
Received June 2, 2021, accepted June 18, 2021, date of publication July 5, 2021, date of current version July 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3094804

Nonlinear Stability Analysis of DC-DC Power
Electronic Systems by Means of Switching
Equivalent Models
HESAM MAZAHERI , (Graduate Student Member, IEEE), AIRÁN FRANCÉS , (Member, IEEE),
RAFAEL ASENSI , AND JAVIER UCEDA , (Life Fellow, IEEE)
Centro de Electrónica Industrial (CEI), Universidad Politécnica de Madrid, 28040 Madrid, Spain

Corresponding author: Hesam Mazaheri (h.mazaheri@upm.es)

This work was supported by the Spanish Ministry of Economy and Competitiveness through the Project IDENMRED under
Grant DPI2016-78644-P.

ABSTRACT The proliferation of renewable energy sources is promoting the use of dc-dc power electronic
converters in power distribution systems. It is well-known that the interconnection of power electronic
converters can be a source of instabilities. Traditionally, impedance-based stability analyses are performed
using either the analytical description or the identification of the output impedance of the source converter
and the input admittance of the load converter. However, this methodology is restricted by the small-signal
conditions, which are usually violated in this kind of systems due to the high variability imposed by the
renewable energy sources. In nonlinear systems, the stability analysis usually consists on the definition of
the region of attraction around a stable equilibrium point. In the literature, the analysis of nonlinear systems
is almost exclusively applied to analytical systems, where all the details are known. This paper proposes
a black-box methodology to obtain the region of attraction of the equilibrium point of commercial off-
the-shelf dc-dc converters working in power distribution systems. First, optimization algorithms are used
to identify the parameters of a predefined structure, such that it is able to reproduce the dynamic behavior
of the system. The parameters identified can be used to create a switching equivalent model that accounts
for the nonlinearities produced by the switching process of the converters. Second, the bisection method is
implemented to minimize the number of simulations needed to determine the region of stability accurately.
The proposed methodology has been validated both with simulations and with an experimental setup.

INDEX TERMS Bisection method, black-box models, digital twin, GAPSO algorithm, nonlinear systems,
optimization algorithms, parameters identification, power system dynamics, stability analysis, system
identification.

I. INTRODUCTION
Renewable energy resources such as solar, wind, tidal power
and biogas have gained a lot of attention in recent years, due
to the concerns about the scarcity of conventional fossil fuels
resources, environmental degradation, and the increment of
the energy demand owing to the population growth [1]–[4].

Microgrids (MGs) have also become very popular as a
mean to interconnect distributed energy resources, energy
storage systems and loads, forming an autonomous system
(Fig. 1). They can be assorted into DC, AC and hybrid MGs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

ACMGs are the most popular due to their compatibility with
the traditional power distribution system. However, DC MGs
have advantages in some applications due to their uncompli-
cated control, higher efficiency and reliability. Furthermore,
they do not require synchronization or frequency regulation in
comparison with ACMGs. Nowadays DCMGs are pervasive
in many areas such as university campus, malls, industrial
applications etc. A hybrid MG takes advantage of both AC
and DC power systems and it is recognized as a promising
possibility in the near future [5]–[8].

Power Electronic Converters (PECs) play a very important
role in MGs. Some of the main reasons are: the need for inter-
facing AC and DC systems, the interconnection of elements
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FIGURE 1. DC Microgrid scheme.

with very different dynamic behaviors, the need for controlla-
bility, among others [9]. Nevertheless, it is a classical problem
that the interconnection of PECs can cause dynamic response
degradation or even instabilities in the system. Consequently,
it is very important to obtain models able to reproduce the
dynamic behavior of these systems and to perform stability
analyses.

The modeling and identification process of the nonlin-
ear behavior of power converters can be carried out with
various approaches. Amongst distinctive methods, black-box
approaches have become popular and deal with the lack of
prior information due to the confidentiality issues of the
commercial converters. In [10] the identification approach for
multiple-input multiple-output systems is carried out charac-
terizing the small-signal dynamic behavior around a partic-
ular operating point accurately. The black-box model can be
identified from the frequency response of the PEC or in time
domain.

The data obtained from each single model at different
operating points, can be merged to form a group of local
models. As a result, polytopic models are constructed by
using these local models with different weighting func-
tions which give rise to a better approximation. The poly-
topic model can represent the nonlinear phenomena of the
PECs and increase the application of the black-box models
[11]–[15]. Furthermore, [16] proposed a large-signal
black-box model for characterizing nonlinear behavior of
DC-AC converters.

More recent, a DC-DC converter has been modeled and
identified by training currents and voltages at converter ter-
minals with a Nonlinear AutoRegressive eXogenous Neural
Network (NARX NN). In [17] this black-box approach has
been capable of reproducing the nonsynchronous buck con-
verter dynamic behavior with unknown configuration.

Parallel with black-box approaches, there are numerous
and diverse procedures for system identification consid-
ered non-parametric approaches including white-box and
gray-box models. Kalman filter approach can be applied for
real-time parameters estimation of DC-DC converters with
high accuracy and fast convergence rate which provides us

with precise coefficients of the transfer function. Compared
to conventional approaches such as recursive least square,
Kalman filter is mathematically simpler [18], [19].

These approaches have proved to be very useful to repro-
duce the dynamic response of the PECs, however, the lack of
any physical meaning in the identified model is a handicap
to perform nonlinear stability analyses. Other approaches
assume that some basic information about the PEC topol-
ogy is known and use it to create a structure with physical
meaning.

Reference [20] is associated with the white-box non-linear
least square identification aiming at minimizing the error
function for nonlinear systems. The trust-region reflective
least square solver is employed for solving nonlinear con-
straints. In this algorithm, in order to optimize the results,
a boundary for the parameters of the converter needs to be
defined. This approach is applicable not only for identifica-
tion of DC-DC converters but also for variety of applications
such as filters and rectifiers. In [21] the parameters of the buck
converter model were identified using a white-box model by
obtaining data from the open-loop model and the closed-loop
model.

The open-loop parameters identification of the buck con-
verter can be achieved by utilizing Particle Swarm Opti-
mization (PSO) algorithm, applying changes in the load to
perturb the system. Themethod needs prior information about
mathematical models and dynamic behaviors of the converter.
In the identification process, the cost function minimizes the
sampling data coming from the output voltage and inductor
current. Moreover, the fourth order Runge-Kutta method is
employed to linearize the mathematical model of the studied
buck converter [22].

Previous research showed the importance of system identi-
fication inMGs. Another fundamental research is the stability
analysis of these systems. Stability analysis of power convert-
ers can be classified as small-signal and large-signal and for
this reason, linear and nonlinear approaches can be applied.

The application of the Black-Box Terminal Character-
ization model (BBTC) can be extended to analyze the
small-signal stability by measuring input/output impedance
criterion of Middlebrook [23]. In the Middlebrook’s criterion
the stability is not only assured but also there is no dynamic
coupling between different converters. Despite these strength
points, it is a very restrictive method and it is also restricted
for linear systems.

A typical nonlinear phenomena that affects the stability of
power electronic systems is the presence of Constant Power
Loads (CPL). When it comes to analyze the stability of
this system, not only the behavior of the CPL, but also the
dynamic interaction between the source converter and the
load converter are considered instability sources and detailed
examination is needed [24].

A study based on the Floquet theory for the stability deter-
mination of periodic motions of the cascaded converters sys-
tem is carried out in [25]. The Floquet theory can be applied to
the class of linear differential equations. In comparison with
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the Middlebrook’s criterion, Floquet theory is more accurate,
however, it requires more information.

Large-signal stability approaches, such as Lyapunov-based
methods, have significant importance in systems where the
small-signal condition is not complied with. However, Lya-
punov stability theorem can state if a system is stable, but can-
not provide any information about the instability of a system.
Moreover, detailed prior information about the state equa-
tions of the system is needed, whereas, for Middlebrook’s
criterion, input and output impedances are sufficient to check
the stability. As a result, the Lyapunov-based approach for
checking the large-signal stability may be considered less
feasible for the black-box models.

To the best of the authors knowledge, in the literature
none of the system identification methods for PECs have
been applied for large-signal stability analysis. Due to the
lack of a practical solution for the nonlinear stability analysis
of systems based on commercial PECs, this paper proposes
a novel approach based on switching equivalent models.
Assuming that some basic knowledge about the PECs is avail-
able, which is usually included in their datasheets, the idea
is to use optimization algorithms to identify the parameters
of the converter and its control loop. With this information
it is possible to create a switching model with the same
dynamic behavior, which has information about the nonlinear
behavior due to the switching process of the PEC. Finally,
the switching equivalent model is used to find the Region of
Asymptotic Stability (RAS) around any operating point. The
bisection method is used to minimize the number of iterations
needed to define the RAS.

Some strong advantages of this identified model are that it
includes the nonlinearities due to the switching process and
it also maintains some physical insight about the converter.
These characteristics allow to obtain the nonlinear state-space
equations and to interpret the results in terms of state vari-
ables. With this information, any of the large-signal stability
analyses proposed in the literature can be implemented with-
out the need of having all the details about its design. Besides,
it is also possible to perform extensive simulations to account
for any possible scenario in the dcmicrogrid. Finally, it would
be possible to create a digital twin [26] of the PECs and the
dc microgrids using the proposed methodology as discussed
in the future work.

The rest of this paper is structured as follows. Section II
describes the use case involving a CPL. Section III describes
the optimization algorithm along with its advantages and
drawbacks. System identification in open loop and closed
loop besides the results are described in Section IV. Experi-
mental verification is presented in Section V. In Section VI
the stability analysis obtained from a numerical method is
determined and, finally, Section VII is dedicated to conclu-
sions and future work.

II. SYSTEM OVERVIEW
A typical source of instability in power electronic sys-
tems is the existence of tightly controlled load converters.

These converters demand a very constant power from the
source converter and consequently, from their input ports,
they behave as a negative resistor, which value depends on the
power demanded by the load. This nonlinear stability prob-
lem can be usually seen in the cascaded connection of PECs.
This systemwill be used as case study to present the proposed
methodology. In this section the system is described.

The parameters of the cascaded buck converter can be iden-
tified by means of optimization methods. For this purpose,
an appropriate input and output should be chosen. Previous
studies in black-box model identification have emphasized
the fact that as a result of considering the system a black-box
model, for DC-DC power converters the currents and the
voltages inside the black-box model are neither allowed to
be measured and used nor are accessible. Therefore, the vari-
ables that can be accessed are the following:
• Output resistance.
• Input voltage.
• Reference voltage of the controller in closed-loop
system.

• Duty-cycle in open-loop system.
The studied system is a cascaded buck converter with the

load converter regulated by proportional-integrate controller
showed in Fig. 2 with the following dynamic equations (1):

ẋ1 =
d1Vin1 − (RL1 + RC1 )x1 − x2 + d2RC1x3

L1

ẋ2 =
x1 − d2x3

C1

ẋ3 =
d2x2+(d2x1−d22 x3)RC1−(RL2+RC2 )x3−x4+(

RC2K
RC2+Ro

)

L2

ẋ4 =
x3 − ( 1

RC2+Ro
)K

C2

ẋ5 = Ki(Vref − (
Ro

RC2 + Ro
)K )

d2 = SAT 1
0 (Kp(Vref − (

Ro
RC2 + Ro

)K + x5)

K = x4 + RC2x3, (1)

where C , L, RC and RL correspond to the capacitor, induc-
tor, equivalent series resistance of the capacitor (ESR) and
winding resistance of the inductor respectively. Vin1 rep-
resents the input voltage. Vref , Kp and Ki correspond to
reference voltage of controller together with coefficients of
proportional-integral controller. d1 as well as d2 denote duty

FIGURE 2. Cascaded buck converter model.
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cycles of the converters and saturation function of the con-
troller is symbolized as SAT . Indices 1 and 2 designate the
primary converter as a source converter and secondary con-
verter as a load converter. Finally, the vector xi stands for
state variables, where x1 and x2 represent the inductor current
and the capacitor voltage of the primary converter, x3 and x4
correspond to the inductor current and the capacitor voltage
of the load converter, and x5 defines the product of the integral
coefficient of the PI controller and the error signal.

Since the system is composed of energy storage elements
and also due to the fact that capacitor and inductor in the series
connection generates a natural frequency, so as to achieve
accurate parameters identification, the dynamic model of the
buck converter is required to be stimulated somehow in order
to show its natural frequency. Amongst different kind of
signals for system identification, the square-wave signal is
considered one of the best. As this signal contains a wide
range of harmonics in frequency domain, which depends on
the slew rate, it can be applied for converter identification.
The point that should be taken into consideration is that, for
an identification, the system should not be damaged and it
is allowable to obtain the parameters of the model only by
applying a signal and measuring the voltage or the current.
One of the strength points of the proposed method is that
only by employing output signal waveform of the resistor Ro,
the parameters can be estimated.

III. OPTIMIZATION ALGORITHM
The proposed methodology involves the use of optimization
algorithms to identify the parameters of the converters that
reproduce the dynamic response of the PECs. In this section,
the advantages and limitations of two nature-inspired algo-
rithms are briefly described. The algorithms considered are
PSO and Genetic Algorithm (GA). Finally, a combination of
both, hybrid GAPSO algorithm, is implemented to exploit
their advantages.

A. GENETIC ALGORITHM
GA is one of the effective optimization technique for complex
optimizations. This technique can be utilized for solving
problems based on natural evolution and will find optimal
solution after a number of successive generations [27]. In gen-
eral, the optimization of problems without a mathematical
function as an objective function, is difficult. In this study,
the objective function is obtained from the comparison of the
model response with the PEC response. Although GA has its
advantages such as supporting multi-objective optimization
problems and the capability of not being trapped in local opti-
mal solution, the reason why GA may not perform individ-
ually for parameters identification in this kind of problems,
can be expressed briefly as low convergence rate which is a
time-consuming process [28].

B. PARTICLE SWARM OPTIMIZATION ALGORITHM
This algorithm is inspired by the response of social organisms
in groups, such as bird and fish schooling. PSO emulates the

interaction between members to share information [29], [30].
Compared to GA, in PSO a population of individuals (swarm)
is preferred rather than concentrating on a single individual
implementation. Then, the algorithm instead of moving a
single individual around, will move the population around
and looking for a potential solution. This is an example of a
heuristic approach, where there is no guarantee of an optimal
solution. This technique based on the swarm intelligence, will
look for optimum points and because of this it has a high
convergence speed to reach around the global optimum point.
Despite having strength points such as easy implementation
and simplicity, this method does not perform well in more
complex problems [31].

C. HYBRID GAPSO ALGORITHM
The pros and cons of PSO and GA have been described. Due
to the drawbacks of the mentioned evolutionary algorithms
in solving optimization problems, a combination of PSO and
GA has been selected, so as to benefit from the advantages
of both. The PSO algorithm helps to approach the proxim-
ity of the global minima with a low computational effort,
whereas the GA helps to avoid local minima and to obtain
the global minima accurately [32]. The advantages of the
GAPSO algorithm have been used in some other applications
[33], [34]. In this work, it is proposed to use the hybrid
GAPSO algorithm for the identification of the parameters that
describe the nonlinear dynamic behavior of power electronic
converters.

IV. SYSTEM IDENTIFICATION
The identification of the two-stage cascaded buck converter
has been divided into two parts: the open-loop and the
closed-loop systems. From the open-loop system identifica-
tion, the values of the parameters C , L, RC and RL will be
obtained and then, from the closed-loop system identification
test, the values of the coefficients of the Proportional-Integral
(PI) controller will be identified.

A. OPEN-LOOP PARAMETERS IDENTIFICATION
The identification of the open-loop parameters will be pre-
sented using two possible perturbations: variations in the
output resistance and variations in the duty cycle.

1) VARIATIONS IN THE OUTPUT RESISTANCE
In (1) the state-space equations of the model shown in Fig. 2
were presented. It has been described in the previous section
that to avoid damaging the system, for system identification,
appropriate inputs are needed. In this part, the variations of
the output resistor Ro have been selected as an input for
identification. By changing Ro, the output current and the
equilibrium points of the system will be altered. It should be
taken into account that the changing rate of the output resistor
should be slower than the dynamic behavior of the system as
to be able to represent the oscillations of the system in the
output. Attention should be paid to the changing time, so it
is not to be too high, owing to the fact that in optimization
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FIGURE 3. Output voltage comparison between designed and identified
models in the open-loop test with variations of Ro.

algorithm the oscillations will be disregarded and it will focus
on minimizing the final error.

By applying the changes on the output resistance, it is
expected that the output voltage changes substantially and
based on these changes, the values of the parameters of the
open-loop system can be identified. It is a notable point
that the system parameters will be identified just by changes
of Ro and observing the behavior of the output voltage
Vo2 of the load converter, which can be easily reproduced
experimentally.

Choosing proper objective functions is one of the most
important parts in optimization problems. The function can-
didate here is the Root Mean Square Error (RMSE).

RMSE =

√√√√ 1
N

N∑
n=1

Error(n)2 (2)

where Error represents the difference between actual values
and predicted values and N denotes the number of observa-
tions. The initial values of the parameters of L1, L2, C1, C2,
RC1 , RC2 , RL1 and RL2 have been considered as zero in the
open loop optimizer program.

The comparison between the output voltage of the iden-
tified model and the designed one is depicted in the Fig. 3.
At the beginning, all the initial conditions of the system are
equal to zero and the dynamic response shows a particular
resonance frequency. Afterwards, the changes in the output
resistor generate a different resonant behavior. Two LC filters
and their corresponding inherent frequencies of the cascaded
buck converter generate this waveform, which has a signifi-
cant importance for the identification of the parameters of the
primary converter of the model.

It is noticeable that the identified values are quite similar
to the designed values and the error signal together with
Ro variations can be seen in Fig. 4. Another flexible input
variable such as the duty-cycle is studied as an input.

FIGURE 4. Variations of Ro and the error signal.

2) VARIATIONS IN THE DUTY-CYCLE
In this section, Ro is considered constant. In this case,
the changes will be performed in the duty-cycle of the sec-
ondary converter, keeping the duty-cycle of the first converter
constant. Then, the parameters of the systemwill be identified
by analyzing the output voltage dynamic response. Equiva-
lently to the case of the identification process using the output
resistor, the initial values are considered as zero. As it can be
seen, the identified output voltage waveform is quite similar
to the designed one and this illustrates the accuracy of the
proposed model (Fig. 5). The error signal and the duty-cycle
changes are represented in Fig. 6.

FIGURE 5. Output voltage comparison between designed and identified
models in the open-loop test with variations of the duty-cycle d2.

From the two mentioned approaches for the open-loop
model identification, it can be concluded that both methods
(changing output resistance and duty-cycle) can identify the
parameters of the system accurately. However, in the cases
where the duty-cycle is available, it is usually preferred due
to its simple implementation.
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FIGURE 6. Variations of the duty-cycle of the secondary buck converter
and the error signal.

TABLE 1. GAPSO Parameters.

B. CLOSED-LOOP PARAMETERS IDENTIFICATION
A PI controller has been employed for the load side converter.
Generally, the coefficients of the PI controller are chosen in a
way so as to achieve the best performance of the system. The
purpose of this study is the identification of the closed-loop
system and subsequently obtaining the domain of the attrac-
tion. For this reason, specific controller coefficients have
been used such that the stability region exists (see Table 2).
Similarly to the open-loop identification, as the internal

components of the converter cannot be accessed, appropri-
ate input should be picked. The output voltage, Vo, will be
utilized for data sampling and the comparison of the output
voltage of the designed model and the identified model is
shown in Fig. 7. A proper accessible input in this identifi-
cation process, considering the system as a black-box model,
is the reference voltage. To have an exact identification, this
mentioned input signal is required to be perturbed properly.
The variations of the reference voltage are around its equilib-
rium point of 24 V.

A system is identifiable while it works in its stable mode
and on the contrary, it will be difficult or even impossible to
be identified when it turns to its unstable mode. As a conse-
quence, the input signal has been considered with a variation
of one volt around the stability region. Fig. 8 represents the
reference voltage variations, Vref , as well as the error signal.

Since the system has two unknown parameters, it is pos-
sible to draw the three-dimensional plot of the RMSE so
as to represent graphically the complexity of the identifica-
tion of the parameters in relation to the parameter values of
the controller. A small area around the objective has been
regarded, with the steps of 0.1 forKp andKi. As it can be seen

FIGURE 7. Output voltage comparison between designed and identified
model in closed-loop test with variations of the reference voltage.

FIGURE 8. Variations of Vref and the error signal.

in Fig. 9, there are plenty of the extremum points and finding
the global optimum point is not a simple task. Consequently,
the optimization algorithm of GAPSO with the following
specification is exercised in Table 1 for system identification
in open-loop model and closed-loop model.

1) CHOOSING INITIAL VALUES OF STATE VARIABLES IN A
CLOSED-LOOP SYSTEM MODEL
Initial values in the closed-loop system model are important.
It is worth noticing that in nonlinear systems, the stability
of the system depends on the initial conditions of the state
variables. Therefore, the system that is going to be identified
should stay in its stability region and this can be done by
choosing appropriate initial values for state variables. Fur-
thermore, the variations of the reference voltage have been
restricted to a small region close to the area in which the
system works in its stable mode. However, the initial values
of the state variables are still unknown.

An important point here is that if there is a controller
that can make the system stable, regardless of the values of
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FIGURE 9. RMSE for parameters of the PI controller.

its coefficients, in the end the state variables will reach the
unique equilibrium points. By using this principle, the coeffi-
cients of the controller have been chosen randomly in a way
that the system does not go to its unstable mode. Afterwards,
by solving the state equations and calculating the vector of
the values of the equilibrium points of the system, proper
initial values equal to initial values of the black-box model
are achieved.

In Table 2 the parameters of the designed model are indi-
cated as Designed . Method 1 refers to the data obtained per-
turbing the model in open-loop using the duty cycle, whereas
Method 2 refers to the data obtained in the closed-loopmodel.
The abbreviations OL and CL are associated with open-loop
and closed-loop model, respectively. The small difference
between identified values and designed values, represents
the suitable performance of the GAPSO algorithm. Then,
by substituting these values into the dynamic equations of the
system (1), the output voltage Vo can be obtained.

TABLE 2. Identified parameters values.

V. EXPERIMENTAL VERIFICATION
In this section, the same procedure will be used for the iden-
tification of a real buck converter. The control has an inner

current loop and an outer voltage loop. A Dspace Scalexio
unit has been used to implement the control, which integrates
an FPGA able to generate the PWM signal (10 kHz) and the
inner control loop. The outer control loop is implemented in
the processor part, which can be modified in real-time using
the control desk, Fig. 10.

FIGURE 10. Experimental setup.

The experimental tests will be carried out as detailed in
Section IV. Perturbing the systemwhile working in open-loop
it will be identified the parameters of the inductor, capaci-
tor, the equivalent series resistance of the capacitor and the
winding resistance of the inductor, whereas by perturbing the
system in closed-loop, the coefficients of the controller will
be obtained.

It is worth mentioning that in the identified model the
switches are ideal. However, in the practical circuit there
are real non-ideal switches which have internal resistances,
stray capacitances or inductors [35]. Regarding this, the time
period between on and off as well as off and on is significant
and can adversely affect the system identification. Besides
that, the noise of the sampling system in the measurement
process is another factor that can negatively impact making
the identification error bigger. It should be emphasized that
the values of the parameters of the open-loopmodel due to the
real non-ideal phenomena may be different from their theo-
retical values. The identified system in this case, is the result
of all differences and additional parts of the real converter
compared to the dynamic equations of the defined system.

A. INITIAL VALUES OF THE STATE VARIABLES
In commercial PECs it is not possible to have access to the
initial values of the inductor currents and capacitor voltages.
To solve this issue, the duty-cycle is considered constant for a
certain period of time, 0.2 in this example. Hereby, the system
from whatever initial values, which we have no prior infor-
mation, will reach the specific values of this operating point
in steady state. If the system has been identified accurately,
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FIGURE 11. Output voltage comparison between the measured signal
and the theoretical and identified models in the open-loop test with
variations of the duty-cycle.

the output voltage waveform must get to the same values at
0.02 seconds. As a result, the data after that specific time,
and the sampling data before this time, are eliminated from
the experimental system and will be put aside in the system
identification. The values between the time zero and 0.02 s
are only used for assimilating the initial values of the state
variables. Notice that, as shown in Fig. 12, the duty cycle is
varied in a wide range within its limits. This particular initial
value is completely random and its selection does not affect
the identification process.

FIGURE 12. Variations of the duty-cycle and the error signal.

B. PARAMETER IDENTIFICATION OF THE OPEN-LOOP
MODEL FOR THE BUCK CONVERTER
It can be concluded from the previous sections that, variations
of the duty-cycle are not only more efficient but also safer
than changing the output resistance of the system and can
be utilized in open-loop system identification. In Fig. 11,
the output voltages of the actual converter are compared with
the identified model and the theoretical model. The theoreti-
cal model has been designed using the expected parameters,

TABLE 3. Experimental Parameters values.

FIGURE 13. Output voltage comparison between the measured signal
and the theoretical and identified models in the closed-loop test with
variations of the reference voltage.

which could be found in the data-sheets of the different
elements that integrate the converter.

In Table 3 it can be seen that there is a significant difference
between the identified values and theoretical values. The root
cause of this is linked with the existence of the integrated cir-
cuits (ICs), the driver of the ICs, non-ideal switches, leakage
current together with nonlinear behavior of the capacitors and
the inductor, among others. However, the identified values
reproduce the real dynamic response with a higher accuracy
and, consequently, they will provide a better estimation of the
RAS.

Variations of the duty-cycle together with the error signal
of the identified model for the open-loop test are shown
in Fig. 12. Due to having the average part in the formula of
the RMSE for the objective function, the optimizationmethod
uses the averaged error for the comparison, which reduces
substantially the computational burden of the algorithm.

C. PARAMETER IDENTIFICATION OF THE CLOSED-LOOP
MODEL FOR THE BUCK CONVERTER
Changes of the reference voltage will be used for closed-loop
identification. By choosing this parameter, no damage will
be applied to the real system. The reference voltage changes
applied are presented in Fig. 14. In this case, the identified
values of the coefficients of the controller are very similar
to the theoretical ones. This is because of the fact that the
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FIGURE 14. Variation of the reference voltage and the error signal.

control loop in the experimental setup is performed using
Dspace Scalexio hardware, which receives the measured data
from the converter, simulates in real time the controller
response, and provides a duty cycle back to the converter.
As the controller is implemented in MATLAB Simulink,
the theoretical controller formula and the one implemented
in the hardware-in-the-loop device of the experimental setup
are both the same and the agreement in the identification is
very high. Moreover, as with the open-loop identification,
the sampling data before the time 0.035 seconds has not
been used in the optimizer program and the desired output
is considered after the first settling time of the system. The
comparison among the identified and the theoretical model
with the experimental result is shown in Fig. 13, and the
difference between the identified model and experimental
model is shown in Fig. 14. At the beginning, it can be seen that
the error is big, which comes from not having the same initial
values. The parameters of the buck converters including the
PI controller coefficients are shown in the Table 3.

VI. STABILITY ANALYSIS
A. STABILITY ANALYSIS BY SIMULATION
Gridding the coordinate plane and simulation of the different
sampling points for a system is the prime idea that springs
to mind with respect to stability analysis. The accuracy and
precision of this method depends on the number of sampling
points simulated. It is clear that a lower distance between the
sampling points brings about a higher accuracy of the basin
of attraction. On the other hand, the question which comes
to mind is that how small this distance could be. It should be
taken into consideration that there is a trade-off between the
accuracy and exactness of the determined stability region and
the duration of the process of searching for this region. Due
to the fact that the simulation is a time consuming process,
it is necessary to use a methodology to avoid the simulation
of all the sampling points and obtaining and plotting the exact
region of the stability only by the simulation of some specific
points.

B. STABILITY ANALYSIS BY BISECTION
METHOD ALGORITHM
In mathematics, the bisection method is employed to obtain
the roots of any given continuous function. To put this in
perspective, compared to the direct numerical approaches,
this method carries out using an ordered procedure so as to
remove redundant and needless computations [36]. In this
study, this method has been used for finding the border of
the region of the stability. To the best of our knowledge, this
approach has not been applied for the analysis of large-signal
stability of PECs.

In this algorithm, instead of utilizing the Cartesian coor-
dinates system, the radius, R, and the angle, θ , of the Polar
coordinate system have been employed. For the angles of
θ = θi, the radius of R will be obtained by the algorithm 2.
The choice of n for calculation of θi in the algorithm 1 is a
trade-off between accuracy and computational burden.

Algorithm 1 θi Calculation
1: for i← 0 to n-1 do
2: θi =

2π i
n

3: Find Ri with algorithm 2
4: end for

Algorithm 2 Bisection Algorithm
1: Consider starting points of a← 0 & b← 100
2: Average the points c = a+b

2
3: Simulate the model for the points a, b and c.
4: if R = a & R = c are stable and for R = b is unstable

then
5: a← c
6: if R = a is stable and R = b & R = c are unstable

then
7: b← c
8: Repeat steps 2 to 7, till |cnew − cold | ≺ ε
9: end if

10: end if
11: End

In algorithm 2, values a and b are considered such that
the system is stable for R = a and unstable for R = b.
It can be said that the determined region of the stability is the
exact possible region of the stability. The advantage of the
bisection method in comparison with the previous method is
that this method will search for a closed region objectively.
The region of stability for the cascaded converters (Fig. 2) is
represented in Fig. 15 in which, n = 40 of the algorithm 1 has
been used. This large-signal stability analysis is based on the
variations of two variables: the current of the inductor, IL , and
the voltage of the capacitor, VC , of the load converter.

In Fig. 16 two trajectories of the capacitor voltage and
the inductor current of the load converter are depicted. One
corresponds to a stable point, whereas the other corresponds
to an unstable point very close to the border of the RAS.
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FIGURE 15. Region of asymptotic stability with variations of IL and VC of
the load converter.

FIGURE 16. Trajectory of IL and VC of the load converter for a stable
initial condition (1,1) and an unstable initial condition (1.3,1) for the
designed model.

In both Fig. 15 and Fig. 16 the state variables are shifted from
the equilibrium point of the model (IL = 2.4 A, Vc = 24’ V)
to the origin.

VII. CONCLUSION
The stability analysis of nonlinear systems is a complex task.
In the literature, the solutions for power electronic systems
are either based on the small-signal approach, such as the
impedance-based methods, or in a very precise knowledge
about the nonlinear state space equations of the systems.
However, in power distribution systems based on power elec-
tronic converters, such as microgrids, the operating condi-
tions are very variable and the information about the system
is often limited by the manufacturers. This paper proposes
a practical approach to simulate and to perform nonlinear
stability analysis of power electronic converters with only
limited information about their topology. The idea is to
use optimization algorithms to identify the parameters of
an equivalent switching model, which can reproduce the

dynamic behavior of the power electronic converter. A com-
bination of particle swarm optimization and the genetic algo-
rithm is proposed to find the global minima with reduced
computational burden. Afterwards, state space equations are
extracted from this model and the stability is computed for
different initial conditions of the state variables to find the
region of attraction around any equilibrium point. The bisec-
tion method is used to minimize the number of operations
needed to find the region of asymptotic stability. Finally,
the method is validated both with simulations where all the
details are known and with experimental results.

In the future work, the proposed methodology will be used
to create a digital-twin. The model identified can be run in
a real-time simulator and the measured data can be period-
ically sent to the model to continuously update the model
parameters by means of the optimization algorithm. Further-
more, both the dynamic information provided by the iden-
tified model and the region of attraction obtained can be
used to impose limitations in the physical system to avoid
malfunction.
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