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ABSTRACT In this paper, an aperture expanding direction finding algorithm using L-shaped non-uniform
sparse array is proposed. Firstly, the virtual array is expanded by vectorizing, de-redundant and sorting of
received data covariance matrix. Secondly, the full rank matrix is got by smoothing the virtual array data,
and the signal subspace is obtained by matrix block processing. Finally, the elevation angle and azimuth
angle are acquired by using the rotation invariant relation. The algorithm does not need to decompose the
covariance matrix of the data, nor does it need to search the two-dimensional spectral peaks. It can greatly
reduce the computational complexity when there are many array elements and large number of snapshots.
The simulation results show that the sparse array arrangement can enlarge the array aperture, improve the
parameter resolution and the accuracy of DOA estimation, and verify the effectiveness of the proposed
algorithm.

INDEX TERMS Extended ESPRIT method, non-uniform array, direction finding, L-shaped array, sparse
array.

I. INTRODUCTION
In far-field cases, the array steering vector matrix of uni-
form linear array is Vandermondematrix, traditional direction
of arrival (DOA) estimation algorithms, such as ESPRIT
and forward-backward spatial smoothing algorithms, can be
realized in the uniform linear array. The received signal
of a line array is only a one-dimensional function of the
DOA, it is easy to realize parameter estimation without
dimension reduction, pairing, and other operations. There-
fore, the uniform linear array is widely used in signal loca-
tion algorithm. In order to improve the accuracy of angle
estimation, the traditional full array generally requires a
large number of sensor elements to expand the effective
aperture of the array, which requires a large number of
hardware devices such as sensors and samplers, resulting
in a significant increase in system operation and main-
tenance costs and operational complexity [1]–[3]. When
the array aperture is constant, the non-uniform array can
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effectively reduce the array element number and imple-
mentation costs, therefore, it is widely used. The coprime
array can enlarge the array aperture [4], [5]. In [4], a
two-dimensional direction-of-departure and DOA estimation
for bistatic multiple-input multiple-output radar was pro-
posed by introducing an improved higher order singular value
decomposition estimator and using a coprime electromag-
netic vector sensor, and a tensor-based subspace algorithm
is proposed. In 2010s a nested array structure was proposed
in [6]–[8]. In [9], a multi-level nested array was proposed
by extending the standard two-level nested array. In [10],
an extended two-level nested array was proposed, this type of
array structure expanded the array aperture and improved the
DOA estimation accuracy by vectorizing the received covari-
ance data of the array and using a virtual array instead of an
original array. However, the common defect is that, in this
method, each subarray is composed of a uniform linear sub-
array, which often leads to the problem that it is unable to find
a reasonable location for the subarray element installation in
the actual engineering installation process when the airborne
radar or physical space is limited. For this reason, in [11],
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a kind of array with the same performance as the nested array
was designed, with a more flexible array arrangement.

When the signal propagates in three-dimensional space,
the linear array has obvious defects regarding the signal
source location. As shown in Figure 1, the signal is inci-
dent along any direction of the cone with an angle of θ
from the x-axis. The received data of the linear array is
exactly the same, and the linear array cannot distinguish
the true signal direction. Therefore, when the linear array
is used to locate the signal source, the incident direction
is limited in the xoz plane, and the application range of
the linear array is severely limited [12]. A two-dimensional
array can distinguish the direction of the signal from three-
dimensional space. Two-dimensional DOA estimation based
on the two-dimensional array has been able to obtain more
target position information (elevation and azimuth) than
one-dimensional DOA estimation, so it has attracted people’s
attention. The uniform L-shaped array is often used as the
receiving array in the traditional two-dimensional DOA esti-
mation methods. With the development of science and tech-
nology, higher and higher requirements are put forward for
the accuracy of parameter estimation. The traditional method
no longer meets the requirements of the accuracy and reso-
lution of parameter estimation. In recent years, non-uniform
sparse L-shaped array emerges and develops rapidly.

FIGURE 1. Schematic diagram of the signal incident to the linear array.

Two-dimensional super-resolution methods, such as the
multiple signal classification (MUSIC) [13], [14], estimation
of signal parameters via rotational invariance techniques
(ESPRIT) [15], [16], and the two-dimensional Root-
MUSIC [17] and its derivative algorithm [18], [19] are
used. When the two-dimensional MUSIC algorithm is used
to search the two-dimensional spectrum, a high storage
space and fast computer processing are required, so it is
not conducive to engineering implementation. Although the
two-dimensional ESPRIT algorithm does not need to search
the spectrum, it needs to solve the covariance matrix (CM)
of the received data and carry out the eigenvalue decompo-
sition (EVD). Therefore, in the case of having many array
elements and a large number of snapshots, the amount of
calculation from the ESPRIT algorithm to solve the CM and
EVD operations will increase significantly. In recent years,
new two-dimensional DOA estimation methods based on the
L-shaped array have been proposed [20]–[31], such as the
joint singular value decomposition (JSVD) algorithm [20],
the cross correlation matrix ESPRIT (CCM-ESPRIT)

algorithm [21], the joint angle estimation algorithm for
finding the root of polynomials [22], and the improved
PM algorithm for two-dimensional L-shaped arrays [23].
In [24], an algorithm that uses two parallel nested arrays
was proposed. A method that can effectively estimate the
coherent signal received by the coprime array is proposed
in [25], which uses the Toeplitz matrix and the nuclear
norm minimization problem to analyze the coherent sig-
nal. In reference to the DOA estimation problem of a
two-dimensional coprime planar array, Lu proposed a mesh-
less sparse reconstruction algorithm using decoupled atomic
norm minimization theory, which reduces the complexity
of the algorithm [26]. In [27], a fast-convergent trilinear
decomposition method is applied to the two-dimensional
DOA estimation of multiple signals of a generalized coprime
planar array composed of two rectangular uniform pla-
nar sub-arrays, which has good estimation performance.
However, the two-dimensional Root-MUSIC algorithm, the
joint angle estimation algorithm for finding the root of
polynomials, and the CCM-ESPRIT algorithm require the
eigen-decomposition of the covariance matrix. Moreover,
the CCM-ESPRIT algorithm still has the problem of pairing
failure when the signal-to-noise ratio (SNR) is low. The JSVD
algorithm not only needs the SVD but also uses spectrum
search to solve the azimuth, which has high complexity.

Compared with the uniform array, the non-uniform array
such as nested array and coprime array enlarges the array
aperture and improves the array freedom. However, the sub-
array of nested array and coprime array is uniform array,
which affects the flexibility of array layout. For aircraft and
other special platform with limited array layout, it is of
great significance to study a more flexible non-uniform array.
For this reason, this paper expands the non-uniform linear
array [11] into a two-dimensional non-uniform L-shaped
array, and changes the one-dimensional DOA estimation into
a joint estimation of the spatial azimuth and elevation, which
makes up for the lack of spatial azimuth information in
the linear array DOA estimation and is more similar to the
practical engineering application. In this paper, the defini-
tions of the azimuth and elevation are different from those
presented in the literature [20]–[22], the angle parameters
of the x-axis and z-axis are decoupled, and there is no
error accumulation in the parameter estimation of the two
directions. Hence, the array manifold matrix of the x-axis
subarray changes from the traditional cosine relationship of
the azimuth and elevation to that of the azimuth only. The
array manifold matrix of the z-axis subarray is only related to
the elevation. The two-dimensional parameter estimation of
the x-axis subarray is herein changed into one-dimensional
parameter estimation, which realizes the parameter dimen-
sionality reduction and lays the foundation for the improve-
ment of the subsequent estimation accuracy and calculation
amount. In order to avoid the high computational complexity
caused by eigen-decomposition and spectrum search, a new
two-dimensional DOA estimation algorithm is proposed,
which constructs an auxiliary operator to obtain the signal
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subspace and obtains the elevation and azimuth through the
improved ESPRIT-based algorithm. The simulation results
show that this method has higher spatial resolution and
parameter estimation accuracy than the existing method.

II. NON-UNIFORM L-SHAPED ARRAY STRUCTURE
The nested array can obtain the maximum degree of freedom
(DOF), that is, the maximum number of virtual elements [6].
According to the maximum number of virtual elements,
the position coefficients of the first and last elements of
the non-uniform array are determined, and the residual ele-
ment position coefficients of the non-uniform array are also
calculated. The non-uniform array is constructed based on
the position coefficient of the array element. For convenience
of description, the x-axis and z-axis subarrays are two-level
nested arrays with an even number of array elements, that is,
the number of array elements N and M are even. The case
where N andM are odd numbers can be obtained by analogy.
Next, we take the x-axis subarray as an example to illustrate
the specific steps:

(1) The position coefficients n1 = 0 and nN = Ñ of a
non-uniform array are determined based on the maximum
DOF DF of the nested array, where Ñ = (DF − 1)/2 and
DF = 2N2(N1+1)−1. N1 and N2 are the number of subarray
elements in the nested arrays and N1 + N2 = N . Where
D = d × [n1, . . . , nn, . . . , nN ] is the array element position
of the nonuniform array, the interval of elements d is half-
wavelength spacing, nn denotes the position coefficient of the
n-th elements of the nonuniform array, n = 1, 2, . . . ,N , n1
and nN represent the position coefficient of the first and N-th
elements of the nonuniform array.

(2) Randomly select N − 2 different natural num-
bers arranged in ascending order to form an array
[n2, . . . , nn, . . . , nN−1], construct the element position � =
[ξ1, . . . , ξn, . . . , ξN ] = [0, n2, . . . , nn, . . . , nN−1, Ñ ]λ/2 of
the non-uniform array, where λ is the incident signal wave-
length, the elements of ñ = [n2, . . . , nn, . . . , nN−1] are the
random increasing natural integers, and the value range of ñ
is ñ ∈ [1, Ñ− 1].

(3) Construct the matrix P̄ of N × N , i. e.,

P̄ = [(�− ξ1h)T, (�− ξ2h)T, . . . , (�− ξNh)T] (1)

where h is the all 1 matrix of 1 × N, (·)T represents the
transpose operation.

As shown by equation (1), P̄ is an anti-symmetric
matrix. If P̄ is complete, the array [n2, . . . , nn, . . . , nN−1]
in step (2) is the actual position coefficient of non-uniform
array elements, so rename it [ñ2, . . . , ñn, . . . , ñN−1], and the
non-uniform array position is �̃ = [ξ̃1, ξ̃2, . . . , ξ̃n, . . . , ξ̃N ],
i. e., �̃ = [0, ñ2, . . . , ñn, . . . , ñN−1, Ñ ]λ/2.
(4) If the matrix P̄ obtained in step (3) is not complete,

go back to step (2) and carry out iterations until the iteration
stop condition that P̄ is complete is met. Then, the iteration is
exited.

The derivation process of the above method is detailed
in [11]. According to the obtained array element position,

the L-shaped array is arranged in the positive direction in the
x-axis and z-axis.

III. SIGNAL MODEL
According to the method presented in Section II, the ele-
ment position �̃ is obtained. The array is arranged along the
x-axis and z-axis according to the element position �̃.
The two subarrays have N andM elements, respectively. The
‘‘0’’ element at the origin is shared by the two subarrays as
the reference element. We suppose K uncorrelated far-field
narrow-band signals are incident on the proposed L-shaped
array shown in Figure 2.

FIGURE 2. Non-uniform L-shaped array structure (M = N = 6).

Let xn(t) and zm(t) be the signals received by the
n-th element of the x-axis and the m-th element of the
z-axis, respectively. Then, the received data vector of
the x-axis and z-axis arrays at time t are represented
as z(t) = [z1(t), . . . , zm(t), . . . , zM (t)]T and x(t) =

[x1(t), . . . , xn(t), . . . , xN (t)]T, where t = {1, 2, . . . ,L},L
represents the number of snapshots. Suppose sk (t) is the sig-
nal of the k-th target source, the signals of theK target sources
are represented as s(t) = [s1(t), . . . , sk (t), . . . , sK (t)]T

A. DEFINITION OF THE TRADITIONAL SIGNAL DOA
The traditional definition of the signal DOA is shown in
Figure 3. θk ∈ [0, π] indicates the signal’s elevation mea-
sured from the vertical z-axis, and φ̃k ∈ [−π, π] denotes
the azimuth measured from the positive x-axis. The array
manifold of the x-axis array can be expressed as ax(θk ,

φ̃k ) = [1, e−j
2π
λ
d2sinθkcosφ̃k , . . . , e−j

2π
λ
dnsinθkcosφ̃k , . . . ,

e−j
2π
λ
dN sinθkcosφ̃k ]T, n = 2, . . . ,N , where dn denotes the

position coordinates of the n-th array element on the x-axis, λ
indicates the incident signal wavelength, and (·)T represents
the transpose operation. From the expression of the array
manifold, it can be seen that the elevation θk and azimuth φ̃k
are coupled. This brings many problems for the subsequent
parameter estimation, for example, the MUSIC peak search
is a two-dimensional search, and the ESPRIT algorithm has
error accumulation. In [20]–[22], the traditional definition of
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FIGURE 3. Definition of the traditional signal DOA.

the DOA is adopted. From the simulation results in SectionVI
of this paper, it can be seen that the accuracy of the azimuth
estimation is poor due to the accumulation of errors.

B. THE PROPOSED DOA DEFINITION
The definition of the signal DOA in this paper is shown
in Figure 2. The elevation θk ∈ [0, π] is the angle between
the k-th incident signal and the positive z-axis, which is the
same as the traditional definition. The azimuth φk ∈ [0, π] is
the angle between the k-th incident signal and the positive
x-axis, which is different from the traditional definition.
βk is the angle between the k-th incident signal and the
positive y-axis. Because cos2 θk + cos2 φk + cos2 βk = 1,
(θk , φk ) can also uniquely determine the direction of the
k-th signal, there is a certain transformation relationship
for cosφk = sinθkcosφ̃k between the traditional defini-
tion and the proposed definition. In this way, the angle
parameters of the x-axis and z-axis are decoupled, and there
is no error accumulation in the parameter estimation of
the two directions. The array mani-folds can be expressed
as A(φ) = [a(φ1), . . . , a(φk ), . . . , a(φK )] and G(θ ) =
[g(θ1), . . . , g(θk ), . . . , g(θK )], where k = 1, 2, . . . ,K , K
represents the total number of incident targets, a(φk ) =
[1, e−j2πd2 cosφk/λ, . . . , e−j2πdn cosφk/λ, . . . , e−j2πdN cosφk/λ]T

and g(θk ) = [1, . . . , e−j2πdm cos θk/λ, . . . , e−j2πdMcos θk/λ]T

represent the steering vector of the k-th incident target, (·)T

represents the transpose operation, λ is the incident signal
wavelength, and dn and dm represent the n-th and m-th
element positions of the two subarrays. In summary, the
received signal model is expressed as follows:

x(t) = A(φ)s(t)+ nx(t) (2)

z(t) = G(θ )s(t)+ nz(t) (3)

where nx(t) and nz(t) represent the complex Gaussian white
noise with a mean of 0 and a variance of δ2n , in addition, nx(t),
nz(t) and incident signal are independent of each other.

From the above definition, the received data covariance
matrix of the x-axis sub-array can be obtained as

Rx = E[x(t)xH(t)] ∈ CN×N (4)

where E[·] means to solve mathematical expectations, (·)H

denotes the conjugate transpose operation, and the above
formula can be simplified as follows:

Rx = ARssAH
+ RN (5)

where Rss and RN are the covariance matrix of the signal and
noise, respectively, with

Rss = diag(σ 2
1 , . . . , σ

2
k , . . . , σ

2
K ) (6)

RN = δ
2
n6N (7)

where diag(·) represents the transformation of a vector matrix
into a diagonal matrix, σ 2

k is the power of the k-th incident
signal, δ2n is the power of the noise, and 6N is the unit matrix
of N× N.
By vectorizing the covariance matrix of the received data

of the x-axis sub array, the received data matrix of the vir-
tual differential synthetic array (including the repeated array
elements) is obtained:

rx = vec(Rx) = (A∗(φ)� A(φ))rp + δ2nIn. (8)

Similar to the process of getting the receiving data
matrix of the virtual differential synthetic array from
the x-axis, the z-axis data matrix can be obtained
quickly:

rz = vec(Rz) = (G∗(θ )�G(θ ))rp + δ2nIm (9)

where vec(•) represents the vectorization operation on the
matrix, (·)∗ is the conjugate operation, � denotes the
Khatri–Rao product operation [24], rp = [σ 2

1 , . . . , σ
2
k , . . . ,

σ 2
K ]

T, In = [eT1 , e
T
2 , . . . , e

T
N ]

T, Im = [eT1 , e
T
2 , . . . , e

T
M ]T,

rx ∈ CN 2
×1, rz ∈ CM2

×1, and ei = [0, . . . , 1, 0, . . . , 0]T

is a column vector, which is 1 only in the i-th position and
0 in the rest position, i = 1, 2, . . . ,max(N ,M ).

IV. DATA PROCESSING RECEIVED BY EACH SUBARRAY
The data output from the x-axis subarray is vectorized
to obtain the virtual differential synthesis array receiving
data rx . Because rx contains repeated virtual array element
data, rx cannot be directly used as input data for the DOA
estimation algorithm, and data processing (de-redundancy,
sorting) operations are first needed to get the x-axis virtual
array receiving data r̂x . According to equation (8), it can
be known that the received data rx contains noise, and it is
impossible to directly perform de-redundancy and sort oper-
ations on rx . However, the positions of the array element of
the received data matrix rx correspond to the positions of the
differential array elements generated by the x-axis subarray.
The index set is obtained by processing the positions of the
differential array elements. The inner elements of rx can
be selected by the index set to sort and make de-redundant
rx , and r̂x is herein obtained. The specific steps are as
follows:

(1) According to the non-uniform array obtained in this
paper, the column vector P̃ can be constructed. It can be
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expressed as the following formula (10):

p̃ = [p̃1, . . . , p̃i, . . . , p̃N 2 ]T

= [(�̃− ξ̃1h), (�̃− ξ̃2h), . . . , (�̃− ξ̃Nh)]T (10)

The position matrix of the uniform array composed of
2Ñ+1 elements with a half wavelength interval is the same as
the virtual array element position matrix, which is expressed
by vector u. The expression of u can be expressed as follows:

u = [u1, u2, . . . , uj, . . . , u2Ñ+1]
T

= [−λÑ/2, . . . , 0, . . . , λÑ/2]T (11)

The 2Ñ + 1 elements of column vector p̃ satisfying p̃i = uj
are selected to form a new vector p̂, and the position index set
0 of these 2Ñ +1 elements in p̃ is recorded. According to the
one-to-one correspondence between the element position of
the received data rx and the element position of the column
vector p̃, the index set 0 is used to select the useful data r̄x =
rx(0) from the received data rx , so as to remove the redundant
data, where i = 1, 2, . . . ,N 2, j = 1, 2, . . . , 2Ñ + 1, p̃ ∈
CN 2

×1, u ∈ C(2Ñ+1)×1, and p̂ ∈ C(2Ñ+1)×1.
(2) The new index set 0̄ is obtained by sorting p̂, and

the virtual array received data r̂x is obtained by sorting r̄x
according to 0̄.

The elements in p̂ are arranged in order from small to large,
i.e., [F, 0̄] = sort(p̂), and the sorted index set 0̄ is obtained.
The useful received data r̄x is sorted according to the index
set 0̄, and finally, the received data r̂x of the virtual array are
obtained.

After the above de-redundancy and sorting, the received
data of the virtual array are as follows:

r̂x = Ā(φ)rp + δ2nI0n
= [ā(φ1), . . . , ā(φk ), . . . , ā(φK )]

×[ σ 2
1 , . . . , σ

2
k , . . . , σ

2
K ]

T
+ δ2nI0n (12)

where ā(φk ) = [e−j
2πd
λ

cosφk (−Ñ ), . . . , e−j
2πd
λ

cosφk (Ñ−n),

. . . , e−j
2πd
λ

cosφk (Ñ )]T, n = 1, 2, . . . , Ñ , I0n is a column vector
whose (Ñ + 1)th element is 1, and other elements are 0,
k = 1, 2, . . . ,K .

It can be seen from equation (8) that after the Khatri–Rao
product x-axis subarray, elements will be changed from N
elements to 2Ñ + 1 elements, i.e., (N 2

− 2)/2+N elements.
Similar to the x-axis subarray data processing process, the

z-axis subarray virtual array receiving data are obtained as
follows:

r̂z = Ḡ(θ )rp + δ2nI0m
= [ḡ(θ1), . . . , ḡ(θk ), . . . , ḡ(θK )]

× [σ 2
1 , . . . , σ

2
k , . . . , σ

2
K ]

T
+ δ2nI0m (13)

where ḡ(θk ) = [e
−j 2πd

λ
cos θk

(
−M̃

)
, . . . ,

e
−j 2πd

λ
cos θk

(
M̃−m

)
, . . . , e

−j 2πd
λ

cos θk
(
M̃
)
]T, m = 1, 2, . . . , M̃ .

I0m is a column vector whose
(
M̃ + 1

)
th element is 1 and

other elements are 0, with M̃ = (Dz− 1)/2. Dz = 2M2(M1+

1) − 1 is the number of virtual elements in the z-axis, and
M1 and M2 are the numbers of z-axis subarray elements,
respectively, which satisfyM1 +M2 = M.

V. TWO-DIMENSIONAL DOA ESTIMATION ALGORITHM
In the case of a large number of antennas or sampling points,
the calculation cost of the algorithms (such as ESPRIT,
SVD, etc.) that need the eigen-decomposition operation will
increase significantly, further increasing the actual applica-
tion cost. To avoid this situation, an auxiliary operator is
constructed for obtaining the signal subspace of each sub-
array, and selection matrices are defined in this section to
get the target source elevation and azimuth, but the angle
obtained at this time is disordered. Finally, the one-to-one
corresponding elevation and azimuth angles are obtained by
pairing algorithm.

A. ESTIMATION OF THE AZIMUTH AND ELEVATION
1) ESTIMATION OF THE AZIMUTH
According to the x-axis subarray virtual array received data
r̂x described in the previous section, the array steering vec-
tor matrix Ā(φ) of r̂x is divided into N̄ sub-matrixes. Each
sub-matrix is represented by Āi(φ), and each Āi(φ) consists
of rows i to (N̄ + i − 1) of matrix Ā(φ). For convenience of
description, the noise term is temporarily removed from the
formula expression. Then, it has the following expression:

r̂i = Jir̂x = Āi(φ)rp (14)

where Ji = [0N̄ ,(i−1),6N̄ , 0N̄ ,(N̄−i)] is the selection matrix,
i = 1, . . . , N̄ , N̄ = (DF + 1)/2.

The full rank matrix W can be expressed as W =

[r̂1, r̂2, . . . , r̂N̄ ]. In order to calculate the auxiliary operator
Q ∈ CK×(N̄−K ), the full rank matrix W is divided into
W = [WT

1 ,W
T
2 ], where W1 ∈ CK×N̄ is composed of the

first K rows of W, and W2 ∈ C(N̄−K )×N̄ is composed of the
(N̄ − K ) rows ofW.

The auxiliary operator can be calculated by the following
formula.

Q = (W1WH
1 )
−1W1WH

2 . (15)

According to the propagator method, the signal subspace
ES can be obtained as follows:

ES =

[
6K

QH

]
(16)

where 6K is the identity matrix of K × K , and (·)H denotes
the conjugate transpose operation.

Define two selection matrices Jg1 and Jg2, i.e.,

Jg1 = [6N̄−1, 0N̄−1,1] (17)

Jg2 = [0N̄−1,1,6N̄−1] (18)

where Jg1 ∈ C(N̄−1)×N̄ , Jg2 ∈ C(N̄−1)×N̄ , 6N̄−1 represents
the identity matrix of (N̄ − 1)× (N̄ − 1), 0N̄−1,1 denotes the
all-zero column vector of length N̄ − 1.
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According to the selection matrices Jg1 and Jg2, the signal
subspaces ES1 and ES2 are obtained, that is, ES1 = Jg1ES
and ES2 = Jg2ES . Based on the improved ESPRIT-based
method, the expression of 9 = E†

S1ES2 is obtained by using
the relationship between the signal subspaces ES1 and ES2,
where (•)† represents the pseudo-inverse of the matrix. The
eigen-decomposition of the matrix 9 ∈ CK×K is performed,
that is, [V,Uq] = eig(9), where V and Uq represent the
eigen-vectors and eigenvalues of matrix9 respectively, eig(·)
represents the eigen- decomposition.

The estimated value of azimuth is as follows:

φ̂k = cos−1
[
arg(vkk )
2πd/λ

]
(19)

where arg(·) denotes the operation of returning the phase
angles. vkk is the element of the diagonal matrix V at row
k and column k . If we let φ̂k = φ̂ak , the azimuth estimated
values of K signals are 8̂ = [φ̂a1, . . . , φ̂ak , . . . , φ̂aK ].

2) ESTIMATION OF THE ELEVATION
The z-axis subarray and x-axis subarray have the same struc-
ture. According to formulas (12) and (13), it can be seen
that the data structures of r̂x and r̂z are the same, and the
function expressions of array manifolds a(φk ) and g(θk )
are similar with respect to φk and θk . Thus, similar to the
azimuth estimation process, the elevation can be quickly
estimated. The elevation estimated values of K signals are
θ̂ = [θ̂e1, . . . , θ̂ek , . . . , θ̂eK ].
However, the estimation of elevation θ̂ and estimation of

azimuth φ̂ are out of order at this time. Through the pairing
algorithm of the cross covariance matrix, the corresponding
elevation and azimuth are obtained. The pairing process is as
follows:

1) The estimates of DOA θ̂ = [θ̂e1, . . . , θ̂ek , . . . , θ̂eK ]
and 8̂ = [φ̂a1, . . . , φ̂ak , . . . , φ̂aK ] do not corre-
spond, the corresponding array manifold are Ĝ =

[g(θ̂a1), . . . , g(θ̂ak ), . . . , g(θ̂aK )] and Â = [a(φ̂e1), . . . ,
a(φ̂ek ), . . . , a(φ̂eK )], where k = 1, 2, . . . ,K .
2) Calculate matrix ψ = [(Â)+]k,:Rxz(ĜH)+, find the

position n of the largest element inψ , and then θ̂ek and φ̂an are
matched. Let θ̂ek = θ̄k and φ̂an = φ̄k , that is, θ̄k and φ̄k corre-
spond to the elevation and azimuth of the same signal, where
[(Â)+] = ((Â)H(Â))−1(Â)H, [(Â)+]k,: is row k of [(Â)+],
[(ĜH)+] = ((Ĝ)(ĜH))−1(Ĝ), and Rxz = E[x (t) zH (t)] is the
cross covariance matrix of the received data of the sub-arrays
of the proposed algorithm.

B. ALGORITHM COMPLEXITY ANALYSIS
The computational complexity of the proposed algorithm is
compared with that of the other four algorithms to verify the
effectiveness of the algorithm. The computational complexity
is divided into the main computational overhead and the
main time complexity, where M and N are the numbers of
subarray elements, L is the number of snapshots, N̄ is the rank
of the full-rank matrix W, and s represents the search steps

of the spectral peak search algorithm. In general, s � M ,
s� N , and s > L.
From Table 1, we can see that joint SVD has higher

computational complexity than other algorithms because it
includes the spectral peak search. CMM-ESPRIT does not
have high computational complexity caused by peak search-
ing or iterations, however, like the Root-MUSIC and Li algo-
rithms, its covariance matrix needs to be eigen-decomposed
or singular value decomposed to get signal subspace or noise
subspace, which will lead to a rapid increase in the compu-
tational complexity of the algorithm in cases where there are
many antennas or sampling points. Compared with the Root-
MUSIC algorithm, the Li algorithm has a lower computa-
tional complexity than the Root-MUSIC algorithm because
it does not require pairing. The proposed method does not
need eigen-decomposition to get the signal subspace and does
not need peak search to estimate angles. In the case of small
antenna numbers or sampling points, the proposed algorithm
has no obvious advantage over other algorithms. However,
when the number of antennas increases significantly, the
proposed algorithm can greatly reduce the computational
complexity and hardware cost.

TABLE 1. Comparison of computational cost and complexity.

VI. SIMULATION RESULTS AND ANALYSIS
Simulation experiments are used to verify the feasibility of
the algorithm. The input signals are assumed to be far-field
narrow-band signals. For simplicity, the incident signals are
given according to the traditional definition.

The array simulation conditions are as follows: the
x-axis and z-axis sub-array position vectors of the pro-
posed non-uniform L-shaped array are both D = d ×
[0, 1, 2, 5, 9, 11], d = λ/2, the number of each sub-array
elements is N = 6. In other words, the position coor-
dinates of the proposed non-uniform L-shaped array with
eleven elements is (0,0,0), (d,0,0), (2d,0,0), (5d,0,0), (9d,0,0),
(11d,0,0), (0,0,d), (0,0,2d), (0,0,5d), (0,0,9d) and (0,0,11d).
As a comparison, the position coordinates of the uniform
L-shaped array with eleven elements is (0,0,0), (d,0,0),
(2d,0,0), (3d,0,0), (4d,0,0), (5d,0,0), (0,0,d), (0,0,2d),
(0,0,3d), (0,0,4d) and (0,0,5d).
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Simulation 1: For the proposed non-uniform L-shaped
array and uniform L-shaped array with eleven elements, two
kinds of array power patterns are given. When the elevation
and azimuth of the beam incidence are (θ0, φ0) = (0, 0),
the array pattern is as shown in Figure 4.

FIGURE 4. Power pattern of the proposed and uniform L-shaped array.

FromFigure 4, it can be seen that themain lobe beamwidth
of the proposed eleven-element array is narrower than that of
the eleven-element uniform L-shaped array. The non-uniform
L-shaped array adopted in this paper not only has the esti-
mation performance of the nested array, but it also does not
need to be composed of two or more uniform linear sub-
arrays. The proposed non-uniform L-shaped array is more
flexible in terms of the array arrangement compared with the
nested array, and it has a stronger DOA estimation capability
compared with the uniform L-shaped array because of its
narrower beam width and better array pointing ability.

The angle resolution of the array is an important index to
estimate the DOA. The smaller the angle difference that the
array can resolve is, the higher the resolution of the array
is. Therefore, when the SNR is set to 10 dB, the number of
snapshots is 2000, the incident angle is (θ1, φ1) = (20◦, 30◦),
the difference between the other incident angle and the first
incident angle changes from 1◦ to 20◦, the minimum angle
difference that can be resolved by the proposed non-uniform
L-shaped array and the uniform L-shaped array is as shown
in Figure 5.

Figure 5 plots the variation curve of root-mean-square
error (RMSE) of two-dimensional DOA estimation versus the
angle difference. It can also be seen from Figure 5 that the
angular resolution of the proposed six-element array is better
than that of the six-element uniform L-shaped array, because
the angular resolution of the array is directly related to the
array aperture, while the array aperture is related to the num-
ber of array elements and the spacing of the array elements.
When the number of array elements is the same, the proposed
non-uniform L-shaped array enlarges the spacing of array
elements and expands the array aperture, so the resolution of
the proposed non-uniform L-shaped array is superior to that
of the uniform L-shaped array.

FIGURE 5. The variation curve of RMSE of two-dimensional DOA
estimation versus the angle difference.

Simulation 2: There are K = 10 far-field narrow-band
signals incident on the proposed non-uniform L-shaped
array and uniform L-shaped array, the incident angles are
(θ1, φ1) = (20◦, 20◦), (θ2, φ2) = (30◦, 30◦), (θ3, φ3) =
(50◦, 50◦), (θ4, φ4) = (60◦, 60◦), (θ5, φ5) = (80◦, 80◦),
(θ6, φ6) = (90◦, 90◦), (θ7, φ7) = (100◦, 100◦), (θ8, φ8) =
(120◦, 120◦), (θ9, φ9) = (130◦, 130◦), (θ10, φ10) =

(150◦, 150◦) respectively. The simulation result when the
signal-to-noise ratio (SNR) is 10 dB and the number of
snapshots is L = 2000 is shown in Figure 6.

FIGURE 6. Two-dimensional DOA estimation of spatial objects.

From Figure 6, it can be seen that the proposed algorithm
in this paper can correctly identify 10 spatial targets under
a low SNR with a small angle deviation. When the number
of signal sources is more than the number of elements, this
algorithm has high estimation accuracy.

In order to further reflect that the method proposed in this
paper can estimate short-range spatial targets, the direction
finding of K = 2 far-field narrow-band targets is carried
out, and the incident angles are (θ1, φ1) = (61◦, 81◦) and
(θ2, φ2) = (62◦, 82◦) respectively. The simulation result
when the signal-to-noise ratio is 20 dB and the number of
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FIGURE 7. The two-dimensional DOA estimation of a nearby target.

snapshots is L = 2000 is shown in Figure 7. The proposed
algorithm and other algorithms all adopt the non-uniform
L-shaped array.

Figure 7 shows a comparison of the performance of the
proposed algorithm versus other algorithms such as the

Root-MUSIC algorithm [17], CMM-ESPRIT algorithm [21],
and improved PM algorithm [23]. From Figure 7, it can
be seen that the proposed algorithm can identify spatial
short-range targets, and other algorithms have large estima-
tion errors. Under the same non-uniform L-shaped array,
the estimated value of this algorithm is closer to the true value.

Simulation 3: The proposed algorithm was compared with
the Root-MUSIC algorithm in [17], the joint SVD algo-
rithm in [20], the CMM-ESPRIT algorithm in [21], and the
Li algorithm in [22] under different SNRs. The proposed
algorithm adopts the non-uniform L-shaped array and other
algorithms adopt the uniform L-shaped array. At the same
time, the Cramer-Rao Bound (CRB) in [32] of the two arrays
are given. Two narrow-band far-field targets are identified in
space, the incident angles of two target sources are (θ1, φ1) =
(130

◦

, 80
◦

) and (θ2, φ2) = (70
◦

, 40
◦

), and the number of
snapshots is L = 2000. The statistical success probability and
estimated root-mean-square error of 200 experiments were
conducted from 0 to 20 dB, and the results are shown in
Figure 8.

In order to better understand the impact of the number
of snapshots on the performance of five algorithms, other
conditions remain unchanged. The simulation result when the

FIGURE 8. The variation curve of RMSE of two-dimensional DOA estimation versus SNR.
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TABLE 2. Specific RMSE values of each algorithm under two SNR.

FIGURE 9. The variation curve of RMSE of two-dimensional DOA
estimation versus the number of snapshots.

signal-to-noise ratio is 10 dB and the number of snapshots
varies from 1 to 500 is shown in Figure 9.

Figure 8 and Figure 9 compare the performance of DOA
estimation by the proposed algorithm and other algorithms.
In Figure 8, (a) and (b) show the variation curves of
the estimation performance of the elevation and azimuth
with the SNR, respectively, and (c) shows the variation
curves of the total estimation error with the SNR. It can
be seen that the proposed algorithm has the highest accu-
racy and the smallest error, followed by the Li algorithm
and CMM-ESPRIT algorithm, while the joint SVD and
Root-MUSIC algorithm perform poorly. With an increase
in the SNR, the estimation performance of the algorithms
increases obviously. When the SNR is close to 20 dB, several
algorithms can achieve a rather high DOA estimation accu-
racy. In order to further clarify the accuracy of the proposed
algorithm, RMSE values of elevation and azimuth are shown
in table 2 when SNR = 5dB and SNR = 15dB. It can be
clearly seen from table 2 that the proposed algorithm is better
than other algorithms. Figure 9 shows the variation curve of
the RMSE of two-dimensional DOA estimation versus the
number of snapshots. It can be seen that when the number of
snapshots is small, the root mean square error of the algorithm
in this paper is the smallest and the performance is the best,
followed by the joint SVD algorithm and CMM-ESPRIT
algorithm, while Li algorithm and Root-MUSIC algorithm

FIGURE 10. RMSE of four algorithms versus SNR under the same
non-uniform L-shaped array.

perform poorly. When the number of snapshots is more
than 50, the algorithm performance tends to be stable.

Simulation 4: In order to verify the effectiveness of
the proposed algorithm in the same array, the proposed
algorithm was compared with the Root-MUSIC algorithm,
the improved PM algorithm, and the CMM-ESPRIT algo-
rithm under different SNRs. The receiving arrays of all four
algorithms are all configured as the proposed non-uniform

VOLUME 9, 2021 95343



G. Wang et al.: Two-Dimensional Direction Finding Method Based on Non-Uniform Array

L-shaped array, in other words, the array element number,
array arrangement and array aperture are exactly the same.
It should be noted that Li algorithm [22] and joint SVD
algorithm [20] are not suitable for DOA estimation under
non-uniform array in the paper, so they do not participate
in the comparison. Ten uncorrelated equal-powered signals
with the following parameter values, (θ1, φ1) = (20◦, 20◦),
(θ2, φ2) = (30◦, 30◦), (θ3, φ3) = (50◦, 50◦), (θ4, φ4) =
(60◦, 60◦), (θ5, φ5) = (80◦, 80◦), (θ6, φ6) = (90◦, 90◦),
(θ7, φ7) = (100◦, 100◦), (θ8, φ8) = (120◦, 120◦), (θ9, φ9) =
(130◦, 130◦) and (θ10, φ10) = (150◦, 150◦), impinge upon
the receiving array, 2000 snapshots are used for 200 Monte
Carlo simulation experiments. SNR is set to range between
0 and 40 dB. The results are shown in Figure 10. In order to
better understand the impact of the number of snapshots on
the performance of four algorithms, other conditions remain
unchanged. The simulation result when the signal-to-noise
ratio is 10 dB and the number of snapshots varies from 1 to
500 is shown in Figure 11.

FIGURE 11. RMSE of four algorithms versus different snapshots under
the same non-uniform L-shaped array.

Figure 10 shows a comparison of RMSE of the pro-
posed algorithm versus other algorithms such as the
Root-MUSIC algorithm, joint improved PM algorithm and
CMM-ESPRIT algorithm. From Figure 10, it is clear that
the DOA estimation performance of the proposed algorithm
is better than that of other algorithms when the number of
signal sources is more than the number of elements. And
from the complexity analysis in the previous section, it can
be seen that the proposed algorithm has lower computational
complexity, so the practical application ability is stronger.
Figure 11 shows the comparison of the RMSE of the four
algorithms under the same array as the number of snapshots
increases. When the number of snapshots is less than 80,
the RMSE of the Root-MUSIC algorithm is the smallest,
followed by the algorithm in this paper, but when the number
of snapshots is greater than 80, the error of the algorithm in
this paper is the smallest and the change is gentle, while the
RMSE of Root-MUSIC algorithm changes too much. So the

simulation results of the four algorithms show that the algo-
rithm in this paper has the best simulation performance.

VII. CONCLUSION
In the case of airborne radar or limited physical space, a kind
of non-uniform array is proposed to solve the problem of the
existing nested array not being flexible. The array structure
does not need to be composed of two or more uniform linear
subarrays on the premise of maintaining the same degree
of freedom as the nested array. In order to reduce the com-
putational complexity, an auxiliary operator is constructed
to obtain the signal subspace under the condition of hav-
ing many array elements and a large number of snapshots.
Finally, the estimation value of the two-dimensional DOA
is obtained through ESPRIT-based algorithm. The proposed
method not only reduces the number of array elements and
improves the accuracy of DOA estimation, but it also has
lower computational complexity than the traditional method.
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