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ABSTRACT Electrocardiogram (ECG) has extremely discriminative characteristics in the biometric field
and has recently received significant interest as a promising biometric trait. However, ECG signals are
susceptible to several types of noises, such as baseline wander, powerline interference, and high/low-
frequency noises, making it challenging to realize biometric identification systems precisely and robustly.
Therefore, ECG signal denoising is a major preprocessing step and plays a crucial role in ECG-based
biometric human identification. ECG signal analysis for biometric recognition can combine several steps,
such as preprocessing, feature extraction, feature selection, feature transformation, and classification which
is a very challenging task.Moreover, the employed successmeasures and appropriate constitution of the ECG
signal database also play significant roles in biometric system analysis, considering that publicly available
databases are essential by the research community to evaluate the performance of their proposed algorithms.
In this survey, we review most of the techniques employed for the ECG as biometrics for human authentica-
tion. Firstly, we present an overview and discussion on ECG signal preprocessing, feature extraction, feature
selection, and feature transformation for ECG-based biometric systems. Secondly, we present a survey of
the available ECG databases to evaluate and compare the acquisition protocol, acquisition hardware, and
acquisition resolution (bits) for ECG-based biometric systems. Thirdly, we also present a survey on different
techniques, including deep learning methods: deep supervised learning, deep semi-supervised learning, and
deep unsupervised learning, for ECG signal classification. Lastly, we present the state-of-art approaches of
information fusion in multimodal biometric systems.

INDEX TERMS ECG biometrics, applications of biometric, biometric traits, feature extraction, feature
learning, classification, feature fusion, multimodal, authentication, machine learning.

NOMENCLATURE
ANN Artificial neural network
BPNN Backpropagation neural network
BN Bayes network
CBD Compact binary descriptor
CHD Coronary heart disease
CNNs Convolutional neural networks
CRF Conditional random field
CVANN Complex valued artificial neural networks
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DBNs Deep belief networks
DBMs Deep Boltzmann machines
DCT Discrete cosine transform
DNN deep neural network
DSL Deep Supervised Learning
DSSL Deep Semi-supervised Learning
DUL Deep Unsupervised Learning
ECG Electrocardiogram
EER Equal error rate
EMD Empirical mode decomposition
EEMD Ensemble Empirical mode decomposition
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EVDHM Eigenvalue decomposition on the Hankel
matrix

FIR Finite impulse response
GANs Generative adversarial networks
GRU Gated recurrent units
ICA Independent component analysis
IMFs Intrinsic mode functions
kNN k-nearest neighbors
LDs Linear discriminants
LDA Linear discriminant analysis
LMS Least mean square
LSTM Long-short term memory
LVQ Learning vector quantization
MLP Multilayer perceptron
NB Naive Bayes
NCN Normalize-convoluted normalize
NNAAF Neural network models with adaptive

activation function
PCs Principal components
PCA Principal component analysis
PINs Personal identification numbers
PNN Probabilistic neural network
RBFNN Radial basis function neural network
RBMs Restricted Boltzmann machines
RMSSDs Root mean square successive differences
RNNs Recurrent neural networks
RVANN Real-valued artificial neural network
SIANN Shift-invariant artificial neural network
SVD Singular value decomposition
SVM Support vector machine
UofTDB University of Toronto ECG database

I. INTRODUCTION
Nowadays, biometric recognition systems as a key form of
user authentication are used increasingly in different fields
and applications such as smartphones, banks, websites, and
airports, as a unique substitute to conventional authentica-
tion techniques (i.e., keys and personal identification num-
bers (PINs) [1]–[5], based on the required level of security.
Among the most generally employed biometric traits such
as fingerprints, palmprint, iris, voice, and face recognition,
requires the enrolment of these traits in a database for feature
recognition purposes, as shown in Fig 1. These different
biometric modalities1 have extensively been combined in
several devices and systems to produce a single multimodal
biometric system to improve recognition accuracy and deter
spoofing [6]–[8]. Researchers have already started to address
the problem of spoofing of the traditional biometric systems
in Electrocardiogram (ECG) biometrics.

Recently, the ECG has achieved a somewhat incredible
niche as a source of security and privacy in the form of a

1A biometric modality refers to a system built to identify a particular
biometric trait [3], [5]. Notably, a biometric modality combines a biometric
trait, sensor type, and algorithms for extracting and processing the digital
representations of the trait.

FIGURE 1. The process required in registering a biometric trait.

biometric; and researchers have begun investigating its use
as an emerging biometric modality to identify and authen-
ticate individuals [10]–[12]. Perhaps the key benefit of the
ECG-based biometric system is the inherent liveness detec-
tion that makes it different from traditional biometrics [10].
This characteristic property will be beneficial in the fusion of
ECG signals with other robust biometric modalities to pro-
vide a biometric system that is spoofing attack-resistant [13],
[14]. The work in [10] shows that the ECG biometrics can
achieve satisfactory identification and authentication accu-
racy for diverse applications, using only the QRS complex of
ECG signals. Biometric recognition relying on the ECG sig-
nal dates back to the pioneering work of [21], where 12 chan-
nels of ECG signal were employed. Research investigations
in [22]–[24] have shown that the ECG trace exhibits unique
or discriminatory patterns among individuals. ECG-based
biometric authentication systems can likewise be categorized
according to the classifier employed to perform the task of
recognition [5], such as k-nearest neighbor (kNN), linear
discriminant analysis (LDA), neural networks, generative
model, support vector machine (SVM), and match score
classifiers. Notably, all classifier-based recognition methods
rely on the so-called feature extraction method [1], [25],
[26], where they examine the raw ECG signal to extract
some significant features to be applied as input to the clas-
sifier. However, transforming the raw ECG signal into a
proper feature vector for classification has to be thoughtfully
performed and requires significant skillful experience [5].
Deep learning, a typical approach for representation learning,
subdue this challenge by performing feature extraction in
an automated way by adopting multiple layers to represent
the abstractions of the raw ECG signal [1], [15]–[20]. This
permits researchers to extract discriminative features of the
raw ECG signal without expert knowledge. The deep learning
algorithms contain a layered structure of data representation,
where the lower layers extract the low-level features, while
the upper layers extract the high-level features [19], [20].

After features extraction, the derived feature sets are poten-
tially deposited in the database or sent to the classifier for
recognition. Generally, the ECGbiometrics process combines
the following main components: signal preprocessing and
QRS detection, feature extraction, feature selection, feature
transformation, and classification [14], [27]. Several meth-
ods for ECG-based biometric system for human authentica-
tion have been introduced to capture valuable information
from the ECG signal [14], [25], [28]. For instance, fidu-
cial methods, non-fiducial methods, and partially fiducial
methods [23], [25], [29]–[33]. The fiducial-based technique
depends on accurate detection of the reference points local-
ization in each heartbeat trace like P wave, QRS complex,
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and T wave and employs interval, amplitude, angle, and area
of these points as the biometric features [23], [25], [29].
While several fiducial-based ECG biometrics recognition
methods are introduced to satisfy biometric identification
requirements criteria, accurate localization of fiducial points
remains a big challenge [25], [29], [30], [32]. Contrarily,
the non-fiducial-based ECG biometrics detection method
typically does not require to detect fiducial points [29].
Principal components (PCs) [22], [23], [34], autocorrelation
coefficients [14], [25], [28], and wavelet coefficients [35] are
some examples. Partially fiducial methods combine fiducial
and non-fiducial methods to locate only the R-peaks (in the
QRS complex), which are employed to segment the ECG
signal into single heartbeat waveforms [36] and then extract
the time domain or frequency domain information as the
features [37]–[40]. Since the R peaks are commonly known
to be the highest and sharpest peaks compared to other fidu-
cial points [38], [39]. For example, the work in [5] detects
the QRS-complex in ECG signals and generates each four
QRS complex to a QRS vector. In recent years, deep neural
networks (DNNs) are widely used for ECG signal classifi-
cation and feature extraction and achieve efficient results in
ECG-enabled biometric systems for human identification and
authentication [37], [40]. However, the biggest challenge in
these methods is that the generalization ability is limited,
particularly in the matching task [18], [19], [41]–[43]. That
is, these methods typically predict unconvinced results for
individuals who have not been initially authenticated.

A. BACKGROUND AND PRIOR WORK
The works of [2]–[5], [11], [15], [49], [50], on ECG bio-
metric focus on heartbeats classification in healthy and
non-healthy utilizing methods like CNNs, autoencoders,
or DBNs. The authors in [32] employed the autocorre-
lation features with a non-overlapping window to build
features, while the approach in [30] applied the autocorre-
lation/discrete cosine transform (DCT) feature of the ECG
signal without fiducial detection. It is worth noting that the
non-fiducial approach-based method does not require pre-
cise boundaries of the waveforms since it eliminates the
need for fiducial point localization [31], and it typically
employs statistical features, autocorrelation features [32],
or wavelet features [35]. Moreover, the ECG subspace-based
method also attracts much consideration [7], [28]. The basic
concept of sparse representation in ECG biometrics is to
approximate the original ECG signal employing only a few
columns of a dictionary. For instance, sparse representation
has realized a better performance in fields of signal process-
ing [51]–[53], computer vision, hybrid precoding [54]–[58],
face recognition [59]–[61], and pattern recognition [62]. For
standard discriminative sparse representation, the learning-
based approach (like K-SVD2 [63]) and the analytic approach

2K-SVD is a generalization of the k-means clustering algorithm and
singular value decomposition (SVD) for adapting dictionaries to realize
sparse signal representations [64].

(like wavelet [65]), are the two popularly utilized dictionary
construction approaches employed. There have been sev-
eral efforts to study diverse deep learning methodologies for
ECG biometrics [68], [69]. Such methods have shown much
better identification accuracy compared to the traditional
approaches [11], [70], [71].

Many existing survey papers that discussed diverse
aspects of ECG-based biometrics recognition have been
presented [12], [25], [72]–[78]. Since accurate ECG
classification is a challenging problem, the authors in [78]
presented a survey of preprocessing techniques, ECG
databases, feature extraction techniques, classifiers, and per-
formance measures were presented. However, topics regard-
ing feature selection, feature transformation for ECG-based
ECG classification problems are still missing. The authors
in [72] presented a survey on the evolution and current
challenges of the ECG-based biometrics systems, discussing
topics such as inter-subject and intra-subject variability,
acquisition, and ECG databases for biometric systems. How-
ever, topics regarding feature selection, feature transforma-
tion, classification of ECG-based biometric systems, were
not addressed. In [73], the authors presented a survey on
ECG analysis and discussed topics such as preprocessing,
feature extraction, feature selection, feature transformation,
classification, and ECG databases, application fields, and
success measures. However, topics concerning deep learning
techniques such as CNN,multilayer perceptron (MLP), DBN,
LSTM, Bidirectional Recurrent Neural Network (BRNN),
and GRU are still missing. The works in [74] presented a
thorough and systematic survey on ECG databases for bio-
metric systems, and topics such as ECG variability sources,
ECG databases, database categorization, acquisition hard-
ware, and acquisition protocols, were discussed. However,
topics regarding feature selection, feature transformation,
classification of ECG-based biometric systems, deep learn-
ing techniques, were not addressed. In [25], the authors
presented a review of ECG-based biometric systems and
discussed topics related to the fiducial and non-fiducial tech-
niques of feature extraction. However, topics regarding fea-
ture transformation, classification of ECG-based biometric
systems, databases, and deep learning techniques were not
addressed. Based on physiological and behavioral modalities,
the authors in [75] presented a comprehensive survey on the
biometric recognition systems, and only discussed some of
the major findings and results of the ECG-based biometric
system. While the survey in [12] majorly focuses on ECG
variability sources and ECG databases for biometric systems,
topics regarding feature selection, feature transformation,
classification of ECG-based biometric systems, and deep
learning techniques are still missing. The authors in [76]
presented a review on the techniques of ECG processing from
a pattern recognition viewpoint and discussed topics such as
ECG Variability, feature extraction/selection/transformation,
ECG preprocessing, and feature detection. However, top-
ics regarding classifiers and deep learning techniques
are still missing. In [77], a review of ECG-based
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authentication systems is presented and topics discussed
include the existing ECG benchmarks, fiducial and
non-fiducial features authentication and methods, and data
mining classification techniques. However, topics regarding
ECG feature transformation, classification, and deep learning
techniques are still missing. The survey in [17] summarizes
research that applied deep learning models to ECG data
and discussed topics such as biometric human identification,
and deep learning. However, topics regarding feature selec-
tion, feature transformation, and classification of ECG-based
biometric systems are still missing. Moreover, researchers
drawn in implementing ECG-based biometric authentication
systems can obtain various public databases, including off-
the-person, on-the-person with healthy and no-healthy ECG
signals. However, several databases devised for ECG-based
biometric authentication lack standardized hardware and
measurement protocol of signal features, which is a chal-
lenging problem for ECG-based biometric systems. For
example, this challenge restricts robust ECG-based biometric
authentication system validation, which does not support
the development of expert systems robust to the variability
furnished by diverse use cases.

B. PAPER CONTRIBUTION
In this survey, we present comprehensive existing literature
studies on ECG-based biometric recognition systems for
user authentication. To the best of the authors’ knowledge,
a comprehensive survey that addresses several topics on ECG
biometric systems based on preprocessing, feature extraction,
feature selection, feature transformation, deep learning for
ECG classification, databases are still missing. This survey
paper proposes to fill this gap by presenting a comprehensive
study on several ECG-based biometric recognition topics
to allow interested readers to reach the sought knowledge
rapidly. Moreover, only a few studies surveyed the utilization
of deep learning methods for ECG-based biometric systems,
where deep learning-based ECG uses algorithms such as
backpropagation, CNN, recurrent neural network (RNN),
LSTM, generative Adversarial Network (GAN), restricted
Boltzmann machine (RBM), DBN to extract features from
samples of users during the training and classification phase.

Although relatively few review papers appear in the liter-
ature on ECG analysis, they are limited exclusively to only
a few topics rather than all as shown in Table 1. Therefore,
this work presents a comprehensive survey on all aspects of
ECG signal analysis to immediately motivate and provide a
guide for feature research in using ECG signals as a biometric
trait for human identification and authentication. The various
contributions of this paper are summarized as follows:
• We first present a survey on ECG signal by conduct-
ing a deep overview and discussion on various steps
of ECG analysis such as preprocessing, feature extrac-
tion, feature selection, and feature transformation for
ECG-based biometric systems.

• Secondly, we fill the gap in biometric research by pre-
senting a comprehensive and well-organized survey of

the available ECG databases. The aim is to evaluate and
compare the acquisition protocol (i.e., number of sub-
jects, gender distribution, location of electrodes), acqui-
sition hardware (i.e., number of ECG channels, types
of electrodes, number of contact points, and acquisition
frequency), and resolution (bits) of ECG acquisition
employed to identify the fundamental requirements and
useful guidelines in ECG-based biometric systems.

• Thirdly, since deep learning is considered a promising
method for analyzing and classifying ECG data for
biometric recognition, we present an in-depth review
on ECG signal classification with deep learning meth-
ods, under the categories of deep supervised learning
(DSL), deep semi-supervised learning (DSSL), and deep
unsupervised learning (DUL), which can be used for
analyzing and classifying ECG data for biometric sys-
tems. Specifically, we summarize existing deep learn-
ing studies employing ECG data from various aspects
and emphasize existing challenges to identify potential
future research directions.

• Lastly, since multimodal biometric systems typically
overcome several limitations and provide greater accu-
racy and more flexibility than unimodal biometric sys-
tems, we present several information fusion methods for
biometrics and summarize to conclude with direction
on future research directions in a multimodal biometric
system using ECG.

To conduct a comprehensive review, we specifically review
the articles of existing studies on ECG-based biometric sys-
tems published in journals indexed by prestigious scientific
indices such as Science Citation Index and Science Citation
Index-Expanded, mostly from the last two decade.

To search the relevant studies in the literature, several
platforms, such as IEEEXplore, ScienceDirect and Google
Scholar, are used, and several combinations of the keywords
‘‘electrocardiogram’’ and ‘‘ECG’’ together with ‘‘prepro-
cessing’’; ‘‘feature extraction’’; ‘‘feature selection’’; ‘‘fea-
ture transformation’’; ‘‘classification’’; ‘‘database’’; ‘‘QRS’’;
‘‘deep learning’’; ‘‘deep neural network’’; ‘‘convolutional
neural network’’ OR ‘‘cnn’’; ‘‘recurrent neural network’’ OR
‘‘rnn’’; ‘‘long short term memory’’ OR ‘‘LSTM’’; ‘‘autoen-
coder’’; ‘‘deep belief network’’; ‘‘multimodal’’; ‘‘fusion
methods’’; ‘‘disease classification’’; and ‘‘emotion recog-
nition’’. All keywords are case insensitive. Additionally,
some articles besides ECG-based biometric systems are also
employed to describe specific methodologies succinctly.

To avoid missing articles published in journals that do not
explicitly state these keywords in their titles, we expanded
our search to incorporate all fields per article. Notably, many
unrelated articles stated some of the keywords in their intro-
duction sections or related work sections, which gave rise to
a large initial set of articles.

C. PAPER ORGANIZATION
This paper is organized as follows: In Section II, We provide
an overview on ECG basics. Section III describes ECG-based
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TABLE 1. A brief comparison of our study with existing survey papers on ECG biometrics.

biometric recognition, highlighting the basic biometric sys-
tem characteristics. Section IV describes the selected ECG
Signal Databases introduce by different authors, highlight-
ing the main characteristics of both on-the-person and off-
the-person acquisition of subjects. Section V details the
framework for the analysis of ECG signals for human
identification. In Sections VI and VII, the ECG signal
application domains and the evaluation metrics employed
for ECG-based biometric recognition evaluation are given,
respectively.

II. ECG BASICS
The ECG records the various electrical potential generated by
the heart on the surface of the body [79], acquired typically
via electrodes placed on the skin. These electrodes capture
voltage changes through depolarization and repolarization of
cardiac cells, stimulating contraction and relaxation of the
cardiac muscle [80], [81]. The recent increase in the availabil-
ity of low-cost portable ECG sensors has opened doors to new
areas such as fitness monitoring [82] and wearable biometric
authentication devices [83]–[86], resulting in the pervasive

acquisition of ECG data. While the interested reader can
consult [87]–[90] for a detailed description of the phys-
iological principles of cardiac electrophysiology, we now
describe the (single-lead) ECG for one cardiac cycle illus-
trated in Fig. 1. Specifically, one cardiac cycle in a typical
ECG waveform consists of three waves, namely P, QRS
(a wave complex), and T that maps specific heart events [93].

A. P-WAVE
Notably, the P wave describes the depolarization of the left
and right atrium as shown in Fig. 3 and likewise relates
to atrial contraction, and its duration ranges from 0.06 to
0.12 seconds [89], [94].

B. QRS-COMPLEX
The QRS Complex, as the name suggests, comprises of the
Q, R, and S waves [74], [94], which represents ventricu-
lar depolarization. The Q wave is short (<0.03 seconds in
duration), downwards i.e., an initially negative deflection of
the QRS complex, which corresponds to the depolarization
of the septum. The R wave reflects depolarization of the
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FIGURE 2. A representation of a typical cardiac cycle with the related
waves of a single-lead ECG signal [91], [92].

FIGURE 3. The heart and its conductive tissues [91], [92].

left ventricle (apex). The S wave is short, downwards, and
negative, which corresponds to the depolarization of the basal
and rear regions of the left ventricle. The duration of the QRS
complex ranges from 0.06 to 0.09 seconds. Ventricular rate
can be determined by calculating the time duration between
QRS complexes.

C. PQ-SEGMENT
The PQ segment depicts the delay in transmission of the
impulse at the auriculoventricular node and it is usually zero
potential [36], [95].

D. PQ-INTERVAL
The PQ interval depicts the time required to depolarize the
auricular musculature plus the delay time encountered at the
auriculoventricular node until the beginning of depolariza-
tion of the ventricles [36], [95]. Specifically, the PQ-interval
originates from the onset of the P-wave to the onset of
the QRS-complex. It is worth mentioning that the repolar-
ization wave of the auricles (termed the auricular T-wave),

is typically low in amplitude and not normally observed. It is
usually added in the PQ-segment and the QRS complex. The
PQ interval, therefore, is the outcome of the electrical activity
of the auricles.

E. ST-SEGMENT
The ST segment depicts the duration of the depolarized
phase of the ventricles. It is the time between the completion
of depolarization and the beginning of repolarization while
the chemical processes of depolarization are attempting to
reverse themselves [95]. The ST segment is usually zero
potential. However, it may elevate above or depress below
the zero potential baselines.

F. T-WAVE
The T wave represents ventricular repolarization, with dura-
tion ranges between 0.1 sec and 0.25 sec.

G. ST-INTERVAL
The ST interval is the time from the completion of ventricular
depolarization to the completion of their repolarization [95].

H. QT-INTERVAL
The QT interval depicts the whole time required for depo-
larization and repolarization of the ventricles. That is,
QT-interval starts from the onset of the QRS-complex to the
end of the T-wave.

III. ECG SIGNAL IN BIOMETRICS
In [34], an extensive set of ECG descriptors that characterize
heartbeat trace is presented employing 29 subjects through
7 data recordings sessions, using short measurements of 120 s
length [95]. Here, results show that extracted features are
independent of sensor location and invariant to the state
of anxiety of an individual. The work in [96] presented
an ECG-based recognition system using Bayes’ theorem
on a database containing 502 ECG recordings. By uti-
lizing short measurements of 10 s length, an ECG-based
biometric recognition system is presented in [97], using a
test set of 234 ECG recordings from 74 subjects. In [35],
an ECG-based biometric recognition is presented, employing
50 subjects through 3 data recordings sessions, resulting in a
classification accuracy of 95%. The authors in [22] proposed
an ECG-based biometric recognition for human identifica-
tion employing 43 subjects, where the ECG recordings of
subjects are acquired while performing seven 2-min tasks
per session. Here, the method in [22], namely eigenPulse,
exploits principal component analysis (PCA) that is common
with traditional biometrics such as fingerprint and iris. In [98]
a screening method for evaluating the quality of each seg-
mented heartbeat is presented via a PCA technique, namely
eigenpulse by employing 65 subjects through 6 data record-
ings sessions and resulted in performance improvement in
recognition accuracy. In [99], a single lead ECG-based
biometric applying a short-time frequency approach with
robust feature selection is introduced from a relatively large
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sample of 269 subjects, with data acquired on three separate
occasions over a 7-month period, which achieved an EER
verification of 5.58%, rank-1 recognition accuracy of 76.9%,
and rank-15 recognition accuracy of 93.5%. In [100], a sin-
gle lead ECG-based biometric applying a short-time fre-
quency approach with robust feature selection is introduced,
which uses a test set of ECG recordings from 168 subjects
through 1 data recordings sessions by employing short mea-
surements of 90 s length with a rank-1 recognition accu-
racy of 98%. In [101], an ECG-based biometric system
employing a Birge-Massart strategy, is proposed, using only
a subset of the wavelet coefficients to determine the signal
difference/similarity measures. Here, ECG recordings from
30 subjects through 2 recording session, is employed. The
authors in [102] introduced a recognition technique based
on ECG signals, which enhances the autocorrelation /LDA
feature extraction algorithm by incorporating the periodicity
transform (which is robust in handling heart rate changes).
Here, the performance of the system in [102] over 52 sub-
jects with ECG recordings through 1.2 recording session by
employing short measurements of 180 s length, is 92.3%. The
authors in [103] introduced a set of standards for ECG-based
biometric recording and the UofT ECG Database (UofTDB)
for performance evaluation using 1012 subjects through
1.6 data recording session by employing short measurements
of 180 s length. The authors in [104] introduced short-term
and long-term public datasets, with ECG data acquired at
the hand palms and fingers using dry silver/silver chlo-
ride (Ag/AgCl) electrodes and electrolycra strips. Here, they
employed 128 subjects through 1.5 data recordings sessions
by utilizing short measurements of 120 s length.

In [105], a 1D convolutional long short-term memory
neural network for an ECG-based biometric system is pro-
posed on a public Physionet database. Here, data recordings
of 109 subjects were acquired using 16 channels of ECG
signals and short measurements of 1 s length, which achieved
an EER of 0.41% and rank-1 recognition accuracy of 99.58%.
The authors in [106] introduced an ECG-based biometric sys-
tem employing eigenvector centrality on a public physionet
database consisting of ECG data of 109 subjects by using
64 channels of ECG signals and short measurements of 12s
length, which achieved an EER of 4.40% and rank-1 recogni-
tion accuracy of 92.60%. The authors in [107] also proposed a
network structure, namely ECG-based subject identification
(ES1D). ES1D is a modification of the conventional CNN,
which uses Welch’s power spectral density estimation of
ECG signal acquired from a public database DREAMERwith
23 subjects and achieved an accuracy of 94.01%. In [108],
a deep CNN-based ECG biometric system is proposed with
a data augmentation technique and assessed on a Physionet
ECG Database [26] comprising 109 subjects, using 64 ECG
channels each sampled at 0.16 kHz, which results in a lower
EER recognition (verificationmode). The authors in [16] pro-
posed a CNN-based biometric system, which works directly
on raw ECG data, employing 100 subjects with equilong
subsequence of 12s, resulting in Rank-1 accuracy of 97.00%

using the BCIT database. The authors in [109] introduced a
dynamical radial basis function (RBF) neural network-based
ECG recognition system, using a FuWai ECG database con-
sisting of 722 subjects, employing 12 ECG channels through
2 data recordings sessions. Here, 12 ECG channel is utilized,
with the 1000-Hz sampling rate and 16-bit resolution, and the
proposed method achieved recognition accuracy of 91.4%.
The authors in [5] introduced a novel ECG-based biometric
recognition system relying on deep CNN employing two
public datasets to extract training and test sets, specifi-
cally, Intercity Digital Electrocardiogram Alliance-IDEAL
(E-HOL-03-0202-003) database [110] and Physionet (PTB
Diagnostic ECG) Database [30]. Here, the ECG signals from
52 subjects through 5 data recordings sessions using 12 ECG
channels, with a sampling frequency of 1000 Hz divided into
slots of 10 s and achieved a satisfactory EER performance of
2.90%.

Table 2 summarizes the significant findings of the ECG
based biometric recognition system with additional informa-
tion based on the number of subjects, gender distribution
of subjects, type of electrode used, acquisition frequency,
average number of sessions, and average ECG lengths.

Generally, we can classify modalities in several ways
based on the criteria. For example, modalities can be cate-
gorized as physiological (ECG, DNA, iris, fingerprint, ear-
lobe), cognitive and behavioral (voice, keystroke, gait, and
signature) [111]. The following are the characteristics of all
of these biometric modalities [75], [112]:
(a) Universality: Every person in the target population

should possess the trait.
(b) Uniqueness: The biometric trait should be sufficiently

distinguishable across individuals.
(c) Permanence: Based on the matching criterion, the bio-

metric trait should be sufficiently invariant (i.e., stable
and durable) over a long period.

(d) Collectability: The biometric trait should be possible to
acquire and digitize employing suitable devices that we
can later use to authenticate a user.

(e) Acceptability: the biometric identifier should have a
broad public acceptance as an authentication or identifi-
cation method, and the device employed for acquisition
should be safe.

(f) Circumvention: spoofing of the characteristic utilizing
fraudulent schemes to defeat or bypass the biometric
system should be challenging.

Notably, ECG biometric modality, compared with other bio-
metric modalities in Table 3, has proven to be the most
promising, surpassing in most of the characteristics that
describe the quality of a biometric modality [113]. Its
unique nature makes it more robust to spoofing attacks than
traditional biometric modalities, and the inherent liveness
detection ensures that the ECG-based biometric system is
not being overwhelmed [114]. Unlike anatomical biometric
identities (such as fingerprints or facial features) that have
two-dimensional data representation, the ECG is physiolog-
ically low-frequency signals that have a one-dimensional
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TABLE 2. Some significant findings and results of the ECG-based biometric system.

TABLE 3. Advantages and disadvantages of the ECG compared to other biometric modalities [72], [113], [117].

data representation. Hence, ECG becomes a computation-
ally more efficient alternative to the video or image-based
biometric systems, particularly for continuous recognition
systems [72], extremely subject to timely decisions.

1) GENERAL SCHEME OF ECG-BASED BIOMETRIC SYSTEM
Typically, the ECG-based biometric authentication process is
split into three main functionalities:

(a) Enrolment: It forms the initial process of acquiring ECG
biometric data samples from a person and then creates
a reference template depicting a user’s identity used for
later comparison [115].

(b) Verification: It renders a matching score between the
biometric sample furnished by the user and his/her tem-
plate [115]. The matching score is defined between 0%
and 100% (with 100% being impossible to be realized).
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(c) Identification/Recognition: It involves determining the
identity of an unknown subject from a database of indi-
viduals [116]. Notably, the biometric system can then
either attribute the identity corresponding to the most
matching characterization found in the database to the
unknown subject (or a list of the most matching pro-
files) or reject the subject. This work surveys more on
scientifically relevant papers on biometric recognition
system based on the ECG for individual identification
and authentication.

IV. ECG SIGNAL DATABASES
ECG-based biometrics show promising recognition rates
employing both short-term and long-term data. This increas-
ing attention in ECG-based biometric has prompted the
acquisition of ECG signals. However, most existing studies
on ECG-based biometric systems for user authentication do
not evaluate their design on large datasets, compared to other
biometric modalities. In the following, we present some of
the ECG that provide single-lead and multi-lead ECG sig-
nals for both on-the-person and off-the-person acquisition of
subjects.

A. ON-THE-PERSON ACQUISITION
The on-the-person acquisition scheme pertains to devices
that require to be fastened to the body of the subject, usu-
ally requiring conductive gel. This category encompasses
devices that range from t-shirts to other wearable form
factors. In the following, the first nine public databases
are available for ECG-based biometric identification and
authentication.

1) ODINAKA ET AL. [99] ECG SIGNAL DATABASE
This single-lead ECG signals database involves 269
(145 females and 124 males) subjects sampled from the
general population on three separate occasions over a
seven-month period. The authors employed the standard wet
silver/silver chloride (Ag/AgCl) electrodes for measuring the
ECG signals. Specifically, the authors use a simple recording
montage, with electrodes placed bilaterally on the lower rib
cage of the subject so that subjects are not required to undress.
Besides, the ECG signals originally sampled at 10 kHz, were
consequently down-sampled to 1 kHz and digitally notch fil-
tered at 60 Hz to eliminate power line interference [99]. In the
preprocessing stage, the authors reduced the resulting ECG
signal to single 700 msec segments aligned to the respective
R-wave peak, originating 200 msec prior to the peak. The
segment (heart pulse) duration was adopted to guarantee that
all of the major P, Q, R, S, and T-waves components were
incorporated while reducing the likelihood of incorporating
segments of adjacent beats. Subsequently, each ECG signal
is then normalized by subtracting the mean and then dividing
by the standard deviation [99]. Specifically, to align the ECG
segments of each study participant to the peak of the R-wave,
the peak has to be detected using initially a high-pass filtered
applying an infinite impulse response (IIR) elliptical filter

(5 Hz cutoff, 90 dB attenuation) and then an artifact-free
calibration epoch of 15 s was selected [99]. In that fashion,
positive inflection points (peaks at least 75% of the maximum
detected peak amplitude) within this epoch were determined
for further analysis.

2) WÜBBELER ET AL. [97] ECG SIGNAL DATABASE
The work in [97] collects 234 ECG recordings from
74 subjects (Caucasian subjects, 40 male and 34 female
within 19 years to 86 years) following a realistic framework
for ECG biometrics by applying short measurements of 10 s
length in unification with a practicable choice of ECG leads.
The authors employed the standard wet Ag/AgCl electrodes
for measuring the ECG signals. The sampling rate of the
data employed in this investigation was 500 Hz with a 12-bit
resolution. With reference to the extraction of biometric
features, standard signal processing methods were used for
preprocessing, which were not optimized. ECG traces of 10 s
length from three recorded channels were baseline corrected
by subtracting a moving median of 1 s width, and a low-pass
filter with a cut-off frequency of 75 Hz was implemented
to each channel. For beat detection, using the absolute value
of the low-pass filter temporal derivative per ECG trace (via
threshold procedure), the R-peaks positions were determined.

3) SHEN ET AL. [100] ECG SIGNAL DATABASE
This database collects short-term, resting, Lead-I ECG sig-
nals from 168 subjects (113 females and 55 males) of age
range between 19 to 52 years employing the standard wet
Ag/AgCl electrodes. The ECG was recorded for 90 s at a
sampling rate of 0.5 kHz for the enrolment process, with a res-
olution of 12 bit. First-derivative-based detection technique,
digital filtering, zero-crossing technique, and Pan–Tompkins
algorithm were employed on raw ECG signals to detect
PQRST fiducial points [100]. For R point detection, a reli-
able, real-time QRS detection algorithm was applied to limit
the ECG bandwidth from 0.01 to 50 Hz. Specifically, the Pan-
Tompkins algorithmwas adopted to determine all the R points
to calculate the R-R intervals [100].

4) ISRAEL ET AL. [34] ECG SIGNAL DATABASE
This database collects 29 ECG recordings from 17 males
and 12 females between the age bracket of 22–48 years old
with 12 repeat sessions for a total of 41 sessions within the
data set [34]. The data were acquired using an on-the-person
approach (standard wet Ag/AgCl electrodes) at a high tem-
poral resolution, 1000Hz [34]. The frequency power spectra,
which contains a combination of noise sources and subject
information was filtered to remove the 0.06 and 60Hz noise
while preserving the subject heartbeat information between
1.10 and 40Hz using a frequency bandpass filter between
2 and 40Hz [34]. Notably, the authors formulated the fre-
quency bandpass filter employing the equivalent of a lower
order polynomial, which works by allowing ‘advantageous’
bleeding of information into the processed data stream.
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5) IRVINE ET AL. [22] ECG SIGNAL DATABASE
This database collects ECG signals from 43 subjects, 26 male
and 17 female ranged in age between 18 and 48. During
each session, the subject’s ECG was recorded while perform-
ing seven 2-min tasks [22]. To determine session-to-session
variations, many subjects were repeated using data from the
subject’s baseline state, which is regarded as a low-stress task.
The authors performed attribute reduction by normalizing
each ECG signal to fixed lengths of 250, 100, 50, 25, and
10 samples from the original 12-bit-1000Hz data. Subse-
quently, the raw ECG signal in [22] was Fourier bandpass
filtered using the technique in [118] to eliminate electrical,
thermal, and A/D noise sources. Next, the individual heart-
beats were aligned by the peak of their R wave by computing
the autocorrelation function of the ECG data stream and using
that function to segment the heartbeats.

6) ZHANG AND WEI [96] ECG SIGNAL DATABASE
This database collects ECG recordings from 502 subjects
using (On-the-person approach) the standard wet Ag/AgCl
electrodes for measuring the ECG signals. Specifically,
the authors acquired the ECG recordings (10 s long) by a
12-lead ECG device with a sampling rate of 500 Hz. The
PCAmethodology was applied to reduce the feature variables
dimension [96], while the classification method was based on
Bayes’ theorem. Moreover, each ECG recording was divided
into two segments the first is used to build the recognition
model and the other is applied to test the ECG segment
for identification. Furthermore, the difference method was
applied to the detection of the R-peak and the QRS complex.

7) AGRAFIOTI AND HATZINAKOS [102] ECG SIGNAL
DATABASE
The authors in [102] collect ECG recordings from the wrists
of 52 healthy subjects ranged in age between 21 and 40
using (On-the-person approach) the Vernier ECG Sensor.
Specifically, the acquired ECG signals consist of 3 min
single-channel recordings, where the acquisition frequency
was set to 0.26 kHz. However, authors in [102] did not specify
the gender distribution of subjects. The authors in [102] pre-
processed the ECG traces using a Butterworth bandpass filter,
whose cutoff frequencies were set at 0.5 Hz and 40Hz, to sub-
due the effect of the high-frequency components (powerline
interference) and the low-frequency components (baseline
wander). The authors developed a novel recognition method
based on ECG signals, which enhances the autocorrelation
(AC)/LDA feature extraction algorithm, by incorporating the
periodicity transform (PT).

8) JANG ET AL. [98] ECG SIGNAL DATABASE
The authors in [98] collect ECG recordings from 65 subjects,
34 males and 31 females ranged in age between 22 to 48 years
old using a single channel with a frequency of 1 kHz and
a resolution of 12 bit. The authors used an adaptive filter
on the raw ECG signal to eliminate electrical, thermal, and

A/D noise sources before subsequently segmenting the ECG
signal into individual beats and resampling to 100 Hz. Here,
the amplitude of each heartbeat was normalized into a range
of 0 and 1. Lastly, low-quality signals were discarded by the
authors after a quality screening. For evaluating the quality of
each segmented heartbeat, the authors designed a screening
method, which improves the quality of the extracted signal
for the identification task.

For the sake of completeness, we also discuss in the fol-
lowing the Physionet repository public databases originally
acquired for clinical experiments in preference to biometric
purposes.

9) MWM-HIT [119] ECG SIGNAL DATABASE
The MWM-HIT contains ECG records from 100 subjects.
The length of each recording is 10 s. This database employs
five different conditions to record the subject during the
session i.e., sitting, standing, supine, exercise sitting, and
exercise standing. Carewell ECGWorkstation (PCECG-500)
is the acquisition device used for the recording, where the
acquisition frequency was set to 1 kHz. Four electrodes
relating to the Left hand, Right hand, Left leg, and Right
leg, are employed to capture the ECG from the body of the
subject. The database collects 500 ECG recordings from the
100 subjects, i.e., 5 records per subject.

B. OFF-THE-PERSON ACQUISITION
The off-the-person acquisition scheme pertains to devices
integrated into objects or surfaces the subjects interact with
(e.g. a computer keyboard or a game station remote) rather
than being attached to the body of the person. A significant
benefit of the off-the person method is that the sensor place-
ment does not require a voluntary user action compared to
wearable on-the-person devices. These novel methods well
aligned with the future trends envisioned in terms of biomet-
ric authentication

1) CHECK YOUR BIOSIGNALS HERE INITIATIVE
(CYBHi) [104] ECG DATABASE
The CYBHI database in [104] which acquires 128 ECG
recordings (2 min long) utilizing dry Ag/AgCl electrodes and
electrolycra strips employing the off-the-person strategy is
the extension of the database in [120]. Specifically, the ECG
data was collected at the hand palms and fingers of the
subjects. The protocol of the authors combines both neutral
tasks and emotional elicitation tasks [104], which was intro-
duced as a method of influencing intra-subject variability,
to improve the accuracy of ECG-based biometric identifica-
tion. That is, the authors concurrently acquired electrodermal
activity (EDA) data as a way of rendering ground truth infor-
mation regarding the arousal state of the subject, and can be
utilized in correlation with the ECG data.

2) CHAN ET AL. [35] ECG DATABASE
This database collects ECG data from 50 subjects, 45 males
and 5 females ranged in age between 18 and 40 during 3 data
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FIGURE 4. Biometric System stages during recognition.

TABLE 4. Summary of databases found in the ECG biometrics literature.

recordings sessions on different days, where subjects held
two electrodes on their thumb and index fingers. Specifically,
the ECGdata were recorded employing a pair of half-inchwet
Ag/AgCl held on the pads of the subject’s thumbs utilizing
their index fingers. The authors differentially amplified the
acquired ECG signal using a high gain AC amplifier, such
that the subject’s right thumb signal was connected to the
positive amplifier input, while the subject’s left thumb sig-
nal connected to the negative amplifier input and common
ground reference [35]. Here, the amplifier variable gain and
bandwidth were set at 2000 and 1 Hz to 100 Hz, respectively.
The notch filter available in the amplifier system was used
to reduce power-line interference. The acquired ECG signal
was sampled at 1 kHz, where the resolution was 12 bit. Each
subject participated in three data recording sessions with a
90 second ECG data sequence recorded during each session.
For each data sequence, PQRST complexes were detected
using the multiplication of backward differences algorithm
and then temporally aligned using a cross-correlation mea-
surement.

3) UNIVERSITY OF TORONTO (UofT) ECG DATABASE (i.e.,
UofTDB) [103]
The authors in [103] collect ECG signal recording from
1012 subjects, 398 males and 622 females ranged in age
between 18 and 52 years to evaluate the performance of vari-
ous ECG biometric methods. The authors used dry Ag/AgCl
electrodes, placing the left thumb on the positive electrode,
the right thumb on the negative, and the right forefinger
on the reference electrodes with an acquisition frequency

of 0.2 kHz and a resolution of 12 bit. The length of each
recording ranged from 2 min to 5 min. The authors employed
a fourth-order Butterworth bandpass filter (with cutoff fre-
quencies of 0.5 Hz - 40 Hz) to eliminate baseline wander
and power line interference in the raw ECG signal. Moreover,
the QRS complex detection was performed using the Pan and
Tompkins methodology in [103], while each heartbeat was
pruned to a length of 700 ms, with 200 ms before the R peak.

Table 4 summarizes the databases found in the ECG bio-
metrics literature.

V. ANALYSIS OF ECG SIGNALS FOR HUMAN
IDENTIFICATION
Notably, ECG classification combines steps namely prepro-
cessing, feature extraction, feature selection, feature transfor-
mation, and classification, as shown in Fig. 4.

A. ECG SIGNAL PREPROCESSING
Generally, ECG signal recordings/acquisition is contami-
nated typically by diverse noise sources and artifacts, which
results in obtaining inaccurate R peaks. The noise sources
and artifacts are characterized as interfering signals that
emanate from anything that does not belong to the electrical
activity generated by the heart. The presence of noise and
artifacts may affect or even compromise the identification
of a representative ECG signal. In the preprocessing step,
the objectives are to maximally remove such noise and arti-
facts from the ECG signal to identify the following fiducial
points: Ponset, Ppeak, Poffset, QRSonset, Rpeak, QRSoffset, Tpeak,
Toffset, Upeak, Uoffset. Since noise and artifact may result in
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incorrect biometric identification, ECG signal preprocessing
and denoising become a discriminative need [121]. Accord-
ingly, notable attention has been devoted in recent decades
to design mathematical techniques and algorithms to extract
noise-free ECG features from the noisy ECG data with an
accuracy sufficient for biometric authentication. The ECG
signal is first preprocessed, which enhances the compres-
sion ratio (CR) and percentage root mean-square (RMS)
difference (PRD) [122]. Typically, preprocessed ECG signals
comprise the following steps: mean removal, amplitude nor-
malization, QRS detection, segmentation, period normaliza-
tion, and zero padding [123]. Typically, the ECG signal xi is
initially preprocessed to generate the signal yi [122]:

yi =
(
zeros(1,M )

(
xi
Am

)
− mxzeros(1,M )

)
(1)

where yi and xi denote the preprocessed signal and original
signal, respectively, zeros(1,M ) denotes a row vector of M
zeros, while Am and mx denote the original ECG signal
maximum value and normalized signal mean, respectively.
In (1), mx takes the form

mx = mean
(
xi
Am

)
. (2)

The zero-padding technique extends the length of a series
of numbers by adding zeros. Computing the discrete Fourier
transform (DFT) of an ECG signal after zero-padding gives
rise to a Fourier transformwith additional interpolated values.
That is, zero-padding a DFT at above Nyquist frequency
gives rise to an inverse DFT with an interpolation of the
original ECG signal [124]. While the frequency resolution
remains unchanged after zero-padding, the spectral estimate
is smoother with the addition of easier identification of
spectral peaks. The discrete wavelet transform (DWT) and
empirical mode decomposition (EMD) techniques are the two
widely used techniques for ECG signals denoising [125].
ECG signal normalization and mean removal combine with
DWT denoising algorithm enables a reduction in the number
of significant wavelet coefficients, besides making the largest
coefficient magnitude to be less than one [124], [125].

1) ECG FILTERING
A crucial part of any ECG processing algorithm is fea-
ture extraction. Feature extraction algorithms typically com-
bine a preprocessing filter that decomposes the ECG into
a signal which maximizes the signal-to-noise ratio (SNR)
of the QRS complex [126]. Thus, the ECG preprocessing
stage employs a filtering block to eliminate any existing
artifact from the ECG signal. Typically, an ECG signal is
firstly bandpass filtered with various frequency bands before
interpreting it. Frequency domain analysis of heart rate vari-
ability (HRV) renders indispensable knowledge on cardiovas-
cular control [127], which is significant in the ECG-based
biometric identification. In human HRV signal, the three crit-
ical frequency regions include i) the very low-frequency band

below 0.04 Hz, ii) the low-frequency band (0.04− 0.15 Hz),
and iii) the high-frequency band (0.15−0.5 Hz) [127], [128].

Filtering an ECG signal is achieved with the following
filter modes: high-pass filters, low-pass filters, notch filters,
bandpass filters, median filters, Savitsky-Golay filters, and
adaptive filters.
(a) High-Pass Filters:High-pass filters (low-frequency cut-

off) generally enable low-frequency signals by allowing
only higher frequencies to pass through unaffected. They
are employed to subdue low-frequency components in
the ECG signal, namely motion artifact, respiratory
variation, and baseline wander. Generally, the analog
high-pass filter is less distorting than its equivalent ana-
log low-pass filter as a result of the higher operating
frequencies. Nevertheless, analog high-pass filters expe-
rience severe phase shifts impacting the initial fifth to
tenth harmonics of the signal [129]. That is, a high-pass
filter with a cut-off frequency of 0.5 Hz yet can affect
frequencies up to 5 Hz. High-pass filters with cut-off
frequencies of 0.5 Hz [130], [131], [138], 1 Hz [132],
[133], 1.1 Hz [134], 2.2 Hz [135] and 5 Hz [136]
have been employed to eliminate baseline wander and
to suppress baseline drift. In [137], high-pass filters
of 0.05 and 0.5 Hz were employed, results in ‘‘real-time
mode’’ revealed 93% alterations in the ST segment of
the subjects only seen with the high-pass filter of 0.5 Hz
but not with the 0.05 Hz high-pass filters.

(b) Low-Pass Filters: Low-pass filters (high-frequency
cutoff) on the ECG signals are typically employed
to eliminate high-frequency muscle artifact, powerline
interference, and other external interference [138]. Gen-
erally, low-pass filters only attenuate the ECG signal
higher frequency amplitude components. While the ana-
log low-pass filter but does not alter repolarization sig-
nals [129], they possess a remarkable influence on the
QRS complex, epsilon, and J-waves. A Low-pass filters
with the cut-off frequency of 15 Hz [116], 30 Hz [132],
40 Hz [139], [140], 45 Hz [142], 50 Hz [138], [138],
60 Hz [143], 100 Hz [144], [145], 500 Hz [99]
and 70 Hz [131] have been employed to overcome
high-frequency noise, background noise and power line
interference noise.

(c) Band-Pass Filters: Band-pass filter combines both a
high-pass and low-pass filter architecture, allowing only
a certain frequency band to pass through. Bandpass
filtering is widely used to preprocess ECG signals to
reduce the baseline drift of the physiological signal and
the influence of motion artifacts and high-frequency
noise. That is, bandpass filters remove most types of
interference that affect ECG signals. To remove mus-
cle noise, baseline wander, motion artifacts, baseline
drift, frequency noise, and the power line interfer-
ence, band-pass filter with cutoff frequencies spread
in the range (0.1 − 100) Hz [146], (1 − 40) Hz [47],
[147]–[149], (0.5 − 40) Hz [150], (1 − 30) Hz [151],
(0.4 − 40) Hz [152], [153], (0.05 − 40) Hz [154],
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(1−35) Hz [155], (5−35) Hz [156], (1−25) Hz [157],
and (0.1− 100) Hz [158], have been introduced. Notice
that we consider the range of the band-pass filters as the
range of undesired interference in the original ECG sig-
nal. Subsequently, the biometric system then potentially
uses the filtered band signal as input.

(d) Notch Filters: ECG signals are often exposed to
severe power line interference typically, at 50 Hz or
60 Hz. A widely used approach to eliminate the power
line interference noise is the use of a notch filter
(a bandstop filter with a narrow stopband), but it comes
with the risk of potentially distorting the preprocessed
ECG signal. Specifically, the narrow-band notch fil-
ter with the notch centered at either 50 Hz or 60 Hz
attenuates the frequency power within the respective
stopband [159]. Conversely, the discrete Fourier trans-
form (DFT) filter and Clean Line [159], [160] algo-
rithm have been introduced as alternatives yet, they
may fail to eliminate the power line interference of
extremely fluctuating amplitude. In [161], a notch filter
is introduced to cut off the 50Hz power line interference,
where they obtained a mean equal error rate (EER) of
2.75%±0.29 in authentication and amean identification
error of 5.61% ± 0.94. Additionally, notch filter set to
filter frequencies at 50 Hz [35], [162] and 60 Hz [99],
[163]–[165], have been employed to remove power line
interference.

(e) Median Filters: Median filtering is a non-linear sig-
nal processing technique utilized for smoothing signals
(noise suppression) [78]. The key concept of the median
filter is to run through the original ECG signal entry
by entry, substituting each entry with the median of
neighboring entries [166]. Ever since, numerous articles
and books (see, for instance [167]–[169]) have investi-
gated the median operation, analyzing its characteristics
and introducing new and viable extensions. However,
as the output of the median filter is invariably one of the
input representations or samples, certain signals could
likely pass through the median filter unchanged [170].
The median filter technique is employed mainly in
ECG-based biometric systems for baseline adjustment
or correction [78]. In [171] and [172], ECG signals are
filtered employing two median filters that have 200 ms
and 600 ms widths, respectively, to extract the baseline
wander, and in [173] a median filter of 600 ms in width
to suppress the T waves.

(f) Savitsky-Golay Filters: The Savitzky-Golay(SG) filters
are widely applied mainly for smoothing and differen-
tiation in ECG signal processing. Notwithstanding their
excellent characteristics, they are seldomly employed in
ECG signal processing. In [174], the authors applied the
Savitsky-Golay filter for preprocessing of ECG signal
for R-peak detection and obtained an 0.026% (MSE),
99.98% (sensitivity), and 99.97% (accuracy).

(g) Adaptive Filters: Since ECG signals are non-stationary,
the use of the existing traditional filters of finite and

deterministic coefficients to preprocess the original
ECG signal is not efficient [177]. Therefore, adap-
tive filters on ECG signals can adapt the filter’s coef-
ficient based on the dynamic characteristics of the
non-stationary ECG signals. However, adaptive filters
yet have a drawback in that they require the repre-
sentation of a noise model or desired signal model.
The authors in [177] introduced an algorithm based
on fixed-point convolution kernel compensation for
determining a model for employing an adaptive fil-
ter, the results demonstrated improved performance in
removing the noise from ECG signals.
Table 5 comparatively summarizes the performances of
the above-described filter types.

2) ARTIFACT REMOVAL, RESAMPLING, AND DIGITIZATION
Detection and reduction of noises and artifacts in the ECG
signals are two of the greatest challenges for enhancing signal
quality. Typically, three predominant sources of variability
impact the interpretation of the morphological features con-
tained within ECG, viz noise and artifacts, intra-subject vari-
ability, and inter-subject variability [74], [178]–[180], which
must be therefore effectively removed.

3) NOISE AND ARTIFACTS
The ECG signals for biometric recognition in authentication
applications may be potentially interfered with or compro-
mised by the presence of noise and artifacts [181]. These
are characterized predominately as interfering signals that
emanate from anything outside the electrical activity pro-
duced by the heart. Hence, ECG enhancement is to iso-
late the original ECG signals from the undesired artifacts
for easy interpretation. Several methods have been pro-
posed for ECG enhancement such as independent com-
ponent analysis (ICA) [182], advanced averaging [183],
[184], adaptive filtering [185], SVD [186], maximally dec-
imated perfect-reconstruction FIR filter banks [187], wavelet
transform [188], [189], and non-linear filter banks [190].
Generally, one of the foremost challenges in the ECG-based
biometric system is the separation of the desired signal
from several types of noise such as baseline wander, power
line interference, motion artifacts, muscle noise, and other
interference [191], [192].
(a) Baseline Wander: Baseline wander is a slow-varying

artifact [191], which essentially results from the
skin-electrode impedance variation that emerges in the
form of a low-frequency noise merged with the ECG
signal [193]. Impedance variation can manifest as a
result of the individual breath, the electrode–skin con-
tact, and smooth movements [192]. Moreover, baseline
wander is a typical artifact that corrupts the recorded
ECG signals and stems from respiration at frequency
wandering within 0.15 − 0.3 Hz, which can be filtered
using a standard high pass digital filter [194]. Typi-
cally, linear filtering and polynomial fitting are the two
primary methods used for the elimination of baseline
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TABLE 5. Performances of the filters employed in the preprocessing step.

wander. Here, the linear time-invariant highpass filter
design requires the problem of determining the filter
cut-off frequency (approximately Fc = 0.5Hz, where Fc
denotes the cut-off frequency) and phase response char-
acteristic [194], [195]. The authors in [195] proposed
the application of discrete wavelet transform (DWT) for
noise and wandering suppression in ECG signals, which
enable inspecting high-frequency situations of short
duration in nonstationary signals. Some researchers

have also adopted EMD for baseline wander reduc-
tion [191], [196]–[198], [200], which requires a priori
knowledge of baseline wander behavior. It is shown
in [141] that baseline wander noise may deviate the
amplitude of ECG signals for biometric recognition by
up to 50%. Thus, the drift of the baseline can bemodeled
as amplitude modulation (i.e., a non-stationary signal
with time-varying amplitude and frequency) to the ECG
signal.
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(b) Power-Line Interference: Power-line interference is
another predominant ECG signal artifact that sig-
nificantly alters the ST segment, degrades both
the signal quality and frequency resolution, causing
large-amplitude in ECG signals that can resemble the
P–Q–R–S–T waveforms [201]. Hence, these fac-
tors cover small features that are essential for
ECG-based biometric recognition for human authentica-
tion. Power-line interference (PLI) noise usually arises
in ECG signals that consist of sinusoidal oscillations
with the fundamental PLI component of either 50 Hz
or 60 Hz and its harmonics [202]. Generally, a common
choice of eliminating power-line interference is using an
adaptive filter, which can adjust its coefficients based
on an appropriate algorithm. A traditional approach
to eliminating power line interference is to employ a
notch filter, tuned to the interference frequency [201].
However, the challenge of using an FIR notch filter is
that the bandwidth of the notch is relatively large [203],
which attenuates the required signal components within
the bandwidth. In [204], since the EMD possesses
an adaptive and signal-dependency property, a robust
power-line interference elimination system according
to the extended Kalman filter and the modified EMD
has been applied to attenuate the ECG signal QRS com-
plex. The least mean square (LMS) algorithm proposed
in [205] and [206], have been broadly employed in adap-
tive filtering algorithms for the elimination of powerline
interference. The adaptive filter typically measures the
difference between the desired signal and the adaptive
filter output [207], which it employs to algorithmically
tune its coefficients to minimize the cost function of
this difference. That is, the error signal becomes zero
when the adaptive filter output equals the desired signal.
Mathematically, at each iteration of the LMS algorithm,
each filter tap weight is updated based on the following
weight update equation:

w(n+ 1) = w(n)+ µe(n)x(n), (3)

where e(n) is the adaptive filter output in the nth iter-
ation, x(n) = [x(n), x(n − 1), x(n − 2), . . . , x(n −
N + 1)]T is the input signal vector at time n,
w(n) = [w0(n),w1(n),w2(n), . . . ,wN−1(n)]T is the
adaptive FIR filter tap weight coefficient vector at time
n with filter length N , and µ is the step size parameter
that is to be properly selected.

(c) Motion Artifacts: The electro-conductive fabric as a
textile electrode is usually employed to collect physio-
logical signals based on textile materials [208]. How-
ever, in regards to its sensitivity variation (caused by
impedance variation), it is challenging to acquire the
ECG signal due to the motion of the subject. There
are several studies on overcoming motion artifacts by
addressing it as mere sinusoidal noise in the conven-
tional ECG electrode [13], [191], [209], [210]. Over
recent decades, conventional signal-processing methods

have been used to overcome motion artifact. These con-
ventional signal-processing methods include: moving
average filtering, wavelet transform, and finite impulse
response/infinite impulse response (FIR/IIR) high-pass
filtering [209]. Recently, adaptive filtering has been
demonstrated to be beneficial in motion artifact reduc-
tion [185]. Based on the noise sensitivity of differ-
ent QRS complexes detection, the authors in [211]
observed that ECG electrode motion causes a variation
in electrode-skin impedance, which influences base-
line variations with its duration of 100 ∼ 500 ms.
Moreover, [212] introduced a real-time QRS complexes
detector and considered the bandwidth of motion arti-
facts to be below 5 Hz sinusoidal wave and then applied
a filter employing over-sampled (2 kHz) ECG signal
for improved timing-resolution. There are also several
studies on overcoming motion artifacts in the ECG sig-
nal utilizing more complex conditions than the con-
ventional electrode via electroconductive fabrics. The
authors in [213] modeled motion artifacts as the dif-
ference between motion free-signal (i.e., ECG from the
conventional electrode) and motion added signal (i.e.,
ECG from e-textile) with a 5 Hz maximum frequency.
The authors in [214] used an injection current com-
bined with an adaptive filter to reduce motion artifacts
in capacitive ECG measurements occurring in the fre-
quency band of the ECG without requiring knowledge
about the measurement system. Here, the amplitude of
the motion artifact is reduced on average by 29 dB in
simulation and by 20 dB in a lab environment.

(d) Muscle Noise: The presence of muscle noise draws
a major problem in several ECG applications, espe-
cially in recordings acquired during exercise, as low
amplitude waveforms may become completely cov-
ered. Specifically, the ECG signal muscle noise com-
ponents get very large, owing to muscle contraction,
and becomes very challenging to be filtered out from
the ECG signals, thus damaging the signal character-
istics essential for biometric recognition [215], [216].
For instance, larger amplitude muscle artifacts cover
the small-amplitude P-waves and make it difficult to
establish the presence or absence of these waves, which
affects biometric recognition. Besides, as the muscle
noise spectral content overlaps the ECG signal spec-
tral content, it becomes challenging using digital filters
alone to improve the signal-to-noise ratio (SNR) without
adding significant ST-segment region distortions [215].
It is reported in [217] that the muscle contraction noise
which arises in the ECG signals as additional ‘‘bursts’’,
can typically be modeled as a zero-mean, band-limited
Gaussian noise. A general solution to extract the ECG
signal for the wideband noise, which may be induced by
muscle artifact, has been to pass the ECG signal over a
low pass filter possessing a low cut-off frequency, usu-
ally around 25 Hz [218]. However, the adoption of a low
pass filter has the drawback of additionally subduing the
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QRS complex amplitude since the high-frequency ECG
signal components, which are essential to represent the
QRS complex relatively high peaks, are also eliminated
by the filter.

4) INTER-SUBJECT VARIABILITY
Inter-subject variability is the variability between ECGs from
different individuals. The ECG signal uniqueness can be
assumed to be acquired mainly from the uniqueness of
DNA [219], besides other physical factors such as age, race,
and gender [220], which contribute to the different ECG
variations. For instance, the QRS complex amplitude tends
to increase from birth to adolescence and then gradually
begins to decrease afterward [221]. The authors in [222]
and [223] also find that the PR interval increases slightly
with increasing age. Studies have shown that the amplitudes
of the S wave in ECG signals are lower in women than in
men between the age bracket of 18− 40 [220]. While gender
differences in ECG signal parameters are more evident in
young adulthood, they are known to decrease their effect
afterward. While ECG signals reflect the activities of the
heart and exhibit an inter-subject variability property, they
can be employed as a biometric-basedmodality for identifica-
tion/verification purposes. Since ECG signal is universal, sta-
ble, and unique, the inter-subject variability appears as ECG
portrays the myocardial electrophysiological variations influ-
enced by heart mass orientation, cardiac muscle conductivity,
and activation order [224]–[226]. That is, notwithstanding the
desired inter-subject variability (uniqueness), the ECG signal
should be sufficiently stable over time (subdue intra-subject
variability) to enable ECG-based biometric authentication.
The pioneering works of [194] and [225] analyze in-depth the
inter-subject variability of ECG signals required for human
authentication.

5) INTRA-SUBJECT VARIABILITY
The perfect biometric modality3 should possess a very low
intra-subject variability besides having both a very high
inter-subject variability and stability over time [227]. The
variability between different ECG signals from the same
individual or variability within one ECG (the latter is also
called beat-to-beat variability) is termed the intra-subject
variability [228]. The ECG can be contaminated by sev-
eral sources of intra-individual variability, shadowing the
underlying cardiac state and limiting the accuracy of ECG
interpretation. Generally, among several significant sources
of intra-subject variability in ECG signals are chest electrode
position variability and respiration variability [115]. While
chest electrode position variability in ECG signal induces
variation between ECGs of the same individual [229], res-
piration induces variability within a particular ECG [115].
Noise and artifacts may induce intra-subject ECG variabil-
ity [230]. However, it possesses the benefit that it is usually

3A biometric modality is a group of a biometric system in terms of the
kind of human trait it uses as input [18], [19], [41]–[43].

obviously evident on the ECG, and it influence is widely
known. Moreover, besides chest electrode position variabil-
ity, intra-subject variability may also be induced by physi-
cal activities [231], [232], emotional states, drowsiness, and
pharmaceutical drugs [233]. This may reveal essentially in
the heart rate variability, altering the morphology of the P-R
and S-T segments [234], [235]. Notably, studies in [227],
[230]–[235] have shown that intra-subject viability in ECG
signals is the source of uncertainty that has prompted a
primary setback in the application of the ECG signal as a
biometric trait. There are several general techniques used for
Artifact removal from ECG recordings. For example, when
the frequency bands and interferences in ECG signal do not
overlap [237], the use of simple low pass filter, bandpass
filter, or high pass filter (i.e., FIR or Butterworth filters
with a cut-off frequency of about 30 Hz [236]) are effective
methods for artifact removals. However, interferences with
a broad spectral distribution, such as muscular activities,
overlap with that of the ECG signal spectrum. Consequently,
this makes such high-pass filtering (or other frequency filter
types like consecutive notch filters) extremely challenging,
since it alters the ECG signal frequency content, changing
outcome measures such as mean frequency and mean ampli-
tude. While proper normalization can - in part - compensate
for the high-pass filtering effects on ECG signal amplitude
(assuming the frequency distribution continuously changes
over activation levels), it is still challenging in investiga-
tions concerning muscle fatigue. Other techniques such as
wavelet decompositions, EMD on additional classical the-
oretical methods like filtering [238], ocular artifact correc-
tion [239], regression [240], have also been successfully
applied for ECG artifact removal [241], [242]. The authors
in [237] consider the following single-channel ECG recorded
signal, s with additive artifacts v of the form:

s = x + v+ η (4)

where s = [s(1), s(2), . . . , s(N )]T is a linear combination
of the original ECG signal x = [x(1), x(2), . . . , x(N )]T

corrupted with noise artifact v = v(1), v(2), . . . , v(N )]T

plus white Gaussian noise η. The objective in [237] is to
filter v from s in the wavelet domain using wavelet-based
artifact removal, with minimum a priori knowledge on v,
x, and η. Basically, in the preprocessing step, filtering
techniques are employed to preprocess the original ECG
signals and have been used in diverse systems for ECG
analysis. Since noise may result in wrong biometric authen-
tication, ECG signal denoising is required. Therefore, con-
siderable attention has been given over recent decades to
design mathematical methods and computation algorithms to
pre-process the ECG signal to remove noise with an accu-
racy adequate for biometric authentication. Existing litera-
ture [35], [99], [161]–[165], [196], [199], [200], [243]–[254]
comprises several denoising techniques for an ECG signal.
For example, the authors in [248] introduced an adaptive
spectro-temporal filtering method for ECG signal improve-
ment. In [245], [246], and [247], Wavelet-based filtering
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methodologies for noise reduction in ECGsignals, are pre-
sented. While the authors in [249], [250] introduced the
non-linear Bayesian filtering-based methodologies for ECG
denoising, the Kalman filter-based methodology of ECG
denoising was instead adopted by the authors in [251]–[253].
It is worth noting that several challenges exist by provid-
ing automatic noise filtering since several filter bank-based
methods affect the ECG signal P-waves and R-waves [251],
[252]. In [243], an identification technique based on Hilbert
vibration decomposition (HVD) is proposed for ECG signal
to correct the baseline wander, where the authors found that
the first decomposed component (highest energy component)
corresponds to the baseline wander noise. In [196], [199],
[200], EMD-based algorithms were developed for baseline
wander noise correction. The authors in [244] used fractal
modeling to propose a projection operator-based method for
baseline wander removal and applied a hybrid scheme of
EMD method and wavelet analysis to remove powerline
interference. The authors in [254] introduced a detrending
method-based scheme (introduced originally for eliminat-
ing slow non-stationary drifts from heart rate variability)
to remove baseline wandering in ECG. Notably, the vast
majority of baseline wander removal methods have in com-
mon that they remove the low-frequency components of
the ECG signal. However, research finds that the baseline
wandering noise components in ECG signals may reside
at higher frequencies requiring more intrusive filters with
higher cut-off frequencies. In this way, they can likewise
affect the ischemia-induced changes in the ECG ST-segment,
compromising its biometric modality. Thus, the reason why
it has been a long-standing practice employing a high-pass
filter with a frequency cut-off not greater than 0.05 Hz
for baseline wander removal. Notch filter-based approaches
have widely proved advantageous over other methods for
power-line interference cancellation in ECG signals [35],
[99], [161]–[165]. However, using a notch filter tuned to
the pulse frequency of 50 Hz or 60 Hz to suppress power
line interference [255], the elimination may be delayed with
a ‘‘rebound’’ or ringing artifact before onset and offset
events [256]. Besides, proper tuning for bandwidth selection
employing notch filters remains challenging [255], [256].
The authors in [257] introduced a robust framework for
ECG-based power line interference removal by adopting an
adaptive notch filter combined with a discrete-time oscil-
lator and modified recursive least square (MRLS) scheme
for ECG recordings. The work in [201] discusses several
potential EMD-based adaptive filtering methods and reduc-
tion methods for power line interference cancellation in the
ECG signal. Since researchers have introduced the use of
notch filters and adaptive cancellers for power line interfer-
ence suppression, the authors in [258] proposed an improved
adaptive canceller for power line interference suppression
in ECG-based signals via the LMS estimation methodology.
In [259], a technique for eliminating power line interference
in ECG signals, adopting an adaptive noise-canceling filter,
is presented. In [260], two different hybrid signal processing

schemes, namely i) EEMD-BLMS (ensemble EMD (EEMD)
combined by Block LMS (BLMS)) adaptive algorithm and
ii) Wavelet neural network (WNN) (discrete Wavelet trans-
form (DWT) combined by the neural network), have been
applied for baseline wander and power line interference
suppression. Another EEMD-based method for removing
power line interference in noisy ECG recordings is intro-
duced in [261], where they decomposed the noisy ECG signal
into intrinsic mode functions (IMFs) via EMD. The work
in [262] attempts to reduce the number of required compo-
nents in filter implementation and then introduced nonrecur-
sive FIR filters (NRFIR) for removal of base-line wander and
power line interference from the ECG signal. Comparatively,
the methodologies based on either EMD and wavelet domain
are effective for powerline interference suppression in ECG
signals [262]. As the ECG signal is relatively weak and
vulnerable to several noise artifacts, the thresholding realized
in either EMD or wavelet domain straightforwardly will lead
to insufficient denoising, particularly in biometric authentica-
tion applications. However, in the ECG denoising approach
based on noise reduction in hybrid EMD-Wavelet method-
ology introduced in [263], denoised using wavelet threshold
cannot discriminate between high-frequency noise and the
QRS information. To overcome the challenge, the authors
in [197] introduced an ECG denoising method adopting noise
reduction algorithms in EMD and wavelet domains. To pre-
serve the QRS complex, windowing in the EMD domain
is proposed in [197], to reduce the noise from the initial
IMFs, instead of discarding them completely, thus yield-
ing a relatively cleaner ECG signal. Yet, the prior methods
require different techniques for powerline interference and
baseline wander removal, which often leads to some loss
in the underlying ECG signal structural information in the
improvement process. Thus, finding the filters capable of
simultaneously removing both the baseline wander and pow-
erline interference without compromising ECG signal mor-
phology is a relevant task. The authors in [264] introduced
an iterative method to decompose a multi-component non-
stationary ECG signal into mono-component signals based
on repeatedly performing eigenvalue decomposition (EVD)
on the Hankel matrix (HM) (i.e., EVDHM). The results
in [264] show that, unlike EMD, the EVDHM approach can
separate constituent mono-component signals that are not
influenced by their mean frequencies ratio nor by their rel-
ative amplitudes. This EVDHM method has been applied in
speech signal processing in [265] to extract the time-varying
fundamental frequency component of voiced speech signal
for accurate identification of glottal closure instants (GCIs).
In [256], the EVDHM method has been used for simulta-
neous powerline interference and baseline wander removal
by finding their corresponding eigenvalues components as
the powerline interference and baseline wander both possess
frequency domain narrow-band nature.

The obtained ECG signal after filtering is resampled
by down-sampling (for digitization) with the frequency
of 100 Hz [266], 125 Hz [267], 200 Hz [268], 250 Hz [269],
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257 Hz [17], 360 Hz [17], 50 Hz [269], 4 Hz [270] and
1 kHz [99]. It is worth mentioning that, at the original
sampling rate, the phase angles corresponding to the ECG
waveform feature frequencies are small, which would lead
to inaccuracies in biometric identification. Down-sampling
improves the phase angle resolutions and makes it more
straightforward to classify the corresponding ECG wave-
form feature required for biometric identification. In [269],
employing linear interpolation, the original 1,000 Hz ECG
signals were down-sampled (or resampled) to 500 Hz,
250 Hz, 100 Hz, and 50 Hz sampling frequencies. While
resampling to 500 or 250 Hz in [269] leads to best concor-
dance, resampling to 50 Hz proved unsatisfactory for both
time- and frequency-domain analyses. Specifically, at 50 Hz,
the root-mean-square successive differences (RMSSDs) and
the high-frequency power (expressed in absolute and nor-
malized units) have a propensity of high values and ran-
dom errors. However, in [269], ECG signals downsampled to
100 Hz yielded acceptable results for time-domain analysis
and Poincaré plots, but not for frequency-domain.

6) ECG SIGNAL NORMALIZATION
Notably, the use of various acquisition equipment or the
interaction of the subject with it may cause differences in
the signal amplitude and DC offset voltage in ECG [22].
Additionally, heart rate variability, a physiologically inher-
ent variation in heartbeat durations, is modulated by sev-
eral physiological factors. Thus, numerous researchers have
introduced amplitude and time normalization algorithms for
ECG-based biometric to address these concerns as amplitude
or time normalization is necessary for identification [20],
[91], [247], [271]. ECG signal normalization entails scal-
ing the ECG signal amplitude to the same peak ampli-
tude. Moreover, in ECG biometrics, the ECG signals suffer
from inter-subject and inter-session (intra-subject) variabil-
ity; hence, obtaining latency and amplitude invariant set of
features becomes essential [226]. To address the emerging
challenges, time and amplitude normalization is performed
by re-scaling each segment to the corresponding number of
samples and amplitude. Time normalization has been very
less commonly employed. The authors in [272] introduced
a method of normalizing ECG signals to a standard heart
rate, to lower the false rate detection. In [273], the authors
normalized the QRS complexes to extract the salient features
and to reduce error discrepancies and, they find that the
normalized convoluted result exhibits waveforms comparable
to QRS complexes.

In the following, we present several commonly used nor-
malization techniques for preprocessing ECG signals.
(a) Min-Max Normalization: Based on amplitude normal-

ization, the authors in [274], propose to normalize the
heart-beats to have a minimum value of zero and a
maximum value of 1 in the following formulation:

y[n] =
x[n]−min
max−min

(5)

where y and x denote the normalized and the original
segments, respectively, while max and min are the max-
imum and minimum values of the feature dimensions
of x[n], respectively. The authors in [22], [114], [275],
[276], [276] also used the min-max normalization rule
in (5) to map the original data to 0 − 1 by a linear
transformation.

(b) Max-Div Normalization: The authors in [226] and [278]
take the segmented time-normalized signals and normal-
ize them using a normalization factor of the average
R-peak amplitude value. Which specifically reads:

y[n] =
x[n]
max

(6)

where y and x denote the normalized and the original
segments, respectively, while max is the maximum val-
ues of the feature dimensions of x[n].

(c) Z-Score Normalization: The authors in [99] introduced a
z-score approach to normalizing the heartbeat segments
by initially subtracting the signal mean and then dividing
the result by the standard deviation: The Z-score normal-
ization technique reads:

y[n] =
x[n]− µ

σ
(7)

where y and x denote the normalized and the original
segments, respectively, while µ and σ are the mean
values and standard deviation of the ECG signal, respec-
tively. The author in [279] also used the Z-score nor-
malization rule in (7) to remove the amplitude scaling
problem present in the ECG signal x[n].

(d) Median Normalization: The median normalization tech-
nique adopts the median and median absolute deviation
(MAD) normalization rather than the mean and standard
deviation employed in z-score normalization [280]. The
median normalization technique reads:

y[n] =
x[n]− median

MAD
(8)

where y and x denote the normalized and the origi-
nal segments, respectively, while median and MAD are
the median values and median absolute deviation of
the raw ECG signal x[n], respectively, where MAD =
median(|x[n]−median|). It has been employed in [281].

(e) Decimal Scaling Normalization: In contrast to linear
normalization techniques, the non-linear normalization
technique may furnish better performance based on the
nature of the raw ECG signal. Here, the raw ECG signal
values are normalized to the range [0, 1] in a non-linear
fashion as

y[n] =
x[n]

10blog10 maxc (9)

where y and x denote the normalized and the origi-
nal segments, respectively, log10 is the logarithm base
10 operator, b.c is the floor operator which rounds to the
nearest integer below its current value, and max is the
maximum values of the raw ECG signal x[n].
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TABLE 6. Summary of normalization techniques.

(f) Tanh Normalization: Tanh normalization relies on the
tanh estimator introduced in [282]. It maps the raw ECG
signal in the range of [0, 1] as

y[n] =
1
2

(
tanh

{
0.01

(
x[n]− µG

σG

)}
+ 1

)
(10)

where y and x denote the normalized and the original
segments, respectively, while µG and σG are the mean
and standard deviation of the genuine matching score
distribution of the raw ECG signal x[n], respectively,
as given by Hampel estimators. The estimator in (10)
is based on the following influence ψ-function:

ψ(u) =



u 0 ≤ |u| < a,
a ∗ sign(u) a ≤ |u| < b,

a ∗ sign(u) ∗
(
c−|u|
c−b

)
b ≤ |u| < c,

0 |u| ≥ c

(11)

where

sign(u) =

{
+1 if u ≥ 0
−1 otherwise.

(12)

The Hampel [282] influence function decreases the
influence of the scores at the distribution tails (distin-
guished by a, b, and c) throughout the estimation of
the location and scale parameters. Thus, this technique
becomes less sensitive to outliers.

(g) Double Sigmoid Normalization: The double sigmoid
normalization technique introduced in [283] furnishes a
linear transformation of the scores in the region of over-
lap, while the scores outside this region are transformed
non-linearly. Thus, double sigmoid normalization trans-
forms the scores into the range of [0, 1] using

y[n] =


1

1+ exp
(
− 2 x[n]−1r1

) if x[n] < m

1

1+ exp
(
− 2 x[n]−1r2

) otherwise.
(13)

where m is the reference point chosen (i.e., some value
falling in the region of genuine and impostor scores)
and the parameters r1 and r2 is the left and right edges
of the region in which the function is linear. In (13),
r1 and r2 are chosen as, r1 = m − min(x[n]) and
r2 = max(x[n]− m).

Table 6 presents a summary of the characteristics of the
different normalization techniques.

B. ECG SIGNAL FEATURE EXTRACTION CATEGORIES
There are diverse methods of feature extraction that have
been proposed for ECG-based biometrics [95]. We provide
an overview of the existing methods on ECG-based feature
extraction (i.e., handcrafted4 and non-handcrafted feature
extraction) techniques for biometric authentication. Specifi-
cally, to contribute to the ECG-based biometric investigation,
we summarize, in Table 7, feature extraction modalities from
existing studies using evaluation metrics like EER, accuracy,
false accept rate (FAR), and false reject rate (FRR). In recent
decades, several types of handcrafted feature extractionmeth-
ods such as fiducial feature extraction, DCT, auto-correlation,
and wavelet transform have been used to extract the signal
features for the classification problem for ECG-based bio-
metric authentication and identification.

1) HANDCRAFTED FEATURE-BASED ALGORITHMS
There are two major types of handcrafted feature extrac-
tion methods, one being fiducial based and the other being
non-fiducial based. In [22], [266], [271], [284]–[290], hand-
crafted feature vectors were extracted from the QRS complex
of heartbeats as this region is deemed to contain most ECG
signal information. However, research investigations in [189]
demonstrate that the P, Q, R, S, and T peak wave also holds
significant information. Compared with the P, Q, R, S, and
T peak wave, the QRS corresponds to a higher polarisation
event over a shorter period [73]. Hence, the QRS is more
dominant over noise and intrasubject variability than the
other ECG waveforms, making it better suited for biometric
recognition.

The fiducial features-based algorithms employ the ECG
beats characteristic points (onset and offset) of the P, QRS,
and T waves, the time difference between the peaks of the
Q and T waves, and the QT interval in a single ECG beat
or segment. Existing works have employed diverse sub-
sets of these fiducial features [284], [291], [292]. While
the non-fiducial feature extraction method does not employ
characteristic points for the feature set generation [284], the
algorithms depend on thoroughly analyzing the ECG sig-
nal, usually via applying time or frequency analysis to
acquire other statistical features. Generally, the non-fiducial
feature-based algorithms extract discriminative information

4Generally, in the machine learning community, the term ‘‘handcrafted
features’’ implies features handcrafted via human experts premised on their
expertise and prior knowledge in the field.
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TABLE 7. Summary of the existing state-of-the-art feature extraction methods for ECG-based biometric authentication.

from the ECG waveform and eliminate the need for fidu-
cial point localization for biometric recognition. Existing
works have employed diverse subsets of these non-fiducial
features like Wavelet transform [11], [293]–[295], autocor-
relation [287], [288], [295], DCT [23], [289], [296], and
normalize-nonvoluted normalize (NCN) [266], [293], [297].

2) NON-HANDCRAFTED FUDUCIAL FEATURE-BASED
ALGORITHMS
Non-handcrafted features based algorithm are recently being
explored [5], [11], [18], [36], [41], [49], [302]. Specifically,
the non-handcrafted feature-based algorithms are designed
using three foremost approaches: deep feature extraction
from a CNN [5], [11], [49], PCA network, and the compact
binary descriptor (CBD). Thus, deep learning methods aids
promote performance by neglecting the handcrafted feature
extraction approaches, which require separate preprocessing
steps as feature transforms and ECG noise removal, thus
improves performance.

C. ECG SIGNAL FEATURE SELECTION
Generally, an essential phase in ECG data preparation, which
is one of the significant challenges in the development of the
classification model, is feature selection. Feature selection

FIGURE 5. Illustration of the filter-based feature selection methods.

methodology is an approach to choosing a minimum subset
of features from the original set of features to optimally
reduce the feature space dimension without affecting the
classification accuracy. Generally, there exist three methods
of solving the feature selection problem: filters, wrappers,
and embedded methods [303], [304]. While the filter-based
approach selects features by statistical properties via a filter
approach, the learning model performance is not usually
as high as that of the wrapper approach since the feature
selected may not be the optimal one feasible [303]. However,
the filter-based approaches are readily scalable to high-
dimensional datasets, computationally uncomplicated, and
fast [304]. Figure 5 illustrates the filter-based feature selec-
tion methods. The wrapper technique employs optimization
algorithms in the learningmachinemethodology to determine
the optimal subset of features. Here, the search algorithm
is wrapped around the classification model, which provides
a feature subset that can be evaluated by the classification
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FIGURE 6. Illustration of the wrapped-based feature selection methods.

algorithm [304]. Moreover, wrapper methods typically con-
sider feature dependencies and accommodate interaction
between feature subset search and choice of a learning model
but are computationally challenging concerning filters. Illus-
tration of the wrapped-based feature selection method is
depicted in Fig. 6. Some representative examples of wrap-
per methods are forward feature selection, backward fea-
ture elimination, recursive feature elimination. On the other
hand, the embedded method builds an optimal feature subset
search into the classifier framework. That is, it combines
feature selection into the classifier training process. Under
the embedded method, combining feature selection into the
classifier training process makes them specific to the utilized
learning model, just like the wrappers, with the advantage of
being less computationally challenging than wrappers [304].
While filters- or wrapper-based feature selection technique
is more commonly used separately in the literature, several
other studies have combined the filter and wrapper feature
selection schemes [305], [306].

In [305] and [306], the wrapper-based feature selection
method has been proposed to reduce the dataset dimension
and improve classifier accuracy. These works differ in three
applied materials: datasets, classifiers, and feature selection
methods. The authors in [307] and [308] introduced a hybrid
genetic algorithm (GA)-based feature selection methods.
A Parallel GA-based feature selection optimization has been
introduced in [309]. In [310], a heuristic search method has
been employed for the feature selection problem. In [311],
a multi-objective evolutionary algorithm (MOEA) technique
has been introduced for feature selection. A genetic algorithm
for feature selection in binary classification has been utilized
for dimensionality reduction to improve ECG data classifica-
tion performance in [312]. The authors in [313] used a nor-
malized mutual information-based feature selection wrapper
embedded with kNN machine learning model classification
to improve the classification accuracy.

D. ECG SIGNAL FEATURE TRANSFORMATION
Feature selection is often overlooked with dimensionality
reduction (sometimes known as feature transformation) [73],
[78]. Both methods tend to reduce the number of attributes
in the dataset. While feature selection reduces the feature
dimension by including and excluding attributes present in
the data without modifying them (i.e., selecting a more dis-
criminative subset among an initial feature set), the fea-
ture transformation (or dimensionality reduction) method

achieves this by creating new combinations of attributes [73],
[78]. Some examples of feature transformation methods are
PCA, SVD, LDA, and ICA.

1) PCA FOR DIMENSIONALITY REDUCTION (FEATURE
TRANSFORMATION)
The PCA is a classical unsupervised dimensionality reduction
method that learns a projection matrix such that the variance
of low-dimensional data is maximized [314]. The technique
is linear in that the components are linear combinations of
the original feature variables. However, for effective visu-
alization, the non-linearity in the data is preserved. Large
datasets are increasingly common and are often challeng-
ing to interpret. Principal component analysis (PCA) is a
technique for reducing the dimensionality of large datasets,
increasing interpretability but at the same time minimizing
information loss [314]. The most popular problem of unsu-
pervised algorithms is that the label information is not used in
the classification task. However, using labeled information of
the learning data sets to createmore efficientmethods, such as
supervised dimensionality reduction for ECG-based biomet-
ric authentication, improves detection accuracy [315], [316].
See, for instance, in [317] for comprehensive history and
treatment of PCA. In [318], the authors employed the PCA
method for feature reduction of ECG signals by assuming
that the set of attributes can be split into subgroups of similar
characteristics and then subjected to PCA. An extension of
the PCA, termed Kernel PCA, is a non-linear generalization
that corresponds to PCA realized in a reproducing kernel
Hilbert space associated with a positive-definite kernel. The
experimental results in [32] show higher test recognition
rates of Gaussian one-against-all (OAA) SVMs on random
unknown ECG data sets with the use of the Kernel PCA as
compared to the use of the LDA and PCA.

2) SVD FOR FEATURE TRANSFORMATION
Generally, singular value plays a significant role in the gen-
eration of various hash functions [215]. The singular value
decomposition (SVD) of a matrix X is the factorization of X
into the product of three matrices. That is, matrix X ∈ CN×M

is decomposed into the SVD in the form [63], [64], [215]

X = U6V (14)

where columns of U ∈ CN×N and V ∈ CM×M are, respec-
tively, left- and right-singular vectors for the corresponding
singular values. Here, SVD has decomposed the signal into
singular matrix as U ,6 ∈ CN×M and V sub-matrixes, where
6 is known as the diagonal singular matrix. SVD decomposes
the original matrix into a non-correlated variable matrix and
thus enables dimensionality reduction based on their low rank
of singular (6 ∈ CN×M ) matrix.

3) LDA FOR FEATURE TRANSFORMATION
LDA is a popular supervised feature transformation methods
for dimensionality reduction. However, whenever its distance
criterion of the objective function uses `2-norm, it is sensitive
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to outliers [320]. However, LDA suffers from several draw-
backs discussed in the following:
(a) The first drawback is that conventional LDA is inca-

pable of handling multi-modal data, whose distribution
is more complex than Gaussian. Several methods have
been proposed in the literature to overcome this issue.
For example, the authors in [321] introduced a pairwise
formulation of LDA, so-called neighborhood MinMax
projections (NMMP), which strives to pull the consid-
ered pairwise points within the same class as close as
possible while those between different classes as far as
possible. Moreover, the method in [321] has three signif-
icant advantages: (i) it can extract more discriminative
features. (ii) it can manage the case where the class
distributions are more complex than Gaussian. (iii) the
singularity challenge existing in LDA does not naturally
occur.

(b) Most feature transformation or dimensionality reduction
methods require solving the Trace Ratio (TR) prob-
lem, which does not directly have a closed-form global
optimum solution. The authors in [322] proposed a
decomposed Newton’s method (DNM) that efficiently
determines the global optimum solution to the TR prob-
lem.

(c) The LDA method likewise requires sufficient training
data to avoid the small sample size problem (or under-
sampled problem) [323], which makes it challenging
to manage small-scale data with high dimensionality.
To overcome the sample size problem, several LDA
extensions have been introduced, such as two-stage
LDA [324], orthogonal LDA (OLDA) [325], maxi-
mum margin criterion (MMC) [326], regularized LDA
(RLDA) [327], pseudo-inverse LDA (PLDA) [328],
direct LDA (DLDA) [329], angle linear discrimi-
nant embedding (ALDE) [330], and null space LDA
(NLDA) [331].

(d) LDA and its variants are sensitive to outliers [320]. That
is since it uses the `2-norm as the distance criterion
of the objective function, it amplifies the impact of
outliers in the objective function [320]. Consequently,
many robust feature transformation methods for dimen-
sionality reduction methods by joint `1-norm, such as
`1-PCA [24], `1-LDA [25], have been introduced.

4) ICA FOR FEATURE TRANSFORMATION METHOD
Contrary to PCA, ICA identifies non-Gaussian components,
and the goal is to linearly transform the data structures in
such a way that variables after transformation are indepen-
dent of each other [78]. Since ECG signals are recorded
usually in a high-dimensional space, classification rules in
the high-dimensional feature space are difficult to learn
and time-consuming. Hence, several ICA algorithms, for
instance, Infomax, FastICA, and second-order blind identi-
fication (SOBI) have been introduced. These components are
statistically independent, i.e., there is no overlapping infor-
mation between the components. While the ICA involves

high order statistics, the PCA involves second-order statistics
by constraining the components to be mutually orthogonal.
Thus, makes the PCA and ICA frequently select different
subspaces to project the data. While the ICA has been
proposed as an alternative to PCA, it suffers several chal-
lenges owing to instability, the choice of the number of
components to extract, and high dimensionality. However,
for high-dimensional ECG data sets, the PCA is usually
employed as a preprocessing step to reduce the feature set
dimensionality. Besides, the ICA can subsequently be applied
to the subset of data summarized by a small number of PCs
from the PCA.

E. ECG SIGNAL CLASSIFICATION
ECG signal classification plays a crucial role in ECG-based
biometric identification for human authentication, and it
entirely relies on the extraction of features from ECG wave-
forms. Classification of ECG signals is a challenging prob-
lem owing to problems associated with the classification
process [78]. The significant problems in ECG classifica-
tion tasks include lack of standardization of ECG features,
the nonexistence of optimal classification rules for ECG clas-
sification, the individuality of the ECG patterns, variability
amongst the ECG features, and variability in the subject ECG
waveforms [78]. It is worth noting that an ECG-based identi-
fication system initially requires an enrolment phase, which
serves to acquire and store the subject’s unique attributes.
Here, specific preprocessing for noise and artifact rejection,
including feature extraction, are realized before the data
storage. After the features of distinctive subjects are stored,
the identification phase can commence. During signal identi-
fication, the unknown ECG introduced to the system requires
preprocessing initially to remove the noise, and then feature
extraction/transformation is performed subsequently, as in
the enrolment phase [115]. Moreover, a specific classification
algorithm assigns the extracted features to the best matching
subject’s data, as stored in the database.

In the following, we concentrate on classification strategies
for ECG-based human recognition.

1) ANN CLASSIFICATION MODELS
ANNs, an established biologically-inspired paradigm, is a
promising machine learning method in classifying non-linear
ECG signals for biometric recognition. ANN uses diverse
methods in its implementation processes, such as supervised
learning, unsupervised learning, or reinforcement learning.
Several researchers have adopted diverse models of neural
networks for ECG signal classification. The ANNmodels are
data-driven, self-adaptive, non-linear, accurate, fast, robust to
noise, and easily scalable [78]. Some of the major benefits of
ANN includes:

• It renders a non-linear mapping between inputs and
outputs utilizing activation functions such as sigmoid
and can be applied to solve the non-linear problem such
as classification of ECG signals [78].
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• It can achieve comparable or better results than statisti-
cal or deterministic methods. It is worth noting that since
statistical methods are designed based on the assumption
of given linear time series, it cannot yield reliable results
for the non-linear problem but performs well for linear
problems.

• The ANN methodology can adaptively model the ECG
low frequencies components, which are inherently non-
linear.

• Using ANN enables the easy removal of the ECG signal
time-varying and non-linear noise characteristics.

Some of the major drawbacks of ANN includes:
• The ANN training algorithm is typically unable to guar-
antee a global minimum set of weights.

• ANN typically may not necessarily furnish an optimal
solution for the entire 12-lead ECG classification pro-
cess [78].

Prior hardware-basedANN realization often uses a finite state
machine (FSM) combine with a generic arithmetic logic unit
(ALU) to realize neurons for the feed-forward computation
and then reuses the neurons in hidden layers and output layer
for feed-forward computation. The most popular and gener-
ally utilized learning algorithm applied for ANN weight esti-
mation is the backpropagation (BP) algorithm. The general
practice for updating weights is: 1Wji = ηδjOi where [332]:
• η denotes the learning rate (real number), which defines
the gradient descent search step size. Setting a larger
value for the learning rate may aid the network to
converge faster. However, due to the gradient’s larger
step size, the oscillation problem may occur and cause
divergence, or in some cases, overshooting the mini-
mum. On the other hand, by setting a lower value for
the learning rate, will aid the gradient to move in the
correct direction and gradually approach the minimum
point. However, the convergence rate is compromised,
resulting from the smaller steps taken by the gradient.

• Oi denotes the output calculated via the ith neuron.
• δj = Oj(1−Oj)(Dj −Oj) for the output neurons, where
Dj the desired output for the neuron j and

• δj = Oj(1 − Oj)
∑

k δkWkj for the hidden (internal)
neurons.

Specifically, ANNs attempt to solve linear classification and
non-linear classification problems using backpropagation are
powerful learning architectures. The various ANN archi-
tectures commonly applied in the ECG classification field
includes:
(a) Complex valued ANN (CVANN): CVANN, whose

parameters (i.e., weights, threshold values, inputs,
and outputs) are all complex numbers, find applica-
tion in fields dealing with complex numbers such as
ECG-based biometric recognition. The benefit of adopt-
ing CVANN rather than a real-valued ANN (RVANN)
counterpart is well-known [75]. However, the selec-
tion of nodes activation function in CVANN is a chal-
lenging problem. The authors in [333] applied the
CVANN for ECG signal classification, where achieved

accuracy rates of 99.8% (averaged) and 99.2% for
the first and second classification tasks, respectively.
In [334] the authors proposed CVANN for ECG signal
classification, which achieved a 100% accuracy rate
using a 3-level based complex wavelet transform.

(b) Backpropagation neural network (BPNN): The BPNN
algorithm is the most common supervised learning
algorithm and most extensively applied and popular
method to optimize the feed-forward neural network
training. The seminal work of [42] introduced the auto-
mated recognition in which a BPNN classifier with
time-domain name functions of each beat extracted from
a 12-electrode ECG is employed. The work in [335]
proposed an automated ECG recognition method based
on a BPNN, which exhibited a steady precision of more
than 99% recognition of ECG signal.

2) DEEP LEARNING METHODS APPLIED AS CLASSIFICATION
Deep Learning (or deep structured learning), a subset of arti-
ficial intelligence and machine learning, has been used lately
in ECG signals for classification purposes. Deep learning
surfaced in the works of [336], [337] with DBNs5 within
a framework machine learning system that employs multi-
ple layers of non-linear information processing for super-
vised or unsupervised classification and can be used also
for feature extraction and transformation. Specifically, deep
learning methods aim at learning feature hierarchies with
higher-level learned features defined in terms of lower-level
features. Based on the successful deep learning architecture,
recent algorithmic improvements in ECG classification are
mainly devoted to a DNN. While diverse works have pre-
sented some performance improvements, they still depend
on a comparatively direct application of DNNs. Training
method and model architecture improvements for ECG have
not rigorously been investigated, which allows for expansion
and modification. After the development of DBNs, several
other unsupervised deep learning models have been proposed
to improve the performance of ECG classification tasks. For
example, (1) sparse autoencoder network [336], learns sparse
overcomplete features. It uses a linear encoder and a linear
decoder, preceded by a sparsifying non-linearity, that turns a
code vector into a quasi-binary sparse code vector, and (2) an
autoencoder-based greedy layer-wise unsupervised learning
introduced in [43].

• Type of Deep Learning Approaches: With the advance-
ment of novel optimization algorithms, new milestones
were realized in deep learning, giving rise to the fol-
lowing three categories of deep learning training: DSL,
DSSL, and DUL.

(a) DSL: DSL (or supervised deep networks), so-called
discriminative deep networks, are designed to pro-
vide higher discriminative power for classification

5A DBN consists of a stack of RBMs [336], [337]. The core of the DBN
is composed of a greedy learning algorithm that optimizes, which works by
optimizing the network weights layer by layer.
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purposes usually via characterizing the posterior dis-
tributions of classes trained on the visible data. Target
label data are continually available in direct or indirect
forms for such supervised learning. Hence, making
DSL models typically exceedingly efficient to train
and test, more flexible to design, and more fitting for
end-to-end learning of complex systems. DSL can be
classified into the following different types: CNNs
and RNNs.
– CNNs: CNN is one of the most common DNN
architecture usually trained by a gradient-based
optimization algorithm. Generally, CNN includes
multiple back-to-back layers combined in a
feed-forward fashion. Few previous works that
use CNN as classifiers for ECG biometric authen-
tication [339] have been proposed. In [339],
a multimodal biometric system, combining CNN
and Q-Gaussian multi-SVM that relies on distinct
fusion levels, has been introduced for authen-
tication. They obtained an EER = 3.2% using
PTB database and EER = 2.9% for CYBHi
database. The authors in [391] also generated the
feature template employing the CNN classifier,
which they preserved utilizing the matrix opera-
tion method. Finally, they introduced QG-MSVM
classifier for authentication. They realized an
EER of 3.5% with the PTB database. In [119],
an authentication system, employing a combi-
nation of manual features and CNN based on
ECG, is introduced. They employed scanning
and eliminating techniques for feature extraction
and CNN for classification. They realized an
EER of 4.47% and 1.63%, typically by applying
CYBHi and PTB databases, respectively. In [108],
deep CNN on a PTB database containing 109 sub-
jects and all 64 ECG channels is proposed, where
data augmentation techniques are explored for
the training. They realized an EER of 0.19%
using the Physionet database. In [5], a Deep-
ECG, a CNN-based biometric approach for ECG
signals, is introduced for biometric recognition,
where they used stochastic gradient descent with
momentum for training. Their algorithm achieved
2.90% EER using the PTB database for authenti-
cation. Only a few studies have used deep-CNN
strategies for ECG analysis [286], [338], but
focus on the classification of heartbeats in healthy
and non-healthy other than for biometric recog-
nition. The work in [340] proposed the appli-
cation of CNNs to develop human recognition
system employing ECG. They developed the ECG
features from 1-D CNN and 2-D CNN utiliz-
ing two strategies: the raw ECG signal strat-
egy and the heartbeat spectrogram representation
strategy, and then applied a score level fusion
for three fusion strategies at score level: sum

rule, mean rule, and multiplication rule. They
realized for 1-D CNN an EER of 15.60% for
2-D CNN and EER of 20.48%, and the fusion
of two CNN models and EER of 13.93%. The
work in [401] proposed the application of CNNs
to develop human recognition system employ-
ing ECG. They realized for the 1-D CNN an
EER of 1.53% using the PTB database and an
EER of 0.27% using the CYBHi database. The
work in [11] developed a 1-D CNN-based biomet-
ric recognition system for human authentication
and subsequently evaluated their method employ-
ing eight datasets from PhysioNet (CEBSDB,
WECG, FANTASIA, NSRDB, STDB, MITDB,
AFDB, and VFDB), where they realized good
performance. They realized for the 1-D CNN an
average identification rate of 93.5%, evaluated
on eight ECG datasets. Few studies have com-
bined CNNswith other methods. Considering that
CNN is less sensitive to noise, in [341], an ECG-
based biometric authentication system, which
incorporates the generalized S-transformation and
CNN techniques, is proposed to achieve an
improvement in the accuracy of classification.
They achieved identification rates of 99%, 98%,
and 99% using the ECG-ID database, Phys-
ionet database Atrial fibrillation (AF) ECG sig-
nals, and Physionet database noisy ECG signals,
respectively.

– RNNs: RNN is a category of ANNs where con-
nections between nodes form a directed graph
along a temporal sequence. The use of advanced
architectures of RNNs, such as LSTM and GRUs
for learning long dependencies, has led to sig-
nificant improvements in various tasks, such as
in the application of ECG-based biometric recog-
nition. The principal notion behind these net-
works is to employ many gates to control the
information flow from previous steps to the cur-
rent steps. By using gates, any recurrent unit
can learn a mapping from one point to another.
LSTM is used widely in time series signal anal-
ysis, such as the classification of ECG signals.
In [342], a bidirectional LSTM-based deep RNN
using late-fusion to construct a real-time system is
proposed for ECG-based biometrics identification
and classification. Here, two public datasets were
used to evaluate the proposed model: MIT-BIH
Normal Sinus Rhythm (NSRDB) and MIT-BIH
Arrhythmia (MITDB), where they achieved an
overall high classification accuracy. The pro-
posed LSTM-based deep RNN model achieved
an overall precision of 100% (and 99.8%), recall
of 100%, an accuracy of 100% (and 99.8%), and
F1-score of 1 (and 0.99) using MIT-BIH normal
sinus rhythm database (and MIT-BIH Arrhythmia

VOLUME 9, 2021 97783



A. N. UWAECHIA, D. A. RAMLI: Comprehensive Survey on ECG Signals as New Biometric Modality

database), respectively. In [69], LSTM demon-
strated to be more appropriate than GRUs for
identification and classification in ECG biomet-
rics. They achieved nearly 100% classification
accuracy for the identification problem using the
ECG-ID dataset and observed similar results for
the MITDB dataset.

(b) DUL: Extensively, from the viewpoint of generative
learning, DUL (or unsupervised deep networks) are
pre-trained using generating models, such as RBMs,
and can be subsequently fine-tuned using standard
supervised learning algorithms. Then subsequently
applied to the test data set for classifications. Specifi-
cally, DUL methods operate without labeled classes
capturing high-order correlation of data. The fol-
lowing are the most common architectures of DUL
models: autoencoder-basedmethods, DBNs, and deep
Boltzmann machines (DBMs).
– Autoencoder-BasedMethods:Autoencoders (AE)
are neural networks that can learn complex repre-
sentations of the data and are used to automati-
cally extract and select features for classification
in an unsupervised fashion from ECG data anno-
tated with beat locations. Specifically, AE has
been used to learn lower-dimensional representa-
tions of the original data and pre-train other deep
learning networks, e.g., CNNs. In [1], an autoen-
coder has been used to pre-train a DNN for the
active classification of ECG signals for biometric
recognition. In [343], an ECG-based biometric
identification system that uses a deep autoencoder
for feature learning to classify ECG signals is
proposed.

– DBNs: A DBN is a multi-layer generative graph-
ical model. Generally, the DBN architecture is
composed of stacked RBMs. RBM is a Markov
random field model, which constitutes a visible
layer corresponding to the input layer and a hid-
den layer corresponding to the latent feature rep-
resentation. As the connections between nodes
are bidirectional given an input vector, DBN can
extract low-dimensional latent features and select
critical channels to classify affective states using
ECG signals. Besides, each layer requires unsu-
pervised training and subsequently fine-tuned by
adding a linear classifier to the top layer of the
DBN and performing a supervised optimization.
The seminal work of [336] introduced an RBM,
an undirected model for binary random variables
to model distributions over binary-valued data.
Each RBM includes a visible unit layer represent-
ing the data and a layer of hidden units that learn
to represent features and capture higher-order cor-
relations. Moreover, the seminal work of [337]
introduced the DBN, which models evolving

random variables over time and is composed
of multiple RBM layers. Here, in each layer,
each RBM receives the previous layer inputs and
feeds the RBM in the next layer. Hence, training
DBNs involves training RBMs, layer by layer,
from bottom to up. In [19], RBM combined with
DBN for single-lead ECG classification follow-
ing the detection of ventricular and supraven-
tricular heartbeats using single-lead ECG is pro-
posed. Their results show that RBM and DBN
can achieve high average recognition accuracies
93.63% and 95.57%, respectively, at a low sam-
pling rate of 114 Hz using the MIT-BIH database.

– DBMs: Another pre-training method, namely
DBM, has also been presented in [344], where
a stack of slightly modified RBMs is used to
initialize the weights of a DBM. Results in [344]
show that DBM learns good generative models
and performs well in recognition tasks.

(c) DSSL: Complementing unsupervised learning (with
un-labeled data) with supervised learning (with
labeled data) is referred to as DSSL (or hybrid deep
networks). That is, DSSL algorithms use both gener-
ative (without labeled data) and discriminative (with
labeled data) model components. One example of the
DSSL is the GANs
– GANs: To learn ECG signals for classification,

we can leverage GANs to learn deep repre-
sentations without extensively annotated train-
ing data [345]. GANs are a class of unsuper-
vised machine learning algorithms. A GAN has
two components, a generator, and a discrimina-
tor, that compete against each other during train-
ing. While the generators generate samples with
approximate real data distribution via random
data, the discriminators require to discriminate
between true samples and false samples [345].
Game training is adopted to optimize model
weight parameters between the generator and dis-
criminator networks to enhance the model gener-
alization capability. In GAN, the generator maps
samples from an arbitrary latent distribution to
ambient data space, while the adversarial dis-
criminator aims to discriminate between real and
generated samples [345]. Besides, the adversar-
ial training method is applied to optimize both
modules. In [345], the use of GANs has been
investigated for ECG signal analysis, which can
then be utilized as additional training data to
enhance the classifier performance, where empir-
ical results show that the generated signals signif-
icantly improve ECG classification.

A typical characteristic of all the introduced deep learning
methods is their abilities in conserving temporal variation of
the ECG signal, which is considered a necessity for ECG
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classification [20]. This requires the ability to learn both
short-term and long-term learning for efficient classifica-
tion. Generally, deep learning method processing complexity
relies on the number of required floating-point operations for
processing the model [20]. That is, there is a strong rela-
tionship linking floating-point operations of a CNN model
and the model inference time furnished as R2 = 0.8888,
p−value < 0.0015 and the model energy consumption given
as R2 = 0.9641, p−value < 0.0001 [20].
Shortcomings of the Deep Earning Methods: Notwith-

standing the benefit of deep learning methods in enhanc-
ing the classification performance compared to conventional
machine learningmethods, they have the following shortcom-
ings: (i) Generally, it is common knowledge that too little
training data bring about overfitting problem in deep learning
methods as the model profoundly consider training data and
do not generalize adequately for the test data. Therefore,
shallowmethods render more reliable performance on a small
number of data samples. (ii)Most modern deep learningmod-
els are inclined to learn the ECG signal noise characteristics
giving rise to incorrect results. This challenge is noticeable
with the dataset size.

3) kNN CLASSIFICATION MODELS
One generally utilized algorithm for feature extraction
and classification of ECG-based biometric recognition and
authentication is the use of the k-nearest neighbor (kNN)
rule [346]. The fundamental concept of kNN algorithms
for classification relies on the principle that the instances
within a dataset will usually remain in close proximity to
other instances that have comparable characteristics [332].
For example, if the instances are classified/tagged with a
classification label, then the value of the label of an unclas-
sified instance is resolved by considering the class of its
nearest neighbors [332]. That is, kNN finds the k nearest
instances to the instance (query) and determines its class by
observing the single most common class label. The poten-
tial of the kNN classification model has been shown in an
ECG-based biometric recognition system, yet there are some
limitations regarding its practicality, which includes [346],
[347]: (i) they possess high storage requirements, (ii) the
classification is sensitive to the local distribution of the train-
ing samples, which may potentially result in the instabil-
ity of performance (iii) the classification lacks a reputable
means to choose k , besides by cross-validation or a related
computationally-expensive method.

Notably, choosing a proper value of k is crucial as it
influences the performance of the classification task of the
k-NN algorithm. For example, consider the following ratio-
nale why a kNN classifier may wrongly classify a training
sample: 1) The kNN is an instance-based machine learn-
ing algorithm as the learning process immediately applies
the available training set, making the classification sensi-
tive to the local distribution of the training samples leading
to instability of performance [347], [348], and 2) for the
basic kNN algorithm, the data cluster density influences its

performance, which results in wrong decision-making [347],
[348]. In [349], a kNN linear SVM and neural network
were used as the classifier model for ECG-based human
recognition on MIT-BIH and ECG-ID database. Their results
achieved an EER of 3.05% using the ECG-ID database.
In [350] the authors reported an identification accuracy
of 99.68% employing a probabilistic neural network (PNN)
and kNN classifier usingMP-based indices for an ECG-based
biometric system utilizing data acquired from ECG sig-
nals of 90 participants from the ECG-ID database. The
authors in [351] developed an automated expert human
identification system using ECG signals of 90 subjects
selected from the ECG-ID database available at Physionet
and applied kNN classifier to identify individuals using
a 5-fold cross-validation scheme achieving the highest aver-
age rate accuracy of 97.62 ± 1.9. The authors in [352] use
a discrete wavelet transform to extract wavelet coefficients
as the feature vector while employing KNN as the classifier
for ECG-based biometric identification. They achieved an
identification rate of 93.1%, 99.4%, and 82.3%, using the
MIT-BIH/Arrhythmia, MIT-BIH/Normal Sinus Rhythm, and
ECG-ID databases, respectively. In [353], an average accu-
racy rate of more than 98% was obtained for all classifiers
performing biometric identification in a mobile environment
using ECG signal across four commonly used classification
algorithms, namely Bayes network (BN), naive Bayes (NB),
MLP, and kNN employing theMIT-BIH normal sinus rhythm
database.

4) LDA BASED CLASSIFIER
LDA is also one of the most prevalent classifiers in
ECG-based biometric classification based on its high recog-
nition performance. The LDA-based classifier assumes that
the conditional probability density functions (PDF) of mul-
tiple classes are normally distributed with equal class
covariance. Notably, the Bayes rule turns out to be an
LDA [287]–[289]. That is, the LDA classifier stemmed from
Bayes’ principles [287], which requires the computation of
the posterior probability (P(i|x)) for the event belonging to
class i, given an observation x as

P(i|x) =
P(x|i)P(i)∑
∀j P(x|j)P(j)

, (15)

where P(x|i) is the likelihood probability of the observa-
tion x belonging to class i, P(i) is the prior6 probability of
any sample being class i, and

∑
∀j P(x|j)P(j) is the is the

probability of the observation occurring irrespective of class.
Subsequently, Bayes’ theorem is adopted for classification
by designating the unknown observation to the class with the
highest posterior probability as

P(x|i)P(i) > P(x|j)P(j), ∀j 6= i. (16)

6 Conventionally, the LDA classifier prior probability is naïvely set to be
the number of the ith class i sample divided by the total number of all class
samples.
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Instead of explicitly determining P(x|i), Gaussian prob-
ability distribution functions is generally assumed in the
derivation of LDA to simplify the training to the correspond-
ing parameter estimation (N (µ,6)) [287].
A closely linked method to LDA, the so-called Fisher’s

LDA, seldomly surfaces in ECG biometrics literature [324],
[354]. Fisher’s LDA differs from the conventional LDA in
that it does not make some of LDA’s underlying assumptions
like the normally distributed classes and equal covariance.
The authors in [355] use the LDA classifier to study the
viability of ECG-based biometric systems for human iden-
tification employing a publicly available database of five
subjects. PCA algorithm and LDA were applied for feature
transformation and classification, respectively, which results
in a 0%minimum average recognition error. In [356], an LDA
was used as a classification algorithm for biometric authen-
tication using ECG signals with the spectral power, maxi-
mum power, and maximum power frequency in the alpha
band as features. Two data sessions from four subjects were
acquired utilizing only one bipolar channel (O1A2). Here,
the time interval between the sessions ranged from 10 days
to 5 months, where the resulting classifiers produced an
authentication performance of 98.33% with test recordings
of 20 seconds duration. The authors in [34] demonstrates
the feasibility of LDA classification for human identifica-
tion using ECG signals, where 29 subjects (ranged in age
between 22 and 48) were tested with 12 repeat sessions
for a total of 41 sessions within the data set. Each indi-
vidual session contained a set of seven two-minute tasks
and results show LDA improves the classification model’s
performance.

5) ECG SIGNAL CLASSIFICATION BASED ON KERNEL
METHODS
Kernel methods are effective in ECG signal Classification,
whose best-known member is the SVM. SVMs were orig-
inally formulated for classification for binary (two-class)
problems. This classification method extends to consider
continuous outcomes and classification with more than two
classes. Notably, there are two types of methods for multi-
class SVM. One is by constructing and combining different
binary classifiers, while the other is by straightforwardly
considering all data in one optimization formulation. SVM
is a supervised learning algorithm introduced in [357] for
classification. Given a set of training data in a two-class
learning task, an SVM training algorithm constructs a clas-
sification function that designates new observations to one
of the two classes on either side of a hyperplane, making
it a nonprobabilistic binary linear classifier [357]. In [358],
SVM was applied for ECG signal classification utilizing a
fusion of three proposed types of characteristics: cepstral
coefficients, zero-crossing rate, and entropy and achieve high
human identification accuracy of 100% on ECG signals
that are from the MIT-BIH database, ECG-ID (Five record-
ings), and ECG-ID (Two recordings). In [346], physiolog-
ical information present in ECG intervals and amplitudes

were proposed for ECG signal classification using ANN,
kNN, and SVM classifiers on two ECG databases, namely
MIT-BIH Arrhythmia and ECG-ID databases. The results
show that the SVM classifier outperforms with a 93.709%
overall classification accuracy. In [359], 6 classifiers which
include ANNs, decision trees (DTs), Fisher linear discrimi-
nant analysis (FLDA), kNNs, NB, and SVMs, were utilized
for ECG-based biometric identification for human authen-
tication. They employed 1800 ECG signals acquired from
36 subjects using the MIT-BIH database and obtained the
highest accuracy rate of 95.46% in the case of the SVM
classifier.

6) DECISION TREE (DT) CLASSIFICATION MODELS
A decision tree is a classifier that conducts recursive partition
over the instance space and is composed of internal nodes,
edges, and leaf nodes [360]. Each internal node, the so-called
decision node, splits the instance space into two or more
sub-spaces based on certain functions of the input attribute
values [360]. Each leaf is allocated to one class that describes
the most proper or frequent target value. Based on the test
node path outcomes, instances are classified typically by
crossing the tree from the root node down to a leaf. Moreover,
each path can subsequently be transformed into a rule over
joining the tests along the path.

In [361], a scheme that considers the ECG signal as a con-
tinuous data stream is introduced, where the user is authenti-
cated every period of time for continuous authentication. The
samples are classified using the decision tree, SVM, k-NN
algorithms, where they achieved accuracy up to 96%, with
almost perfect system performance (kappa statistic >80%).
In [362], a methodology is presented for an ECG-based bio-
metric authentication system using raw ECG signals through
EMD. The feature extraction procedure combines five fea-
tures from statistical, time, and frequency domains, catego-
rized via the decision tree, SVM, and k-NN classification
methods. The 10-fold cross-validation-based classification
evaluation shows that the decision tree realizes an accuracy
of 96.38%, the sensitivity of 98.2, specificity of 99.67%,
and 3.62% error for successful classification of 14 subjects.
In [363], several features such as Wavelet transformation,
temporal Analysis, QRS-complex detection, and power spec-
tral density estimation were used for ECG-based biometric
authentication while using BN and decision tree for the clas-
sification. The methods were tested on a dataset that contains
18 healthy subjects, 5 men (aged 26 to 45) and 13 women
(aged 20 to 50), and achieved better performance for all clas-
sifiers in each recognition problem (with a best recognition F
score of 0.972).

Table 8 summarizes the major findings and results of ECG
classification algorithms.

VI. ECG SIGNAL APPLICATION DOMAINS
Some of the application domains of ECG include the
following.
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TABLE 8. Summary of the major findings and results of ECG classification algorithms.

A. ECG-BASED BIOMETRIC IDENTIFICATION AND
AUTHENTICATION
Over recent decades, the potential of ECG signal, which
records the electrical depolarization-repolarization patterns
of the heart, as a biometric modality for human authentica-
tion, has grown in the field of pattern recognition. This is
mainly due to the inherent nature of the ECG signal as charac-
terized by its universality, inherently hidden nature, inherent
aliveness detection, and continuous availability [364]. Given
the essential and continuous nature of this information source,
the ECG signal is considered highly confidential to the user,
and it offers strong protection against spoof attacks, unlike
conventional biometrics systems. ECG attributes or features
are designed to classify the subject exploiting inter-subject
variability. Specifically, features rely on the heartbeat mor-
phology on specific time intervals acquired from ECG waves
(or on specifically extracted features). Here, the choice of the
employed features is inspired by the hardware complexity
of each functional component, the requirement of real-time
identification, and the specific recording equipment. Several
works have been proposed on ECG biometric systems utiliz-
ing a fiducial based and non-fiducial based approach−based
on the need to identify precise points in ECG signals. Due to a

lack of liveness check, biometric systems such as fingerprints,
palm print, face recognition, iris recognition, or speech recog-
nition for human identification encounter severe challenges
caused by data replication and malicious forgery.

Furthermore, ECG-based biometric systems can be
employed as an extra authentication factor to enhance
security. For instance, biosafety Laboratories, data centers,
banks, power plants, clean rooms, or hospitals. However,
ECG-based biometric systems still lack extensive investi-
gation in real-life scenarios. Most of the existing works
are based on either controlled laboratory investigations with
medical-grade ECG trackers or depend on data from med-
ical Diagnostic ECG databases, for example, PhysioNet
PTB [365], MIT-BIH [366], UofTDB [103], AHA [367].
However, medical setups use multiple leads to measure the
ECG signal with adhesive on the body of the electrode. While
medical setups use multiple leads to measure the ECG signal
with adhesive on the body of the electrode, they achieve a
signal with low noise and almost no motion artifacts. Thus,
considered unrealistic for practical applications.While recent
research direction is motivated on developing ECG biometric
systems measurable by wearable devices, the quality of the
acquired data will be worse in comparison to ambulatory
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ECG. Specifically, studies in [368]–[371] employedwearable
devices for ECGbiometric authentication, but the participants
involved in the investigations were very few. Moreover,
studies in [287], [291], [372]–[375] employed the use of
affordable non-medical grade tracking devices to acquire
ECG data at the index fingers.

B. ECG SIGNAL IN MULTIMODAL BIOMETRIC SYSTEMS
While unimodal biometric systems use a single biometric
trait of the individual for identification and verification,
multimodal biometric systems are capable of managing a
combination of two or more biometric modalities for
improved recognition rate and spoof attacks [283], [339],
[339], [376]–[379]. In the following, we will discuss the
advantages of multimodal biometric systems and explore the
different types of fusion techniques in multimodal biometric
systems.

1) ADVANTAGES OF ECG SIGNAL IN MULTIMODAL
BIOMETRIC SYSTEMS
The obvious benefits of ECG signals in multimodal bio-
metric systems are increased recognition performance,
enhanced security, and fewer enrolment problems [376],
[380]. We describe some of the benefits in details in the
following:

(a) Reliability:During ECG biometric data acquisition, due
to defective equipment, improper sensors, or environ-
mental factors can introduce noise. However, the fusion
of multiple biometrics modalities in the so-called mul-
timodal biometric systems provides additional informa-
tion for reliable human identification.

(b) Universality: Universality as a main characteristic of a
biometric modality, may not be truly universal [339],
[378]. For example, the national institute of standards
and technology finds that as a result of disabilities, cuts,
and bruises, approximately 2% of the world population
may not entirely be fingerprinted [381]. Hence, ECG in
multimodal biometric systems has been used to over-
come the limitations of unimodal biometrics and provide
high accuracy recognition.

(c) Uniqueness: The uniqueness (related to inter-subject
variability) of several biometric traits of different sub-
jects (i.e., identical twins of the same family) can seldom
be quite alike and lead to high false recognition rates.
However, multimodal biometric systems may render
supplementary information to overcome this inherent
limitation.

(d) Security:While unimodal biometrics are extremely dif-
ficult to be stolen, it is yet feasible to bypass a biometric
system employing spoofed traits. Hence, the ECG sig-
nals in a multimodal biometric system realize the fusion
of decisions exerted beneath distinct traits to increase
the security of biometric authentication [339], [378],
[379]. That is, if one of the modalities is compromised,
the system can still guarantee security employing the

remaining biometric modalities since it will be difficult
for the intruder to spoof multiple biometric traits.

Therefore, the use of ECG signals in multimodal biomet-
ric systems provides improved performance over unimodal
biometrics in authenticating human subjects under multiple
limiting factors and spoofing attacks.

2) INTEGRATION MODES
Generally, multimodal biometric systems can be realized in
one of several diverse modes: sequential mode, serial mode,
parallel mode, hierarchical mode, or pipelining mode.
(a) Parallel Mode: The parallel fusion mode has been stud-

ied more extensively than the serial fusion mode. The
parallel fusion mode uses information from multiple
modalities simultaneously, and thus the time consump-
tion of employing all individual biometric recognition
systems should be the same else one system has to
wait. Accordingly, this approach is best applied when
all individual biometric recognition systems are compu-
tationally fast [377]. Parallel mode is beneficial when all
individual biometric recognition systems possess differ-
ent confusion matrices, but at a drawback of separate
sensors required for each modality, even if different
modalities can use the same sensor equipment [377].
A multimodal biometric system based on different
fusion levels of ECG and fingerprint using different clas-
sifiers is proposed in [378], by using 47 human subjects
from theMIT-BIH database. Results indicate (area under
the ROC curve) up to 0.985 for sequential multimodal
system, and up to 0.956 for parallel multimodal system,
compared to the unimodal systems that achieved AUC
up to 0.951, and 0.866, for the ECG and fingerprint
biometrics, respectively.

(b) Serial Mode: Several schemes have been introduced
which investigated how to use biometric traits sequen-
tially for recognition. In multimodal biometric systems
in serial mode, each modality in the multimodal system
is examined one after another. Therefore, themultimodal
biometric systemmay give the final recognition decision
before acquiring all the modalities, based on the setting.
That is, the final recognition decision yielding accep-
tance depends on any biometric modalities that turn true,
otherwise rejected as shown in Fig. 7. From Fig. 7, it is
evident that an early decision can reduce the overall
recognition time in this realization. Consequently, mul-
tiple modalities do not have to be acquired simultane-
ously. Moreover, a single sensor can be utilized, for
example, for the serial acquisition of both the user’s
face and iris. Research has shown that the multimodal
biometric systems that operate at the serial modes are
found to be more robust than the parallel ones [283],
[339], [339], [376]–[379].

(c) Sequential Mode: In the sequential mode, the multi-
modal biometric systems are sequentially combined,
with each biometric system having the option to
reject [377]. Typically, once any system perceives a
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FIGURE 7. Multimodal biometric recognition in serial mode of operation at decision level fusion.

FIGURE 8. Multimodal biometric recognition in the sequential mode of operation and its fusion of both ECG signal and
fingerprint [339].

quality is not satisfying, then the modality is rejected,
and the decision relies on the second biometric system,
and so on [377]. Besides, the second system is typically
more costly, informative, and computationally complex
than the first. However, the classification time is much
less in the multimodal biometric system strategy at
the reasonable expense of classification accuracy [377].
For example, in a sequential mode multimodal biomet-
ric system that combines ECG signal and fingerprint
modalities, the system must start with the ECG authen-
tication to ensure liveness detection [339]. Since ECG
biometric renders inherent liveness detection, which has
a computational advantage, fingerprint authentication
is superior at accepting genuine users. Subsequently,
after the multimodal biometric system has rejected the
impostors and accepted the genuine users, the remaining
subjects would be authenticated using the fusion of ECG
and fingerprint, as illustrated in Fig. 8. Specifically,
in Fig. 8, the authentication first ensures liveness detec-
tion using ECG, with either a reject (i.e., the overall
system final decision) or an accept decision to acquire
fingerprint modality for authentication in the next stage.
The final decision of authentication for a user occurs at
this stagewith an acceptance decision [339]. Conversely,
both the ECG and fingerprint modalities of the remain-
ing rejected users are combined at the decision level to
make the final decision for those users [339], [377].

(d) Hierarchical Mode: The multimodal biometric sys-
tems realized using the hierarchical mode of oper-
ation combines both the serial and parallel modes
of operation [377]. The multimodal biometric system

based on a hierarchical model of operation inherits the
benefits of both parallel and serial modes of opera-
tion. This method is used mostly in the situation when
an extensive number of biometric system modalities
exists. In [40], a fiducial-detection-based framework
that incorporates analytic and appearance attributes for
human identification using ECG data, is presented,
where nearest neighbor (NN) classifiers in combination
with Euclidean distance are employed. Here, the hier-
archical strategy splits the problem into two subprob-
lems: 1) a first-level classification is initially employed
based on analytic features alone (time + amplitude of
fiducial points). 2) PCA based classification module is
subsequently applied to classify subjects that can be con-
ceivably confused by the initial stage. The introduced
hierarchical mode method realizes a subject recognition
rate of 100% for both datasets and ECG recognition
accuracy of 98.90% for PTB and 99.43% for MIT-BIH.

(e) Pipelining Mode: The biometric system operating in
the pipelining mode takes benefit of the multimodal
systems by employing a single sensor and single feature
extraction scheme. While extracting features of the first
modality, features of the second modality are simultane-
ously acquired at the same time [377].

3) INFORMATION FUSION TECHNIQUES IN MULTIMODAL
BIOMETRIC SYSTEMS
The fusion strategy of the information of multimodal Biomet-
ric modalities is achieved in several methods, which are cate-
gorized based on parameters like fusion scheme, information
sources, and fusion levels [382].
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(a) Fusion Scheme: Sequential and parallel fusion are the
two different types of topological multimodal biomet-
ric fusion techniques [382]. While multimodal biomet-
ric modalities are processed simultaneously in parallel
fusion techniques, they are processed in a sequential
top-down merge technique until an acceptable match is
obtained.

(b) Information Sources [382]: The information for multi-
modal biometric modalities can be achieved by
• Multiple Traits: Different biometric modalities are
fussed for human identification.

• Multiple Sensors: Different sensors equipment are
adopted for capturing a single biometric modality for
human identification.

• Multiple Sample: Here, multiple representations or
samples of a single biometric modality are captured
by a single sensor equipment.

• Multiple Algorithm: The multimodal biometric sys-
tem uses different matching algorithms of a single
biometric modality.

• Multiple Instances: The multimodal biometric sys-
tem utilizes multiple instances of a single biometric
modality.

(c) Fusion Levels:While fusion can be achieved at diverse
levels in multimodal biometric systems [383], [384],
such as data-level, feature-level, score-level, rank-level,
and decision-level, the fusion at the match score level
has been widely investigated in the literature. We briefly
highlight some of the commonly used fusion levels with
more emphasis on the score level:
• Decision-level:Here, each biometric trait in themulti-
modal biometric system offers a decision independent
of the other biometric traits, which are subsequently
fused to form a single decision [384].

• Feature-level [385]: Here, the feature sets aris-
ing from multiple biometric sources are fused into
a single feature set via proper feature normal-
ization, transformation, and reduction techniques.
However, feature-level fusion, the feature sets aris-
ing from multiple biometric sources may not be
readily fused [382], i.e., one-dimensional signals
from an ECG and two-dimensional images from a
camera.

• Score-level [384]: Match score-level fusion com-
prises fusing the match scores generated by multiple
classifiers (or matchers) to furnish a decision regard-
ing the identity of the subject. There are several differ-
ent schemes for realizing score level fusion premised
on different models, such as density-based fusion
schemes, classifier-based score fusion schemes, and
transformation-based score fusion schemes [384].
Score-level fusion is the preferable strategy for mul-
timodal biometric modalities since classifier scores
are straightforwardly obtained and processed to be
fused [283]. Typically, score-level fusion methodol-
ogy realizations entail resolving how much impact

each classifier in the multimodal biometric system
has over the final class output. While match score
fusion has been shown to be effective [384], its
matching performance is compromised under diverse
conditions:
– Density-Based Score Fusion [383]: The density-

based score fusion scheme models relies on
estimating density functions for the genuine
and impostor match score distributions. While
the density-based score fusion scheme employs
the likelihood ratio test to express the fusion
rule, it can be influenced by the application
of inaccurate density functions for the genuine
and impostor scores. Density estimation may be
categorized into parametric and non-parametric
approaches. In the parametric density estima-
tion method, the most outstanding method is
the maximization of the likelihood of the sam-
ples of the given parameters via an expectation-
maximization (EM) algorithm. Generally, density
estimation parametric methods rely on incorrect
model (Gaussian densities) assumption and can
give rise to sub-optimal fusion rules. Other draw-
backs include: 1) the number of components in
the mixture has to be chosen, ii) singularities may
occur, and 3) the resulting densities are prone to
overfit the data. Non-parametric density estima-
tion assumes that the data follow a given unknown
probability law that has a density function and
builds an estimation of the assumed density func-
tion. The most uncomplicated non-parametric
method is kernel density estimation (i.e., mixture
densities with components centered about data
points are used). Non-parametric density estima-
tion method is affected by the availability of a
limited number of training samples (notably, gen-
uine scores), thus influencing the likelihood of
devising an efficient fusion rule. Other principal
drawbacks to this approach include [386] 1) the
determination of component parameters, which
impact the shape and smoothness of the densi-
ties, and 2) the complex function representations
involving the whole data set.

– Classifier-Based Score Fusion: In classifier-based
fusion schemes, the model is a classifier. Hence,
notable statistical and classifiers approaches
have been employed, like the neural-network-
based classifiers, fuzzy clustering, kNN classifier,
(classical) k-means clustering, SVM, and the
Bayesian classifier.

– Transformation-Based Score Fusion: In
transformation-based fusion schemes, the model
relies on estimating normalization functions.

In Table 9, we compared the authentication perfor-
mance of some state-of-the-art multimodal authentication
algorithms.
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TABLE 9. A brief comparison of some state-of-the-art multibiometric authentication systems.

4) COMPARISON BETWEEN UNIMODAL AND MULTIMODAL
BIOMETRIC RECOGNITION SYSTEMS
• Accuracy: While the multimodal biometric systems
use multiple biometric modalities to identify a person,
the unimodal biometric systems use a single biomet-
ric modality. Hence, the multimodal biometric systems
ensure higher identification accuracy [395].

• Security: Multimodal biometric systems provide
anti-spoofing measures since they acquire multiple bio-
metric modalities, unlike unimodal biometric system.
Thus, an intruder finds it difficult to spoof simulta-
neously multiple biometric modalities of a legitimate
user [395].

• Universality [395]: Multimodal biometric systems
tackle the non-universality problem as acquiring multi-
ple biometric modalities can render better coverage of
the population unlike the unimodal biometric system.

• Liveness Detection: Unlike unimodal biometric sys-
tems, a multimodal biometric system that tackles the
non-universality problem takes other forms of biometric
to authenticate a person [396], even if a person is inca-
pable to render a form of biometric owing to illness or
disability.

• Cost-Effective: Unlike unimodal biometric systems,
multimodal biometric systems are cost-effective since

they provide greater security levels to reduce the risk of
criminal attack [397].

VII. ECG SIGNAL EVALUATION METRICS
Typically, for classification tasks, a confusion matrix is deter-
mined from the classification results, and most of the evalu-
ation metrics are variants of the data that the matrix stores.
Specifically, we present an illustration confusion matrix in
classification problems with two classes in Table 10. Notably,
problem transformation techniques reduce the multi-class
problem into multiple two-class problems. From Table 10,
we observe that there are possibly four different results pre-
dictions. The actual positive and negative samples are correct
classifications, while the false positive and false negative
outcomes are two possible types of errors. Let us denote
by a and d the number of correct predictions that instances
are negative and positive, respectively, and by b and c the
number of incorrect predictions that instances are positive and
negative, respectively.
In the following, we present the several success measures

employed in evaluating ECG signal analysis and classifica-
tion assignments.

(a) Accuracy: We can define the accuracy measure as the
ratio of correctly classified samples to the total number
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TABLE 10. Confusion matrix in classification problem with two classes.

of classification samples as [398], [399]

Accuracy =
a+ d

a+ b+ c+ d
. (17)

Notably, classification accuracy is frequently used in
ECG-based investigations [399] as a metric for perfor-
mance evaluation. The foremost drawbacks of accuracy
as a measure for evaluation include: (1) it ignores the
distinctions between the error types; (2) it is reliant on
the distribution of the dataset class.

(b) Precision: The precision or the so-called positive pre-
dictivity value is a performance metric that measures
the number of the positively predicted samples that are
important and is determined as

Precision =
d

b+ d
. (18)

(c) Sensitivity: The sensitivity metric is a measure of actual
positive samples that are properly identified as positive
and is calculated as [399]

Sensitivity =
d

c+ d
. (19)

Several ECG-based biometric recognition systems pre-
fer the use of the sensitivity measure as the evaluation
metric [399].

(d) Specificity: The specificity metric is a measure of actual
negative samples that are accurately identified as nega-
tive and is calculated as [399]

Specificity =
a

a+ b
. (20)

Several ECG-based biometric recognition systems also
prefer the use of the specificitymeasure as the evaluation
metric [399].

(e) F-Measure:The F-measure is the harmonicmean of pre-
cision and sensitivity and employed as a single measure
to characterize the overall performance [398].

(f) Receiver Operating Characteristic: The Receiver-
operating characteristic (ROC) curve is a measure that
shows the connection between sensitivity and specificity
for every probable cut-off for a test or a combination of
tests.

(g) Matthews Correlation Coefficient: The Matthews cor-
relation coefficient (MCC) is adopted to measure the
correlation between the actual classes and predicted
classes. It considers all the true and false values, which
is why it is viewed generally as a correlation measure
employed even if there are diverse classes. The MCC
can be calculated as

MCC =
a · d − b · c

√
(d + b)(d + c)(a+ b)(a+ c)

. (21)

The following are some remarks about the MCC met-
ric [400]: (1) The MCC can be determined employing
the confusion matrix, (2) the determination of the MCC
metric applies the four measures (a, b, c, and d), which
yields a better result of the performance of classification
algorithms, (3) if any of the measure (d + b), (d + c),
(a + b), or (a + c) is zero the MCC is not defined, and
(4) the MCC takes values within the interval [−1, 1],
with 1 furnishing an absolute agreement, −1 an abso-
lute disagreement, and 0 show that the prediction was
uncorrelated with the ground truth.

VIII. CONCLUSION
Typically, one heartbeat of ECG signals consists of several
waveforms, which generally contain P waves, QRS complex,
and T waves. Nonetheless, ECG signals are influenced easily
by diverse factors. Biometric recognition systems are the
systems that have been developed persistently for enhancing
security levels and well-being in the working environment.
The development is made feasible entirely with pattern recog-
nition, machine learning, and deep learning methodologies.
In this paper, we presented a comprehensive survey on ECG
signals as a new biometric modality for human authentica-
tion, employing several topics such as ECG preprocessing,
feature extraction, feature selection, feature transformation,
feature classification, databases, and performance measures
for evaluating the accuracy of the ECG classifier. Specifically,
in the feature extraction section, two fundamental methods,
namely fiducial and non-fiducial techniques, have been stud-
ied for ECG-based biometric recognition. Significantly high
performance has been realized by employing fiducial meth-
ods of feature extraction with small databases. Contrarily,
the non-fiducial methods give relatively high efficiency for
an extensive population and do not require the finding of
fiducial points enclosed by the ECG signal. Thus, exploiting
the non-fiducial methods for feature extraction within ECG
signal is advantageous to realize a high-performance ECG-
based biometric recognition system. In the feature classifica-
tion section, we revised existing DNN approaches employed
for the ECG biometric recognition system from the view-
points of models, databases, and tasks while emphasizing
the recent research advances, unresolved challenges, and
research opportunities. We observed that deep learning clas-
sification methods can potentially realize better performance
than conventional methods for ECG-based biometric sys-
tems. However, if we are exclusively concerned about the best
possible classification accuracy, it might be challenging to
realize a single classifier that performs similarly to an ensem-
ble of classifiers. Notwithstanding the benefits, ensemble
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techniques have at least three potential drawbacks. That is,
(1) the increase in storage to store all component classifiers
after training, (ii) the increase in computation to process all
component classifiers, (iii) the decreased comprehensibility
for non-expert users in the decision-making of multiple clas-
sifiers. In the database section, we introduced most of the
databases on ECG signals presenting succinct knowledge
regarding them. Notably, the inadequate number of publicly
available databases constitutes one of the principal challenges
in the ECG study. Thus, researchers are encouraged to pub-
lish their ECG databases using their local ECG repository.
Moreover, we addressed the classification of ECG-based bio-
metric recognition systems, viz unimodal and multimodal.
Premised on the drawbacks of ECG-based unimodal biomet-
ric recognition systems as presented, the ECG-based mul-
timodal biometric recognition system has been introduced
mainly as a desired means to solving the diverse challenges.
The various methods, fusion levels, and integration strategies
used to combine the information in multimodal biometric
systems were also presented. While more research is needed
to find solutions to the shortcomings of the different fusion
methods, the multimodal biometric systems can be crucial for
two-factor authentication for smart card tokens and mobile
applications requiring security for transactions. Therefore,
susceptibility to spoofing attacks should remain a key concern
in all introduced ECG-based biometric recognition systems
and algorithms. Future work would discuss how the ECG
can secure the IoT technology since ECG is fast becoming
a key tool to authenticate the IoT devices. Thanks to IoT,
several approaches have been proposed to apply user data
and ECG signals for biometric authentication [401]–[403].
For example, the user ECG signal acquired utilizing wearable
sensors for ECG-based authentication in IoT-based biometric
systems in [401] is sent through Bluetooth of a device (e.g.,
Mobile) for authentication task to the cloud where trained
deep authentication model resides. However, the use of tem-
plate protection methods to increase system security against
spoof attacks in [401] is missing and a possible research
direction.
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