., Joint Space (JS), and (ii) sub-optimal LR estima-
tion, i.e., Disjoint Space (DS). In Section V, the performance
of the two approaches are compared and discussed.

A. JOINT SPACE LOW RANK (JS-LR) ESTIMATION
The LR-estimated compressed channel ĥ` ∈ CNRF

R NRF
T ×1 can

be retrieved from the single received training signal Ỹ` as the
combination of a training sequence-dependentmatrixG` and
another one referred as position-dependent matrix 5(p̄, θ̄ ),
that follows a derivation similar to [28] (not repeated here,
as adaptation is straightforward):

ĥ` = 5(p̄, θ̄ )G` vec(Ỹ`) = 5(p̄, θ̄ ) y`, (20)

where y` ∈ CNRF
R NRF

T ×1 is the pre-processed sequence byG`.
A notable example of pre-processing is the U-ML chan-
nel estimation, here adopted as benchmark, obtained with
G` = (̃ST` ⊗ INRF

R
)†.

The position-dependent linear processing 5(p̄, θ̄ ) is esti-
mated from an ensemble of L training sequences {y`}

`=L
`=1 ,

originated frommultiple vehicles passing in the same location
such that each one has the same propagation structure with
all the others. In the context of (20), matrix5(p̄, θ̄ ) operates
a modal filtering on y`, projecting it onto the propagation
subspace [31].

The first step to obtain the position-dependent 5(p̄, θ̄ ) is
to identify the algebraic structure of the compressed channel

h̃ = vec(H̃), which can be shown to be [28], [31]:

h̃ = T (ψ,ϑ) α (21)

where (i) T (ψ,ϑ) =
(
FT
RF ⊗WH

RF

)
A (ψ,ϑ)α ∈

CNRF
T NRF

R ×P embeds the spatial features of the compressed
channel, invariant across multipleMSs passing the same posi-
tion; (ii) matrix A (ψ,ϑ) = AT (ψ) � AR (ϑ) ∈ CNTNR×P,
and (iii) α = [α1, . . . , αP]T ∈ CP×1 collects the channel
amplitudes, different fromMS toMS but with the same power
profile (8).

Let us define the compressed channel correlation R̃ =
E[̃h h̃H], which can be computed by exploiting the invariance
of AoAs/AoDs across multiple vehicles, as:

R̃ = T (ψ,ϑ)PT (ψ,ϑ)H

=

P∑
p=1

Pp
[
FT
RFRT ,pF∗RF ⊗WH

RFRR,pWRF

]
(22)

where RT ,p = aT
(
ψp
)
aT
(
ψp
)H
∈ CNT×NT and RR,p =

aR
(
ϑp
)
aR
(
ϑp
)H
∈ CNR×NR .

We can re-parameterize the channel h̃ in (21) using the r̃
leading eigenvectors of R̃, i.e., Ũ = eig̃r (R̃), such that:

span(Ũ) = span(T (ψ,ϑ)), (23)

the orthonormal basis Ũ ∈ CNRF
T NRF

R ×̃r span the joint Tx
and Rx subspace of the compressed channel, of dimension
r̃ = rank(R̃) = rank(T (ψ,ϑ)). The latter represents the
number of compressed channel paths (diversity order) that
can be resolved by the digital system:

r̃ ≤ min (rank(FRF )rank(WRF ), r) , (24)

where r = rank(A (ψ,ϑ)) ≤ min(NTNR,P) is the number of
resolvable paths of the full channel h = A (ψ,ϑ)α, obtained
by rearranging (6) similarly to (21).
From the LR contraint (24), the position-dependent matrix

5(p̄, θ̄ ) is estimated as [28]:

5̂(p̄, θ̄ ) = C
H
2 5̂JSC−

H
2 , (25)

where:
• C ≈ (INRF

T
/σ 2

s ) ⊗ Q̃n is the covariance matrix of
y` (asymptotic approximation). Matrix C is used to
perform the whitening (and de-whitening) of y` to
optimally handle any presence of noise correlation
(e.g., interference);

• 5̂JS = ÛÛH is the JS-LR projection matrix onto the
propagation subspace spanned by Û = eig̃r (R̂), where

R̂ =
1
L

L∑
`=1

y`y
H
` (26)

is the sample correlation of whitened sequences y` =
C−

H
2 y`, collected from L different MSs passing the

same position.
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The performance of the proposed LR channel estimation,
hereafter referred to as Joint-Space LR (JS-LR), provided by
the application of 5(p̄, θ̄ ) in (25) on signal y`, depends on
the sparsity degree of the compressed channel h̃. The latter
is proportional to the ratio between the effective number of
spatially-separable analog beams for MS and BS, respec-
tively N beams

T and N beams
R , and the number of resolvable paths

r̃ of the compressed channel.
For FC-HBF systems, the number of separable beams are

N beams
T ≤ rank(FRF ) ≤ NRF

T , N beams
R ≤ rank(WRF ) ≤

NRF
R as the Tx/Rx terminals can, in general, use arbitrary

angular separated analog beams. For the analog beams chosen
here as selected from orthogonal codebooks and not repeated
(Section III), we have N beams

T = rank(FRF ) = NRF
T and

N beams
R = rank(WRF ) = NRF

R , and the sparsity degree of
the compressed channel is maximum.

In SC-HBF architectures, the block-diagonal structure of
FRF and WRF leads, in general, to N beams

T ≤ rank(FRF ) =
NRF
T and N beams

R ≤ rank(FRF ) = NRF
R , but again the

proposed analog beam alignment ensures that N beams
T =

rank(FRF ) = NRF
T and N beams

R = rank(FRF ) = NRF
R , as every

RF chain employs a different orthogonal beam, maximizing
the channel sparsity.

In this regard, provided that:

r̃ < NRF
T NRF

R , (27)

the LR provides superior performance compared to conven-
tional approaches (e.g., LS/U-ML).

B. DISJOINT SPACE LOW RANK ESTIMATION
To reduce the complexity of the JS-LR implementation,
mainly due to the large-matrix eigendecomposition of R̂ in
(26), we propose a sub-optimal approach, referred herein as
Disjoint-Space LR (DS-LR). This assumes the separability
of Tx and Rx spatial subspaces of the compressed channel as
detailed in [31]. In analogy to (22), we leverage the algebraic
structure of H̃ in (11) and define the Tx and Rx compressed
channel correlations R̃T = E[H̃HH̃] and R̃R = E[H̃H̃H],
respectively equal to:

R̃T = FH
RFA

∗
T (ψ) 0̃T AT

T (ψ)FRF , (28)

R̃R = WH
RFAR (ϑ) 0̃R AH

R (ϑ)WRF , (29)

where

0̃T = P� AH
R (ϑ)WRFWH

RFAR (ϑ) , (30)

0̃R = P� AT
T (ψ)FRFF

H
RFA

∗
T (ψ) , (31)

are diagonal matrices of P × P size. Eq. (30)-(31) highlight
how the analog precoder/combiner pair affects the eigenval-
ues of the Tx and Rx channel correlation matrices. The last
term in (30), for instance, represents the overall matching
between the steering vectors of the AoAs with the combiner
WRF : for a fixed precoder FRF , the Tx side experiences
different channel gains (sum of eigenvalues) for different

combiners. The same applies for the Rx side, with an opti-
mum precoder/combiner pair for the best pointing between
Tx and Rx.

From the r̃T and r̃R leading eigenvectors of R̃T and R̃R,
i.e., ŨT = eig̃rT (R̃T ) and ŨR = eig̃rR (R̃R), we have that:

span(ŨT ) = span
(
AT
T (ψ)FRF

)
, (32)

span(ŨR) = span
(
WH

RFAR(ϑ)
)
, (33)

i.e., ŨT ∈ CNRF
T ×̃rT and ŨR ∈ CNRF

R ×̃rR span the Tx and
Rx spatial subspaces of the compressed channel H̃, of dimen-
sions r̃T and r̃R (see (12)-(13) in Section II).
The position-dependent matrix for the DS-LR method is:

5̂(p̄, θ̄ ) = C
H
2 5̂DSC−

H
2 , (34)

where 5̂DS = Û∗T Û
T
T ⊗ ÛRÛH

R is the DS-LR projector onto
to the propagation subspace, represented by basis Û∗T ⊗ ÛR.
Notice that the Kronecker separability of Tx and Rx sub-
spaces is an approximation, as the Kronecker structure of the
digital channel correlation (22) holds for single paths only
(see [28]). Similarly to JS-LR, ÛT = eig̃rT (R̂T ) and ÛR =

eig̃rR (R̂R) are set from the r̃T and r̃R leading eigenvectors of
the following sample correlations:

R̂T =
1
L

∑L
`=1Y

H

` Y`, (35)

R̂R =
1
L

∑L
`=1Y` Y

H

` , (36)

where we indicate with Y` = vec−1(y`) ∈ CNRF
R ×N

RF
T the

whitened sequences in matrix form. It can be demonstrated
that, asymptotically (L →∞):

span(ÛT ) → span(AT
T (ψ)FRF ), (37)

span(ÛR) → span(Q̃
−

H
2

n WH
RFAR(ϑ)). (38)

The DS-LR channel estimation method provides a perfor-
mance gain with respect to conventional approaches when the
spatial structure of H̃ is sparse, which is equivalent to state
that at least one of the following conditions hold:

r̃T < NRF
T , (39)

r̃R < NRF
R . (40)

Compared to JS-LR, the DS-LR method requires a lower
number of training sequences, L, to estimate the compressed
channel eigenmodes, at the price of a reduced performance
(the sparsity degree of DS-LR is always less than the JS-LR
one).
Remark: Without interference (Qn = σ 2

n INR ) and with an
orthogonal codebook for WRF as here, it follows that Q̃n ≈

Nσ 2
n INRF

R
, where σ 2

n is the noise power and N accounts for
analog beamforming (N = NR for FC-HBF, N = NB

R for
SC-HBF). In this setting, for L →∞ we have:

span(Û) → span(Ũ), (41)
span(ÛT ) → span(ŨT ), (42)
span(ÛR) → span(ŨR). (43)
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Therefore, the whitening/de-whitening in (26) reduces the
position-dependent matrix 5(p̄, θ̄ ) to the projection matrix
associated to the sample estimates of (22) (JS-LR) and
(28)-(29) (DS-LR).

C. LOSSY VS. LOSSLESS CHANNEL COMPRESSION FOR
FC-HBF ARCHITECTURES
By exploiting (12), (13) and (14) we can observe that if both
the following conditions hold

NRF
T ≥ rT , (44)

NRF
R ≥ rR, (45)

this implies that there exist an analog precoder/combiner
FRF/WRF with rank(FRF ) ≥ rT and rank(WRF ) ≥ rR, such
that FC-HBF performance, in terms of Spectral Efficiency
(SE), attains the Full-Digital (FD) one. The first condition,
(44), asserts that the overall number of RF chains at Tx must
be larger than the number of Tx-resolvable paths of the full
channel H. This is derived from (12) by noticing that, if (44)
does not hold, r̃T < rT would mean that the HBF system can-
not explore the full channel diversity for insufficient number
of available beams at Tx, regardless the choice of FRF/WRF .
This is equivalent to a lossy compression of the channel. Con-
dition (45) can be analogously derived from (13). When both
(44) and (45) apply, r̃T ≤ rT and r̃R ≤ rR, i.e., the number
of resolvable paths at Tx and Rx before and after the analog
compression can be equal when a suitable combination of
FRF/WRF is employed (lossless compression of the channel).
Remark 1: In practical FC-HBF systems, where the analog

precoder/combiner are defined by a codebook, the perfor-
mances can deteriorate if the resolution is poor, i.e., low
angular sampling interval.
Remark 2: The previous consideration does not apply to

SC-HBF systems, unless a proper Tx power augmentation
is considered. Indeed, for a fixed Tx power, the reduced
beamforming gain of SC-HBF compared to FC-HBF does not
allow to reach the performance of FD systems.

D. DIGITAL PRECODERS/COMBINERS DESIGN
The digital precoders/combiners are retrieved from the LR
estimated compressed channel matrix Ĥ = vec−1 (̂h), which
must be known at the Tx side through a feedback from Rx.
The optimal digital precoder FBB is [46]:

FBB = eigNS

(
ĤHĤ

)
, (46)

while the digital combiner WH
BB is derived using the opti-

mal unconstrained Minimum Mean Squared Error (MMSE)
as [47]

WH
BB =

(
ĤHFH

BBQ̃
−1
n FBB Ĥ+

INS
NS

)−1
ĤHFH

BBQ̃
−1
n . (47)

These are the precoders/decoders used in the numerical
results below.

V. NUMERICAL RESULTS
To demonstrate the effectiveness of the proposed channel
estimation methods, we present the results obtained through
numerical simulations using ray-tracing channel data and
a set of realistic vehicle trajectories. The latter are aimed
at stimulating multiple vehicle passages, in a typical urban
scenario (Fig. 4). Two locations are selected for testing: the
first (red circle in Fig. 4) relatively far from the BS, ≈60 m,
and the second (green circle) at ≈8 m (close to the BS).
To ease the reader in analyzing the results, we will refer to
these locations as S1 (far from the BS) and S2 (close to the
BS). Fig. 5 shows the number of channel paths as function of
theMS-to-BS distance. The blue curve represents the number
of paths provided by the ray-tracer, while the red curve is
the number of meaningful paths, i.e., those with cumulative
power within the 99.9 percentile. Red and green ellipses
in Fig. 5 identify the S1 and S2 locations used in simula-
tion. More specifically, the meaningful paths are selected as
follows: (i) we set a threshold on the whole Rx power for a
fixed MS position (0.999); (ii) we sort in descending order
of power all paths provided by the ray-tracer; (iii) we select
the meaningful ones as the subset whose cumulative power is
within the threshold.

FIGURE 4. Urban scenario used in simulations: the solid yellow line
represents the reference vehicle trajectory, the blue triangle the mmW BS
(located at 6 m height from ground) while red and green circles the
S1 and S2 locations used for testing the proposed LR channel estimation.
The inset illustrates the gridding used by the ray-tracing to emulate the
multiple vehicle passages by SUMO.
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FIGURE 5. Number of channel paths vs. distance from the BS: the blue
curve represent the number of paths provided by ray-tracer, the red one
the meaningful ones.

We consider an interference-free MS-to-BS (UL) com-
munication in the 5G NR FR2 band (28 GHz carrier fre-
quency) [45]. The hybrid MIMO setting is such that the
BS is equipped with NR = 128 (16 × 8) antennas and
NRF
R = 8 RF chains, while the MS (i.e., each vehicle) with

NT = 64 (8 × 8) antennas and NRF
T = 4 RF chains.

We make use of Altair WinProp ray-tracing software [35]
to generate the required channel data (power, AoDs, AoAs
and scattering amplitude for each ray), whereas the MIMO
channel (6) is obtained by post-processing in far-field (i.e.,
AoDs/AoAs equal for each Tx/Rx antennas). The required
trajectories (i.e., position, velocity and direction over time)
are instead generated by means of SUMO [36]. In both MV
beam alignment (Section III) and LR training (Section IV)
procedures, we consider the assignment of MSs’ positions
according to the spatial granularity of the experiment. In other
words, we exploit multiple vehicle passages in a spatial
region of radius ρ, where AoAs/AoDs are invariant. We set
ρ = 2 m for S1 and ρ = 0.5 m for S2, determined with
ray-tracing. The size of the MV region plays an important
role in the proposed method: if excessive, a performance
penalty is experienced by the system as the channel subspaces
decorrelate (Section V-B). It is worth underlining that the
performance of the proposed LR channel estimation method
is position-dependent, regardless of the vehicles’ speed along
their trajectory within the radio cell, provided that their posi-
tion information is continuously signaled to the BS. Unless
otherwise specified, the parameters given in Table 1 are used
to generate the results, while the MS and BS array configu-
rations are in Fig. 6. Most of the results we present in this
section are related to the multipath scenario S1, while the
single-path S2 is used for comparison.

The performance of both JS-LR and DS-LR channel esti-
mation methods are compared to the U-ML one in terms of
Spectral Efficiency (SE) and MSE on compressed channel
estimation. The SE is defined as [48]:

R = log2

∣∣∣∣INS + 1
NS

Q−1effHeffHH
eff

∣∣∣∣ (48)

FIGURE 6. Hybrid arrays configuration for MS (6a) and BS (6b).

TABLE 1. Simulation parameters.

where Qeff = WH
BBQ̃nWBB is the covariance of the noise at

the decision variable, and Heff = WH
BBH̃FBB is the effective

end-to-end channel between MS and BS. The MSE is com-
puted as:

MSE = E
[∥∥̂h− h̃

∥∥2] , (49)

and for U-ML method it is compared to the theoretical
Cramer-Rao Lower Bound (CRLB), while for LR it is asymp-
totically lower-bounded by [28]:

MSEb = tr
(
5{̂r}C5H

{̂r}
)
+

+ tr
(
15{̂r} R̃15H

{̂r}
)

(50)

where: (i) 5{̂r} is the asymptotic (L → ∞) (true)
position-dependent matrix 5(p̄, θ̄) evaluated for the esti-
mated rank, either r̂ (for JS-LR) or r̂T and r̂R (for DS-LR);
(ii) 15{̂r} = 5{̃r} − 5{̂r} is the difference between the
asymptotic position-dependent matrix computed for the true
channel rank (̃r for JS-LR or r̃T and r̃R for DS-LR) and
for the estimated one. Therefore, the first term accounts for
the residual noise contribution, while the second for mis-
parameterization (errors in the estimated diversity orders of
the channel). Here, we estimate the channel rank from the

95784 VOLUME 9, 2021



M. Mizmizi et al.: Channel Estimation for 6G V2X Hybrid Systems Using MV Learning

correlations’ eigenvalues, in descending order, according to
the 99.9 percentile of their cumulative sum.

A. S1 (MULTIPATH SCENARIO FAR FROM THE BS)
Fig. 7 shows the achievable SE in (48) varying the SNR per
antenna, i.e., before analog beamforming, for FC-HBF vs.
SC-HBF architectures (Fig. 7a) and FC-HBF vs. FD (Fig. 7b).
The SE is evaluated with four different degrees of chan-
nel knowledge: (i) perfect Channel State Information (CSI)
(black lines); (ii) optimal JS-LR channel estimation (blue
lines); (iii) sub-optimal DS-LR channel estimation (green
lines); (iv) U-ML channel estimation (red lines). The FD
performance are computed as benchmark, with precoders and
combiners obtained with (46) and (47), respectively, by using
the U-ML-, JS-LR- and DS-LR-estimated full channel Ĥ.
In all the LR implementations, the number of training vehicle
passages is L = 1000. As expected, the SC-HBF archi-
tectures provides worst performance compared to FC-HBF,
as a consequence of the reduced analog beamforming gain.
In both FC-HBF and SC-HBF configurations, however,

FIGURE 7. Spectral efficiency of FC-HBF vs. SC-HBF (7a) and FC-HBF vs.
FD (7b), with U-ML, JS-LR, and DS-LR channel estimation methods and
perfect CSI; L = 1000 training blocks (vehicle passages).

we notice the remarkable performance gain compared to
U-ML provided by DS-LR and especially JS-LR. For FC-
HBF, at a reference SNR of −10 dB, the SE gap amounts
to 0.8 bits/s/Hz for DS-LR and to 2.6 bits/s/Hz for JS-LR
(Fig. 7a). It can be appreciated that, for FC-HBF system,
the use of JS-LR channel estimation method allows to prac-
tically approach the perfect CSI case (R ≈ 8 bits/s/Hz)
with 5 dB less of SNR compared to U-ML. For SC-HBF,
instead, the DS-LR provides a SE gain of 0.7 bits/s/Hz and
JS-LR 1.9 bits/s/Hz, while the SNR gain is even higher, up to
≈10 dB for R ≈ 3 bits/s/Hz, while the perfect CSI case is
attained for SNR ≥ 10 dB. As can be observed from Fig. 7b,
the FC-HBF (dashed lines) performance practically matches
the FD one (solid lines), apart from a negligible SE penalty
due to the fixed spatial sampling provided by the use of
analog codebooks. According to Subsection IV-C, this result
is expected, as NRF

T = 4 > rT = 3 and NRF
R = 8 > rR = 3.

Figs. 8 and 9 depict, respectively, the behavior of the
SE and of the MSE of both FC-HBF and SC-HBF sys-
tems with respect to the number of vehicle passages L, for
SNR=−10 dB. The DS-LRmethod requires a lower number
of passages, approximately L = 50 for HBF, to converge
to its asymptotic MSE bound, whereas for JS-LR method
the convergence is guaranteed for L = 500 blocks (HBF).
It is important to emphasize that, at the cost of approxi-
mately 1.5 bits/s/Hz in SE (Fig. 8), we have a remarkable
gain in complexity, which is approximately ruled by the
computation of the eigenvectors of correlation matrices in
(26) and (35)-(36), since the computational cost of eig(R̂) is
O((NRF

T NRF
R )3) ≥ O((NRF

T )3) + O((NRF
R )3), as required for

eig(R̂T ) and eig(R̂R). In general, the results show a significant
performance gain with LR compared to U-ML on whole SNR
range.

The last results on S1 are related to the SE andMSE perfor-
mance of HBF varying the number of RF chains NRF

R ×N
RF
T ,

summarized in Figs. 10 and 11, fixing L = 1000 vehicle pas-
sages and SNR per antenna of −5 dB. For FC-HBF systems,

FIGURE 8. Spectral efficiency of FC-HBF and SC-HBF systems varying the
number of vehicle passages L.
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FIGURE 9. MSE on compressed channel estimation varying the number of
vehicle passages L for FC-HBF (9a) and SC-HBF (9b) systems, with U-ML,
JS-LR, and DS-LR methods and corresponding theoretical bounds; SNR
(per antenna) = −10 dB.

the SE gap between LR and U-ML goes proportionally to
the number of RF chains. The MSE in Fig. 11a explains the
SE performance: by increasing NRF

R and NRF
T , the MSE of

LR decreases with the increasing sparsity of the compressed
channel; conversely, the MSE of U-ML does not change. For
SC-HBF architectures, instead, Fig. 10 shows an interesting
trade-off between having a high analog resolution (few RF
chains) or having a high digital resolution (i.e., approach the
FD system, for 16× 32 RF chains). A high analog resolution
implies a comparably low LR gain with respect to U-ML,
as the compressed channel sparsity decreases; a high digital
resolution leads to a significant sparsity of H̃ and thus to
a huge LR gain. For any HBF configuration in between,
the performance decreases. TheMSE in 11b exhibits a similar
trend with respect to Fig. 11a, again explaining the SE gain
of LR compared to U-ML.

B. S2 (SINGLE-PATH SCENARIO CLOSE TO THE BS)
The last set of results are related to the single-path scenario S2
(Fig. 4). Similarly to S1, we report in Fig. 12 the SE varying

FIGURE 10. Spectral efficiency of FC-HBF and SC-HBF systems varying the
number of RF chains (NRF

T × NRF
R ), with U-ML, JS-LR, and DS-LR channel

estimation methods and perfect CSI; L = 1000 vehicle passages, SNR =
−10 dB (FD as upper bound).

the SNR before beamforming for FC-HBF vs. SC-HBF archi-
tectures (Fig. 12a) and FC-HBF vs. FD (Fig. 12b). Again,
we consider U-ML, JS-LR and DS-LR channel estimation
methods, and the perfect CSI case as upper bound, with L =
1000 vehicle passages. Compared to the multipath scenario
S1, JS-LR and DS-LR channel estimation methods approach
the perfect CSI case, for both FC-HBF and SC-HBF. This can
be explained by considering that for a single-path channel,
the sparsity degrees in (27) and (39)-(40) are maximum,
and the residual error on the LR-estimated channel does not
remarkably impact on the SE.

In S2, the proposed system performance is more sensitive
to the MV region size compared to S1. Fig. 13 shows the
SE of FC-HBF and SC-HBF for all the channel estimation
methods varying ρ (MV region radius) from 0.5 m to 4 m
(the latter basically considering the whole area of the crossing
in Fig. 4), for a fixed SNR = −5 dB. We notice that the
JS-LR and DS-LR performance drastically decrease with
ρ, especially for FC-HBF, and can be even worse than the
U-ML one. This is a direct consequence of the AoDs/AoAs
variation within the selected MV region, which exceeds the
system resolution (spatial selectivity of BS array) and leads
to subspace decorrelation. In other words, the ensemble of
received sequences {y`}

L
`=1 (Subsection IV) do not have

the same propagation subspace. As the spatial resolution of
FC-HBF systems is higher of SC-HBF one, the effect for
the former is stronger. This is further confirmed by the MSE
of JS-LR varying the SNR before beamforming (Fig. 14),
where we notice a progressive deviation from the asymptotic
MSE bound (black, dashed line), proportional to ρ and to the
SNR. For low SNRs, the imperfect modal filtering provided
by an excessive cluster size ρ is negligible for low SNRs,
where the noise is dominant, while is relevant for higher
SNR values. Furthermore, FC-HBF systems provide superior
performance, attaining FD one, but require a very accurate
positioning, while SC-HBF allows to relax this constraint.
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FIGURE 11. MSE on compressed channel estimation varying the number
of RF chains (NRF

T × NRF
R ) for FC-HBF (11a) and SC-HBF (11b) systems,

with U-ML, JS-LR, and DS-LR channel estimation methods and
corresponding theoretical bounds; L = 1000 vehicle passages,
SNR = −10 dB.

This last result shows that, considering practical HBF set-
tings of both MS and BS, the required tolerable positioning
accuracy is in the order of few meters (<2 m), allowing
a consistent estimation of position-dependent analog beams
and digital MIMO channel eigenmodes. Such positioning
accuracy is compatible with the performance of a GPS system
without urban canyon effects or severe multipath phenomena
and can be possibly improved by advanced RAT-based or
multi-sensor localization techniques, (see for instance [49]).
Notice that also the heading accuracy plays a role in the
proposed channel estimation method. The required heading
accuracy is ruled by the horizontal (azimuth) spatial selec-
tivity of the MS antenna equipment. For a fixed position in
space, it is sufficient that the MS heading is known with an
error that does not lead to the selection of a wrong optimal
analog beam (or a wrong channel eigenmode). For the con-
sidered settings, where NRF

T � NT , the MS spatial selectiv-
ity is practically ruled by the analog beamwidth (≈15 deg)
which is compatible with typical GPS accuracy and can be

FIGURE 12. Spectral efficiency of FC-HBF vs. SC-HBF (12a) and FC-HBF vs.
FD (12b), with U-ML, JS-LR, and DS-LR channel estimation methods and
perfect CSI; L = 1000 training blocks (vehicle passages).

FIGURE 13. Spectral efficiency of FC-HBF vs. SC-HBF varying the MV
region radius ρ, with U-ML, JS-LR, and DS-LR channel estimation methods
and perfect CSI; L = 1000 training blocks (vehicle passages), SNR = −5 dB.

reduced again by multi-sensor fusion techniques [50]. Thus,
a trade-off between the performance of the HBF system and
the available resolution in MS position accuracy and heading
allows to set up the MV regions.
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FIGURE 14. MSE on JS-LR channel estimation of FC-HBF vs. SC-HBF,
varying the SNR, function of the MV region radius ρ; L = 1000 training
blocks (vehicle passages), SNR = −5 dB.

VI. CONCLUSION
In this paper, we propose a training-basedmulti-stage channel
estimation method for hybrid mmWave/sub-THzMIMO sys-
tems, based on terminals in mobility (e.g., in V2I or V2N sce-
narios), in the future 6G context. The first training stage relies
on a novel multi-vehicular codebook-based beam alignment
procedure to obtain the optimal analog precoder and com-
biner. In the second training stage, we adapt the Low-Rank
(LR) channel estimation to hybrid systems, and we propose
two LRmethods, namely Joint-Space Low-Rank (JS-LR) and
Disjoint-Space Low-Rank (DS-LR), for deriving the hybrid
channel eigenmodes. Finally, in the last stage, i.e., commu-
nications phase, we derive the digital precoders/combiners
based on both the optimal analog precoder/combiner pair
from the first stage and the hybrid channel eigenmodes from
the second stage.

The proposed LR methods are analyzed numerically, but
realistically, considering a V2I/V2N urban scenario based
on OpenStreetMap for roads/buildings topology and SUMO
for the vehicular mobility. The channel is generated by
ray-tracing and the performances are compared in terms of
Spectral Efficiency (SE) and Mean Squared Error (MSE) on
channel estimation. The metrics on Full Digital (FD) system
are reported as benchmark, as well as the performance of
the Unconstrained Maximum Likelihood (U-ML). The two
proposed solutions, i.e., optimal (JS-LR) and sub-optimal
(DS-LR), are examined for both Fully Connected
(FC-HBF) and Sub-Connected (SC-HBF) architectures vary-
ing SNR, training vehicles’ number, RF chains configura-
tion, and channel configurations, i.e., multipath (S1) and
single-path (S2).

The achieved results proved the great advantage of our
solution. In particular, we observed that in the single-path
scenario (S2), both JS-LR and DS-LR solutions attain the
SE of the perfect CSI results. Moreover, the FC-HBF archi-
tecture exhibits similar performance to the benchmark (FD).
In the multipath scenario (S1), both solutions show better

performance compared to the U-ML estimator and attain the
perfect CSI for an SNR >−5 dB for FC-HBF and SNR
>10 dB for SC-HBF. In general, we can conclude that,
under the same conditions, the FC-HBF architectures perform
better than SC-HBF in terms of SE and present the same
MSE. However, the SC-HBF architectures are less sensi-
tive to positioning errors, which impacts on the size of the
multi-vehicular region used for training.

Another aspect of interest is that, as the number of RF
chains increases, the performance gap (LR-U-ML) of the
FC-HBF architectures increases, while for SC-HBF architec-
ture, we observe that pursuing a trade-off between digital and
analog resolution is detrimental, and it is more appropriate to
consider a systemwith high digital resolution (higher number
of RF chains), or high analog resolution (low number of RF
chains), with the former being preferable. Concerning the
comparison between JS-LR and DS-LR, we found that, under
the same conditions, the former shows a better SE and MSE.
Moreover, the SE gap is greater especially in the multipath
and/or low SNR scenario, and it reduces in the single-path
and/or high SNR scenario. Consequently, in these cases,
the DS-LR method is recommended as it is significantly less
complex, requiring less training vehicles for convergence to
the theoretical bound. In real cases, the presence of neigh-
bouring vehicles (even parked) is expected to make the esti-
mates to be time-varying, but nevertheless the BS can always
command the MSs to repeat some MV learning steps for
refinement of the position-based estimate. Beyond the appar-
ent algebraic complexity of the method, the implementation
complexity is comparable with other advanced methods but
the advantage is that learning stage remarkably reduces the
later analog beam-alignment signalling.
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