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ABSTRACT Advances in computer science have transformed the way artificial intelligence is employed in
academia, with Machine Learning (ML) methods easily available to researchers from diverse areas thanks
to intuitive frameworks that yield extraordinary results. Notwithstanding, current trends in the mainstream
ML community tend to emphasise wins over knowledge, putting the scientific method aside, and focusing
on maximising metrics of interest. Methodological flaws lead to poor justification of method choice, which
in turn leads to disregard the limitations of the methods employed, ultimately putting at risk the translation
of solutions into real-world clinical settings. This work exemplifies the impact of the problem of induction
in medical research, studying the methodological issues of recent solutions for computer-aided diagnosis of
COVID-19 from chest X-Ray images.

INDEX TERMS Biomedical imaging, machine learning, philosophical considerations, computational
systems biology, X-rays.

I. INTRODUCTION
To respond to the overwhelming needs arising from the
COVID-19 pandemic, a lot of efforts have been put into
building computer-aided diagnosis solutions using machine
learning methods, hoping to speed up the early detection of
this novel coronavirus. This work aims to raise awareness
of the risks of building models for computer-aided diagnosis
without the appropriate methodologies to justify the methods
employed. In particular, the countless solutions aimed at
computer-aided diagnosis of COVID-19 from chest radio-
graphs (CXR) images that are not suited for clinical use (see
Table 1). The recent literature about COVID-19 solutions
already brought to light transversal issues that extend beyond
the problem tackled in such works, questioning the meth-
ods employed [1] and highlighting the poor quality of the
datasets [2]. Conversely, this work focuses on the method-
ological flaws derived from the lack of domain knowledge
that affect how the problems are formulated in the first place
and how methods are justified.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

It is directed at a general audience, regardless of their field
of expertise, and tackles the topic horizontally, from different
angles such asMachine Learning (ML), epistemology, proba-
bility and pathology. Consequently, this work does not intend
to be technically exhaustive in regards to the aforementioned
fields of science. More generally, the issues described in
this paper concern the scientific method, with knowledge
as the ultimate goal of science. In this sense, current main-
stream ML community shows a trend to emphasise wins
over knowledge, specially within the challenge culture [3].
Such competitions have an increasing scientific impact in
areas such as biomedical image analysis, but lack enough
quality control for the translation of solutions into clinical
practice [4], raising ethical and legal concerns regarding the
diffusion of responsibility and liability [5]–[7].

The lessons and critic of this work can be extended to
similar problems and challenges of translational medicine
beyond the scope of COVID-19. The most direct conse-
quence of the issues addressed in this paper relates to the
poor transferability of computer-aided diagnosis solutions
into hospitals and less of rigorous review and approval
(e.g. by regulators), in which research institutions have
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invested their efforts, budget and resources with questionable
results [8]–[10].

The rest of the paper is structured as follows: The remain-
der of this section provides some context on the problem of
induction, an example of its limitations, and how they affect
our case at issue. Section II describes how conventional ML
solutions suffer from previously described problems. Finally,
Section III discusses the impact on medical research.

A. CONTEXT
In 1739, still under the shadow of the bubonic plague in
Europe, David Hume publishes A Treatise of Human Nature,
presumably without knowing that his work would not only
continue to be debated more than 200 years later, but also
still remarkably relevant in the technological advances of our
time. In the problem of inductionHume argues that we cannot
make a causal inference just by a priorimeans, and poses the
question of how we can conclude from the observed to the
unobserved. For instance, we can certainly assert that every
morning the sun rises approximately in the east thanks to our
everyday observations, but that is not enough to explainwhy it
happens in such a way; for that we would need a bit of domain
knowledge [11, Ch. VI].

In ancient Rome, andabatas used to fight blindfolded in
the arena, unaware of the outer beasts. Regardless of their
training they were doomed to fail. Similarly, we are often told
MLmodels are black boxeswhose inside cannot be inspected,
but equally dangerous is the fact that models cannot see
what surrounds them. Models best hope is to expect their
target data resembles that from their training period. In this
sense, ML models can be regarded as inductive machines
performing inductive inferences based on previous observa-
tions. The key performance indicator (KPI) of a ML model is
the generalisation performance, measured by how well it will
generalise and perform on novel data [12, Ch. 9.4, p. 100].
For the ML model to perform well on novel data, is often
assumed that novel data will resemble past data. Hume refers
to this assumption as the Principle of Uniformity of Nature.

If reason determined us, it would proceed upon
that principle, that instances, of which we have had
no experience, must resemble those, of which we
have had experience, and that the course of nature
continues always uniformly the same.

(A Treatise Upon Human Nature [13] T. 1.3.6.4)
But the course of nature does not necessarily continue

always uniformly the same; especially when nature does not
refer to the whole universe, but the particular realm where a
ML model is employed. Before proceeding with an example
of this issue, (see § I-B), we have to tackle two other issues.

Suppose we aim to predict whether the next president of
the United States of America will be a woman or not. If we
rely solely on the gender of previous presidents, by induc-
tion we will predict a zero chance. But by understanding
how a person becomes a presidential candidate, and how
previously became a candidate for their party, we can take

into account the network of people involved in the process
and recalculate our forecast with higher precision. In this
case the rules are clearly defined in the law. Pouring these
bits of domain knowledge into our model will show that
chances are increasing over time. Encoding the rules behind
the data heavily increased the robustness and precision of our
model. Thanks to these rules our inference became deductive
rather than inductive, since the conclusion necessarily follows
from the premises; and as long as the premises are true the
conclusion will also be true.

We can identify two issues in the first approach of our
example: First, partial data can misrepresent the underlying
phenomena that shapes the data, producing a model that does
not resemble the real world. This is especially notable in
the case of bias and confounders which are further aggra-
vated by the lack of domain knowledge in designing the
solutions. The second issue relates to induction. Contrary to
deduction, where the truth of the premises guarantees the
truth of the conclusion, inductive inferences are ampliative—
since whose conclusions go beyond what is contained in their
premises — and their conclusions could be totally wrong
even if infinitely many examples confirm them [14]. This
ampliative factor has also an amplifying effect over the par-
tial data from which we infer a conclusion. In this case,
considering only the final results of the elections amplified
the bias derived from a partial collection of the data, reduc-
ing the chances of women being predicted as president to
zero. We will later discuss other amplifying effects derived
from induction such as the abuse of the outcome space
(see § II-A).

These two issues put at risk the transferability of the solu-
tions to real-world clinical settings. There will not be transla-
tional solutions without embedding medical knowledge into
their development process. The challenges to transfer a solu-
tion to the clinical environment condition how data must be
collected and curated. These steps are often skipped from the
process, with researchers rushing to develop solutions with
whatever data is available, regardless of their quality, cover-
age or suitability. Translational medicine requires robust and
adaptable solutions developed and designed uponmethodolo-
gies that allow for the aforementioned qualities.

B. THE CASE AT ISSUE
Now consider a ML model trained to predict different
respiratory diseases (e.g. [15]–[17]) such as tuberculosis
(TB), asthma, pneumonia, etc. Then, in December 2019,
Dr. Zhang Jixian started to treat a pneumonia case of
unknown cause [18]. What kind of inference and data led
scientists to think it was caused by a new virus? (see § II-B).
A chest computer tomography (CT) showed unusual changes
in the lungs which were different from any known viral pneu-
monia. Later on, genetic sequencing related the new virus
to coronaviruses that circulate in bats, including SARS [19].
In February 2020 the virus causing COVID-19 (Coronavirus
disease 2019) was named SARS-CoV-2 (Severe acute respi-
ratory syndrome coronavirus 2).
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The aforementioned ML models, created before the pan-
demic, were trained for a particular subset of the vast hypoth-
esis space for the prediction of respiratory human diseases.
Naturally, they were not trained for this novel disease, so the
now outdated biases and weights of the model neurons cannot
guess this new disease. Just as doctors who were not aware
of this novel disease could not provide an accurate diagnosis
prior to its discovery, misidentifying the patient symptoms
with those from common cold [20] or measles [21]. In fact,
the pathological1 findings shown in CXR and CT scans are
actually non specific, and overlap with other viral infections
(e.g. H1N1, SARS, MERS) [23]. Further on, we will see how
this problem affects conventional classifiers.

II. CONVENTIONAL MACHINE LEARNING SOLUTIONS
Right after the first outbreaks, information and data about
COVID-19 flooded the internet, including several datasets
and repositories with CXR and CT images of COVID-19
patients [24]. Researchers rushed to develop models using
data from such repositories [25]–[27], claiming that such
models could be a ‘‘very helpful tool for clinical practitioners
and radiologists to aid them in diagnosis’’ [28]. Exhaustive
systematic reviews of models and datasets for COVID-19
detection from CXR and CT scans can be found in [1], [2],
respectively, addressing the poor suitability of such models
for clinical use. Most of these solutions are based on conven-
tional classifiers such as binary and multi-class classification
methods. Table 1 presents some examples from the literature.
Below we discuss the limitations of this type of models.

TABLE 1. Summary of conventional ML solutions employing CXR for
computer-aided diagnosis of COVID-19.

A. BINARY AND MULTI-CLASS CLASSIFICATION
The problem of classifying a given input into one class out
of several classes needs some compromises but also requires
some conditions. Typically, these classifiers return a probabil-
ity for each class, and themost probable class is chosen as pre-
diction. Of course, the sum of these probabilities must be one
(see Eq. 1), but reducing the outcome space from the vast
sample space to a limited event space of a couple of classes
artificially increases the probability of the chosen classes. No
matter how many classes are considered, the probability sum

1The 2nd word sense of pathology is used in this paper to refer to the
physical manifestations of a disease in tissues and organs. Literature often
refers to them as abnormalities, signs, patterns, lesions, etc. [22]

of such classes will be one in the training and test sets, but
nothing ensures that such events follow the same probability
in the real world where more classes exist.

This abuse of the outcome space entails dangerous conse-
quences if a classifier is deployed in a clinical environment
different from the train and test set. Even if similar, a real
clinical environment is prone to change, a new disease may
appear and the model is forced to choose between the set
of classes it was trained to classify. Simply put, a model of
this kind cannot say I don’t know, and therefore reducing its
outcome space necessarily increases the probability of the
rest of the classes to be mispredicted by the model.

P (�) = 1 (1)

Kolmogorov’s second axiom. The probability of the entire
outcome space is 1.

Several solutions for diagnosis of COVID-19 [33], [40]
limit their outcome space to a couple of diseases, disregarding
other many possible lung diseases such as tuberculosis or
asthma. Furthermore, these solutions assume that the differ-
ent lung diseases of the model outcome space are mutually
exclusive events (see Figure 1), while in fact, many lung
diseases can co-exist (e.g. COVID-19 and TB [41]–[43])
and often share common abnormalities (e.g. consolidations,
opacities). Diseases are not found in nature as entities per se;
they refer to a definable deviation from a normal phenotype
evident via symptoms and/or signs. The different sets of
symptoms, pathologies and signs are grouped into diseases,
and likewise diseases are grouped into categories, all of them
organised into disease taxonomies (e.g. International Classi-
fication of Diseases). Thus, one disease can have more than
one etiology, and one etiology can lead to more than one dis-
ease [44]. Lung diseases in particular produce a spectrum of
lung pathologies that evolves over time and whose diagnosis
requires a combination of tests (e.g. radiology, pulmonary
function, blood, sputum, etc). Importantly, some diseases of
the respiratory system (e.g. pulmonary vasculature) can be
associated with a normal CXR [45]–[47] requiring CT scans
and further tests to clarify the diagnosis and prognosis of
such cases.Moreover,MLmethods do not necessarily capture
model predictive uncertainty, adding another source of risk
for their predictions in real world settings [48]. Bayesian
methods can help quantifying uncertainty caused by the
model structure or the use of limited samples (i.e. epistemic
uncertainty) [49].

In this light, binary and multiclass solutions for the pre-
diction of lung diseases based on CXR images cannot be
translated to the clinical practice, regardless of their accuracy
results, since they are based on unrealistic assumptions about
the nature of what they predict, and employ predictors not
suited for the problem at hand.

B. DIAGNOSIS AND MONOTONICITY
The issue previously described is also related to the concept of
monotonicity. In its epistemic sense, monotonicity expresses
the fact that adding more premises to an argument allows
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FIGURE 1. Conventional models often oversimplify the event space and ignore disease etiologies.

you to derive all the same conclusions as you could with
fewer [50]. Specifically, under monotonic reasoning, if a
conclusion p follows from a set of premises A, (denoted as
A ` p), adding another set of premises B doesn’t alter the
conclusion (i.e. A ∧ B ` p also holds) [51], [52]. As stated
by Pearl: ‘‘The problem of monotonic logic lies not in the
hardness of its truth values, but rather in its inability to
process context-dependent information’’ [53, Ch. 1.5, p. 24].
Therefore, reasoning is non-monotonic when a conclusion
supported by a set of premises can be retracted in the light
of new information. Or in other words, we can infer certain
conclusions from a subset of a set S of premises which cannot
be inferred from S as a whole. Medical diagnosis fits very
well under such definition. In the case at issue of this work,
the presence of more abnormalities could imply a different
etiology, and thus a different disease.

Section I-B left open the question about what kind of
inference led scientists to conclude that the abnormal cases
of pneumonia treated by Dr. Zhang were caused by a novel
coronavirus. Defeasible reasoning deals with tentative rela-
tionships between premises and conclusions, which can be
defeated by additional information, allowing for the retrac-
tion of inferences. For instance, while we may infer that
Tweety flies based on the information that Tweety is a bird
and the domain knowledge that birds generally fly, we can
retract this inference when we learn that Tweety is a penguin.
Tweety is indeed a bird but it cannot fly.

Defeasible reasoning is also not exempt from limitations,
requiring from causal information to properly derive con-
clusions under certain scenarios [54], [55]. Consider, for
example, this problem of Pearl: if the sprinkler is on, then
normally the sidewalk is wet, and, if the sidewalk is wet, then
normally it is raining. However, we should not infer that it
is raining from the fact that the sprinkler is on [53, Ch. 1.5,
p. 24].

Conflicts may arise between hard facts and defeasible con-
clusions. For instance, both arguments in Figure 2Penguin ⇒

Bird → flies and Penguin → ¬flies finish with a defeasible
inference. The transitivity rule (a → b, b → c) ⇒ a → c
cannot be applied to the first argument. In this case, according
to their specificity we can give priority to the argument with
more a specific antecedent but is not always as trivial, and
complex conflicts can remain unresolved.

FIGURE 2. Double arrows indicate non-defeasible inferences (hard fact),
single arrows depict defeasible inferences, and strikethrough arrows
denote a negation. It can be read as: Penguins are birds (no exceptions);
Birds usually fly; and Penguins usually don’t fly.

During the last decades, non-monotonic logic, defea-
sible reasoning and causal reasoning have been investi-
gated in Artificial Inteligence (AI) regarding the medical
fields [56], [57]. However, methodologies and methods asso-
ciated with such concepts have not been incorporated into
the mainstream ML community yet. Challenges promoting
wins over knowledge do not help incorporating more com-
plex methods into the mainstream tools, limiting the success
assessment of the solutions to the KPIs of interest.

C. CIRCUMVENTING THE ISSUES
During Section II-A two main issues were identified in the
conventional solutions from the literature. First, mapping an
image to a single disease (denoted as I 7→ D) is partial
and imprecise considering that diseases can co-exist and are
not mutually exclusive events. Second, diseases can share
pathologies and the pathologies from a particular disease can
manifest differently and evolve over time. To workaround
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FIGURE 3. A. Conventional models make use of a single valued mapping, I 7→ D. B. An example of an alternative method employs multivariate
and multivalued functions for a more representative mapping. P(P) and P(D) denote the respective powersets of the set of pathologies P and
set of diseases D.

these issues, we can follow a process similar to the radiologist
diagnosis, which should at least involve two steps. First,
deriving a set of pathologies from a given image, I 7→ P(P)
where P(P) denotes the powerset2 of the pathologies set P,
i.e. the set of all subsets of P, including the empty set and P
itself. Second, once the pathologies have been derived from
a given image I , they can be mapped to diseases from the set
of diseases D, P(P) 7→ P(D). Figure 3 depicts a comparison
of the previously described processes.

Note that the second stepP(P) 7→ P(D) could be enriched
with extra information such as preconditions, tests results etc.
for an increased precision. Moreover, radiologists often refer
to the set of abnormalities found in the images as patterns,
in this vein, each disease could alternatively be provided with
a corresponding function as denoted in Equation 2, providing
a matching value for a set of pathologies taken as argument.

∀d ∈ F , fD : P(P) 7→ md (2)

Let F be the event space of diseases d1, d2, . . . , dn.
To dig a little more into the example, it could be possible to

define a dedicated function for each diseaseD in a form simi-
lar to the example below (see eq. 3). This function would take
into account the different abnormalities detected in the CXR
and express the combination of pathologies that matches the
disease definition

∀d ∈ F : fd =

∑
p∈d

#p4pwp (3)

Let � be the sample space of all pathologies p1, . . . , pn
and F the event space of diseases d1, . . . , dn with #p as the
number of occurrences of a given pathology p; 4p being
the total area of the pathology on all its occurrences; and
wp the pathology relevance.

Likewise, example Equation 3 could be (and certainly
should be) enriched with the additional multi-modal informa-
tion derived from other tests (e.g. blood, sputum, etc). This
extra information can have a different degree of relevance in
the diagnosis, and even override the rest of the factors in the
equation, requiring more complex functions than the above

2Also written as 2P in set theory.

examples. Such equations are precisely where the pathol-
ogy knowledge should be embedded, encoding the relevant
parameters in the form of a formula together with additional
information relevant for the diagnosis. For instance, a culture
positive of Mycobacterium tuberculosis can suffice to diag-
nose TB, even with a normal CXR. On the other hand, a nega-
tive culture can cancel the rest of the parameters derived from
an abnormal CXR, at least for this particular disease. [58].

All previous examples are not final but just indicative from
a different method to detect diseases without incurring in the
issues described in Section II-A. These methods are not novel
and are often used in different areas. For instance, using aML
equivalent, a one-class classifier (OCC) could be defined for
each disease, receiving pathologies as input. OCC are useful
when data from other classes is difficult to obtain. In this case
suchmethods would allow to define a corresponding equation
for each disease, encoding its pathology particularities. The
respective functions of the diseases could be updated as the
disease pathology knowledge evolves, but the model used to
extract the pathologies from CXRwill not change in that case
(unless new types of pathologies are to be found), in the same
way that instruments for medical tests are rarely changed
when the new knowledge of a disease is learnt.

III. DISCUSSION
This section discusses the limitations of inductive methods
addressed before and how domain knowledge becomes essen-
tial to ease and direct its impact.

A. ON INDUCTION
Whether to reject induction as a justification method or not is
still an open debate and not the aim of this work, but at least
we should agree that induction, while useful, is limited. Such
limits must be taken into account, especially when the prob-
lem requires non-monotonic means because the inferences of
the model are tentative and defeasible.

If we visualise the data as points in a plane; every set of
finite points belongs to infinite functions or curves. The prob-
lem of induction, therefore, consists in establishing criteria
that allow us to say that the finite series of data confirms
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only one of the functions, or less dramatically but just as
problematic, that one is more confirmed than the others [59].

The confirmation of a hypothesis, or in this case the can-
didate model, is often considered to increase as the num-
ber of favourable test findings grows, but the increase in
confirmation, produced by one new favourable instance,
will generally become smaller as the number of previously
established favourable instances grows [60, Ch. 4, p. 34].
Many researchers blindly rely on the dogma the more data,
the merrier but the addition of one more favourable finding
raises the hypothesis confirmation but little [61]. The con-
firmation of a hypothesis depends not only on the quantity
of the favourable evidence available but also on its vari-
ety. To overcome this first error naïve researchers could
quickly pour in other datasets into the pot, but even such well
intended decision can have unexpected consequences as the
model can boost the features that make the datasets different
instead of their commonalities. For example, in the context of
COVID-19 detection from CXR scans, Maguolo and Nanni
showed how models can learn to predict features that depend
on the source of the dataset rather than the relevant med-
ical information [62]. Again, domain knowledge becomes
essential to weigh the data and direct the model on which
features are relevant and which are confounding. Therefore,
careful data curation is crucial to prevent risk of bias in
the models.

B. ON DOMAIN KNOWLEDGE
Diagnosis is intrinsically multimodal and often requires tests
of different nature to draw a conclusion, comprising multiple
areas of medicine. Seeking to diagnose lung diseases with
just CXR images is unnecessarily biased, and yet again,
an example of how problems are often forced to fit the
available data instead of fedwith the data they need to become
solvable. Owing to the defeasible nature of diagnosis, causal
information regarding the diseases is crucial for building ML
models and computer-aided diagnosis solutions.

Even though the prediction performance of ML solutions
can be convincing, the lack of explicit models can make
ML solutions difficult to directly relate to existing biolog-
ical knowledge [63]. In this sense, Bayesian approaches
may be used to embed appropriate priors from domain
knowledge to better assess predictions’ confidence, which
ultimately increases model robustness. Consequently, trans-
lational medicine must be bidirectional, and more effort has
to be put into bringing medical knowledge into the data
and model design. In the case of CXR and CT images,
curation by radiologists could be immensely enlightening for
the construction of better models that detect lung lesions
or abnormalities. Then, pathology knowledge can pave the
way to embed causal relationships between pathologies and
diseases into the models.

IV. CONCLUSION
This work attempts to provide some perspective to
researchers of multiple areas regarding the current trend

from the mainstreammachine learning community to address
significant challenges with careless solutions. Such solutions
are oversold by meaningless KPIs unable to discern the
suitability of a model for real-world clinical settings.

Several domains ranging from machine learning and epis-
temology to logic and pathology have been superficially
tackled in this work, with a special focus on its impact on the
conventional solutions developed for the automatic detection
of COVID-19 from CXR images. This work focus on the
automatic detection of lung diseases from CXR images as a
goal, with transferability to real clinical settings as a require-
ment. Themethodological flaws of such solutions are masked
by KPIs stressing the high accuracy and precision of the
models in their training and test datasets, but such solutions
hide dangerous risks that may arise when transferring them
into real-world clinical settings.

The epistemic issues addressed in this work concerning
induction and monotonicity condition the means by which
the goals are achieved and how methods are justified. The
methods of such solutions were chosen by convention, disre-
garding the particularities of the problem at issue, and failing
to consider knowledge from the domain at hand; for instance,
that lung diseases are not necessarily mutually exclusive
events and that diseases can share pathologies. Ignoring these
facts, and ultimately ignoring domain knowledge, condi-
tions the methods employed to achieve the aforementioned
goals. The relationships between diseases and the pathologies
are not in the data but do exist in reality, of which the
data is merely a blurry shadow similar to the shadows of
Plato’s cave. The scientific community is already responding
to the many issues affecting reproducibility, interpretability
and transferability of ML solutions. Efforts are being made
in different fronts, establishing guidelines for datasets [2],
methods [1], ethics and community challenges [64], which
aim to make ML solutions more suitable for their trans-
lation into real-world clinical settings. We hope this work
will continue to raise awareness on this topic and help
researchers develop better solutions, and ultimately unveil
knowledge.
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