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ABSTRACT DNA computing and coding have good application prospects in data storage, data computing,
data encryption and other fields. Meanwhile, it is very important to design a set of DNA coding set that meets
a variety of constraints in today’s research. The purpose of DNA coding is to find as many qualified code sets
as possible under given conditions or to keep each DNA code in the DNA code set as far as possible from
other codes. The former is used in this paper. The algorithm uses the Bloch system to initialize the DNA
coding population, and uses the Ant Colony Algorithm to find the optimal DNA coding. At the same time,
crossover and mutation operations are added to make the generated population more random and diverse.
Experimental results show that the number of code sets obtained by this algorithm under certain specific
conditions is better than the number of code sets obtained by other algorithms.

INDEX TERMS DNA computing, DNA design, bloch system, ant colony algorithm.

I. INTRODUCTION
DNA computing was proposed by Head T [1] in 1987. Adle-
man [2] proved head’s conjecture with an innovative method
in 1994. At the same time, the DNA coding set that meets
the constraints plays an important role in various DNA fields.
With the rapid development of DNA related technology, DNA
coding technology is not only used in DNA computing, but
also used in other technologies, such as data storage [3], DNA
nanostructure [4], DNAmicroarray [5], image processing and
encryption [6], [7]. Deng et al. [8] proposed an improved
hybrid coding method of variable-length run-length lim-
ited (VL-RLL) coding and low-density parity-check (LDPC)
coding based on DNA based data storage technology. The
experimental results show that the hybrid coding method
proposed in this paper has better performance than the current
traditional DNA data storage technology. Immink et al. [9]
proposed a sequence replacement method for K constraints
and Q metadata. Experimental data show that this method
has significant improvement over the existing replacement
techniques. Calais et al. [10] proved that under typical con-
centration conditions, the maximummelting temperature and
14 base saturation provide a useful guidance for all technical
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solutions, and the effectiveness of the optimization method
is verified by experiments. Yin et al. [11] proposed a new
nonlinear control strategy and an improved NOL-HHO algo-
rithm. Experiments on several functions show that the algo-
rithm can obtain a better lower bound of DNA storage and
has stronger global search ability. Weber et al. [12] designed
a DNA coding set with specified minimum distance and
certain ability of error detection. Experiments show that the
DNA coding set has good ability of error detection. Com-
mon constraints include Hamming distance constraint (HD),
Reverse Complement Hamming distance constraint (RC)
and GC constraint. The above three constraints are used
in this paper, and they will be mentioned in the second
chapter. According to the constraints mentioned above, many
researchers and scholars are studying DNA coding ensemble
now. Cao et al. [13] proposed a K-means multiple optimiza-
tion algorithm (KMVO) based on Hamming distance con-
straint, GC constraint and other constraints. The algorithm
can find better coding boundary than the previous multiple
optimization algorithms (MVO). The experimental results
also show that the algorithm can store more information more
effectively in a given length, so as to improve the utilization of
space. Kim et al. [14] proposed a DNA coding structure based
on binary Hadamard matrix. The experimental data show
that compared with the minimum complement Hamming
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distance, the DNA coding structure with length of 8 or 16 in
this paper is larger than that of all previous known results.
Tulpan et al. [15] designed an algorithm for random, heuris-
tic and linear structure of DNA strand satisfying Hamming
distance constraint and complement constraints, and used GC
constraints to preprocess DNA coding. The results show that
the algorithm is better than other methods when using linear
construction. Deaton et al. [16] proposed an algorithm that
is stricter than Hamming distance and reverse Hamming dis-
tance constraints. Tulpan et al. [17], [18] proposed a random
local search algorithm. Experiments show that the algorithm
can find the DNA coding set with better quality.

The premise of DNA coding set design is to meet the cor-
responding constraints. The research on DNA coding can be
divided into two aspects: (1) find the DNA coding with better
quality under the condition of meeting the constraints [19];
(2) under the premise of meeting a certain quality, the more
DNA coding sets found, and the better. The focus of this paper
is the second case.

In this paper, we design an ant colony algorithm based
on Bloch Sphere to find the coding set under various con-
straints. In this method, Bloch coordinates are regarded as
three gene sequences, and each chromosome is composed
of three genes. Then the ant colony algorithm is used to
find the best initialization coding set. Compared with the
random search algorithm, the search strategy based on genetic
algorithm can search in a wider range, and the effect is better
than the former. Through comparison, we can know that the
results obtained by using the proposed search algorithm are
better than the previous search algorithm.

II. CONSTRAINTS ON DNA CODING
A DNA [20] code of length n is composed of a group of
(x1, . . . , xn) of xi ∈ {A,G,C,T } (T, C, G and A represent
four nucleotides). The problem of DNA coding design is to
find n coding sets that meet the constraints. Suppose that in
the set s, the chromosome of X is 5′−x1x2 . . . xn−3′, and the
chromosome of Y is 5′− y1y2 . . . yn− 3. Given a distance D,
the following constraint conditions will appear:

A. HAMMING DISTANCE CONSTRAINT (HD)
Hamming distance is the sum of the number of different
bases in the same position of two codes with the same length.
For different X and y, hamming distance is expressed as
H (x, y) ≥ d where H (x, y) represents Hamming distance of
coded X and y, and D represents distance. The calculation
formula of Hamming distance is as follows:

H (X ,Y ) =
n∑
i=1

h (xi, yi) (1)

h (xi, yi) =

{
0, xi = yi
1, xi 6= yi

(2)

In formula 2, the Hamming distance is calculated for the
i-th of code X and the i-th of code y (that is, the difference
in the same position between the two codes is compared),

The same code is 0, and the different code is 1. For example,
if the code x is 100000 and the code y is 011111, the Ham-
ming distance of the two codes is 6. In Formula 1, n is the
number of codes.

B. REVERSE COMPLEMENT HAMMING DISTANCE
CONSTRAINT (RC)
In DNA coding, the code x and the code y may be equal.
The Reverse Complement Hamming distance is expressed as
H
(
X ,YRC

)
≥ d , where H

(
X ,YRC

)
represents the Reverse

Complement Hamming distance between the code x and the
code y, and YRC is the Watson-Crick complement of Y.
In DNA computing experiments, single-stranded DNA

molecules can diffuse freely in the solution, so they can be
hybridized with the reverse code to describe the degree of
difference between code x and code y. Experiments have
shown that the greater the number of different bases between
two DNA codes, the less complementary base data between
them, and the less prone to non-specific hybridization.

C. GC CONSTRAINT (GC)
Every DNA code consists of four bases, T, C, G, and A, and G
andC play a very important role in it. In DNA coding, the total
number of bases G and C satisfies bn/2c, that is GC(x) =
bn/2c. The calculation formula of GC is as follows:

GC(x) =
|G| + |C|

n
(3)

where |G| and |C| represent the number of base G and base
C of X in the DNA sequence respectively, and n repre-
sents the length of sequence X. For example, X=12343434,
GC(x) = 25%.

III. RELATED ALGORITHMS
A. BLOCH SPHERE CODING
1) BLOCH SPHERE CODING
In 2002, Ham and Kim [21] proposed to make use of the
characteristics of chaos (such as randomness, convenience
and regularity) to make the ethnic groups more diverse. Use
Logistic mapping to generate r variables, the formula is as
follows:

x ji+1 = µx
j
i

(
1− x ji

)
, j = 1, 2, 3, 4, . . . ,m (4)

Among them, m is the number of variables, and the value
of µ is generally between [0, 4]. If the value is greater than 4,
the result will diverge, and n chromosomes will be generated
through the above formula.

Bloch sphere is a unit of two-dimensional sphere, which is
orthogonal to the corresponding points. The north and south
poles of Bloch sphere correspond to the up and down states of
electrons respectively, which can be expressed as 0 or 1, and
vice versa. In a second-order quantum system, the possible
state |ψ〉 can be represented by two bases which are mutually
steamed, and these two bases can be represented by |0〉 and
|1〉. In physics, |0〉 and |1〉 represent the only two results
obtained by quantum measurement, which can be expressed
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as |ψ〉 = α|0〉 a β|1〉, α, β ∈ C, |α|2 + |β|2 = 1.
On the three-dimensional Bloch sphere, a qubit can be
expressed as |ϕ〉 = cos θ2 |0〉+e

iϕ sin θ2 |1〉, where e
iδ is called

the global phase, which has the same effect on |0〉 and |1〉.
The eiδ in relative phase is different. Its influence formula
is:|ψ〉 = cos θ |0〉 + sin θeiφ |1〉, so the range of θ and φ can
be determined:0 ≤ θ ≤ π

2 ⇒ 0 ≤ 2θ ≤ π, 0 ≤ φ <

2π . The Bloch sphere can be obtained by drawing all the
R3 distributed in three-dimensional space in 2θ and φ. The
spherical formula is as follows:

x = sin 2θ × cosφ (5)

y = sin 2θ × sinφ (6)

z = cos 2θ (7)

The 3D Bloch sphere is shown below:

2) TRANSFORMATION OF SOLUTION SPACE
In DNA coding, it is necessary to express the 4 bases in
real life with codes that can be read by a computer. At the
same time, it is also necessary to establish a corresponding
mathematical model. Its definition formula is as follows:

f (x) =


0, x = T
1, x = C
2, x = G
3, x = A

(8)

From the above formula, we can see that the four bases
T, C, G, and A of DNA in real life are represented by the
four numbers 0, 1, 2, and 3 respectively, which facilitates the
subsequent DNA coding work.

The value range of n chromosomes generated by formula
(4) is between [-1,1], which does not meet the requirements of
our DNA coding set, so we need to perform space transforma-
tion to convert n chromosomes into our own In the required
space, the formula for solution space conversion is as follows:

X jix = round
{
1
2

[
b
(
1+ xij

)
+ a

(
1− xij

)]}
− 1 (9)

X jiy = round
{
1
2

[
b
(
1+ yij

)
+ a

(
1− yij

)]}
− 1 (10)

X jiz = round
{
1
2

[
b
(
1+ zij

)
+ a

(
1− zij

)]}
− 1 (11)

Because the number of bases selected in this paper is 4,
the value of b is set to 4, and the value of a is set to 1. After
the transformation of the above solution space formula, a set
of DNA codes in the range [0, 4] can be obtained.

B. IMPROVED ANT COLONY ALGORITHM
Ant colony optimization (ACO)[22], also known as ant algo-
rithm, is a probabilistic algorithm to find the optimal path,
and also a simulated evolutionary algorithm. Its inspiration
comes from the behavior of finding the optimal path in the
process of searching for food in the animal kingdom.

Ant colony algorithm was first applied to TSP problem
(Traveling Salesman Problem). After several years of devel-
opment, ant colony algorithm can now be seen in other fields
[23, 24]. Although the ant colony algorithm has achieved
good performance in many fields, the most successful is its
application in combinatorial optimization problems.

1) FUNDAMENTAL
Biologists have discovered that ants are polymorphic social
creatures without vision. They rely on the pheromone on the
way to find the best path. For example, if the ants are at
an intersection that they have never passed before, they will
randomly choose a path to travel, and at the same time release
pheromone on the changed path. When the ants pass through
the intersection, they will choose the one with a greater prob-
ability. The path of pheromone advances. At the same time,
the pheromone on the path will evaporate over time, which
will result in more and more ants passing through the optimal
path, and the pheromone will become more and more con-
centrated. The probability of choosing this intersection will
become greater and greater. Correspondingly, the pheromone
on the path that is not chosen by the ant will become weaker
and weaker, and the probability of the ant choosing this road
will become less and less. In the end, the ants will choose the
best path.

2) ANT COLONY TRANSFER STRATEGY
The DNA coding set Sk is structured as follows: First initial-
ize a certain number of DNA code sets V(If there is a GC
constraint, you only need to ensure that the GC content is
GC(x) = bn/2c when initializing the DNA code set).
Ant k randomly selects a code from the code set V and adds

it to Sk , and then constructs the candidate code set candidates
in the set Sk . The definition formula is as follows:

candidates = H
(
vi, vj

)
≥ d, H

(
vi, vRj

)
≥ d (12)

Because the constraints used in the above formula are
Hamming distance constraints and Reverse Complement
Hamming distance constraint, the corresponding constraints
can also be selected according to the actual situation. Each
code in the candidate code and all codes in the set Sk meet
the corresponding constraints. Then calculate the probability
of each code in the candidate code set, and then use roulette
to select one of the codes to add to the set Sk , so as to repeat
until the candidate set is empty. At this time, the first ant has
completed its mission, and then the second ant also performs
the corresponding operation until the last ant completes the
operation. The formula of ant transfer strategy [25] with
candidate codes added to set Sk is as follows:

ηi = di/
∑

j∈ Candidates

dj (13)

p (vi) =
(τi)

α (ηi)
β∑

vj∈ Candidates
(
τj
)α (

ηj
)β (14)
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where di is the sum of the distances (Hamming distance and
inverse Hamming distance) between the ith code and other
codes, and ηi is the heuristic function. α is the pheromone
factor and β is the heuristic function factor, The larger the
value of β, the larger the proportion in formula (11). τi is
the pheromone concentration of the ith code. From the above
two formulas, we can see that the two major factors that
affect our selection probability are pheromone concentration
τi and heuristic function ηi, that is to say, the higher the
pheromone concentration, the greater the probability of the
path being selected. However, with the increase of coding
length, the calculation time of p (vi) will increase, so a new
formula is needed to reduce the calculation time. On the basis
of the original ant transfer strategy, the simplified formula is
simplified and a simplified version of ant transfer strategy is
proposed. The simplified version of ant transfer strategy [26]
is shown in formula (12).

p (vi) =
(τi)

α∑
vj∈ Cand idates

(
τj
)α (15)

Comparedwith formula (11), formula (12) does not need to
calculate the distance between codes, which greatly improves
the calculation efficiency and shortens the calculation time.
The basic ant colony algorithm will calculate the distance
of all DNA codes when calculating the ant transfer strategy,
and select the code with the highest probability to add to the
candidate code, but this operation will greatly improve the
computing time of the computer. The improved ant transfer
strategy only needs to calculate the pheromone concentration,
and the ant only needs to rely on the pheromone concen-
tration At the same time, it also proves the universality of
the improved ant transfer strategy, which can be combined
with other algorithms to improve the robustness of the hybrid
algorithm and reduce the running time of the algorithm.

3) UPDATE LOCAL PHEROMONE
The communication between ant colonies is completed by
pheromone, which plays a crucial role in the cooperation of
ant colony. When any ant K completes a coding set Sk , it will
update the local pheromone. The update formula [27] is as
follows:

τ (vi) =

τ (vi)− τmin ·
|Sbs|
|Sk |

vi ∈ Sk

τ (vi) otherwise
(16)

In the process of updating pheromones, the content of
pheromones that do not belong to the coding set Sk remains
unchanged, while those that belong to the coding set Sk
remain unchanged The pheromone content in code a is
reduced. The reason may be that when the nth ant chooses the
path with higher pheromone concentration, it is more likely to
choose the path with higher pheromone concentration. There-
fore, when the local update is completed, the pheromone
concentration not belonging to code set Sk is higher than that
belonging to code set Sk , which leads to the ant preferentially
choosing those not previously selected Thus, the diversity

of solution space is increased. The value of pheromone is
generally fixed in a range, and when the local pheromone
is updated, the pheromone content of the code will also
change. At this time, it is necessary to determine whether the
pheromone content of the code exceeds the specified range.
If the content of a pheromone in the coding is less than the
minimum value set before, the pheromone content is set to the
minimum value. On the contrary, if pheromone content in
the encoding is higher than the maximum, the pheromone
content is set to the maximum. From the above formula,
we can see that updating the local pheromone can be divided
into two parts: the first part updates the pheromone, and
the second part processes the pheromone beyond the specified
range.

4) UPDATE GLOBAL PHEROMONE
After completing an iteration, all ants build DNA coding set,
and then we need to update the global pheromone. Because
the pheromone in natural environment evaporates with time,
the algorithm also increases evaporation to simulate the phe-
nomenon in nature. ρ is pheromone volatilization factor.
1τ (vi) is the new pheromone content, Q is the pheromone
constant, and Lk is the sum of the codes that meet the con-
straint conditions. According to different rules, ant colony
algorithm can be divided into three models: Ant Cycle model,
Ant Quantity model and Ant Density model. The model used
in this paper is Ant Cycle model. Ant Cycle model means
that ants release pheromones after completing a path cycle.
The formula for updating global pheromone is as follows:

τ (vi) = (1− ρ) · τ (vi)+1τ (vi) (17)

1τ (vi) =
m∑
k=1

1τ kvi (18)

1τ
(
vki
)
=


Q
Lk
, vi ∈ Sk

0, otherwise
(19)

From the above three formulas, we can see that global
pheromone updating includes two processes: increasing and
evaporating. In nature, the pheromone content released by
ants in the two places is not wireless superposition, because
pheromonewill slowly dissipate with the passage of time, and
the evaporation of pheromone on the path that few ants pass
will be higher than the increase, so the pheromone content
on the path will be less and less until exhausted, in contrast,
the increase of pheromone on the path that many ants pass
So the pheromone on this path will be more and more. After
completing iteration, the evaporation of pheromone on all
codes is ρ · τ (vi), which leads to ants slowly forgetting the
previous path and choosing the path they haven’t found to
search, thus increasing the diversity of understanding space
search.

C. CROSSOVER
In evolutionary algorithm, if there is only update operation,
the population will evolve in the same direction, which leads

104516 VOLUME 9, 2021



Q. Zhou et al.: DNA Design Based on Improved ACO Algorithm With Bloch Sphere

FIGURE 1. 3D Bloch sphere.

FIGURE 2. Results before crossover.

to premature algorithm and reduces the ability of searching
solution space. Crossover operation can not only make the
population more diverse, but also retain excellent individuals
to the next generation. These two aspects play an impor-
tant role in evolutionary algorithm. The common crossover
strategies of evolutionary algorithm [28] are single point
crossover, two-point crossover, multi-point crossover and
uniform crossover. In order to make the population more
diverse, the crossover method used in this paper is full
crossover, that is, each gene of the population participates in
the crossover, but this operation greatly increases the calcu-
lation time. Suppose the population size is 4, and each chro-
mosome has 5 genes. The whole crossover process is shown
in Figure 1, and the crossover result is shown in Figure 2.

D. MUTATION
Mutation operation is also an indispensable part of evolution-
ary algorithm. Mutation operation can prevent the algorithm
from converging to the local optimum too prematurely to
a certain extent. However, in order to ensure the stability
of the algorithm, the mutation probability of the mutation
operation is generally very small. The mutation method used
in this article is to randomly select a gene in a chromosome
to become another gene in the same chromosome when the

FIGURE 3. Results after crossover.

FIGURE 4. Results before mutation.

mutation requirements are met. Assuming that the population
size is 4 and the number of genes per chromosome is 5,
Figure 3 is the result before mutation, Figure 4 is the result
after mutation, and the red part in Figure 4 is the value after
mutation.

E. CALCULATE FITNESS
The constraints in this paper are combination constraints
(Hamming distance constraint, Reverse Complement Ham-
ming distance constraint, etc.), so the adaptive function of the
algorithm is set to satisfy the Reverse Complement Hamming
distance constraint. If the fitness function value is zero, all
the code in the collection satisfies the combination constraint.
The formula is as follows:

fitness(W ) =
∑

max
{
0, d − H

(
w1,wRC2

)}
(20)

F. ALGORITHM DESCRIPTION
1) Use Bloch Sphere Coding to initialize the population.
2) Ant K starts to work and randomly selects a code from

code s to add it to Ck .
3) Each ant constructs a candidate set based on its own set.
4) According to the ant transfer strategy (roulette), select

a set from the candidate set to join the Ck .
5) Determine whether the candidate set is empty. If not,

return to step 4. Otherwise, go to step 6.
6) Update the local pheromone.
7) Determine whether all ants have completed the update,

if not, return to step 4, otherwise go to step 8.
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FIGURE 5. Results after mutation.

8) Update the local optimal solution and determine
whether the maximum number of iterations is reached,
if not reached, update the global optimal solution and
the global pheromone and return to step 2, otherwise
go to step 9.

9) Obtain the global optimal solution Sbs and use it as the
input of genetic algorithm.

10) Use Bloch Sphere Coding to initialize the set S.
11) Perform crossover, mutation and fitness calculation

operations on the set S and update the code set.
12) Determine whether the set s is empty, if it is not empty,

go to step 11, otherwise go to step 13.
13) Determine whether the maximum number of iterations

has been reached, if not, go to step 10, otherwise go to
step 14.

14) The final set Sbs is output, and the operation ends.
The algorithm flow chart is shown in Figure 5.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
The CPU of this experiment is i7-10070, 16GB memory.
MATLAB is used to experiment and compare the results.

B. EXPERIMENTAL DATA
In this manuscript, Bloch spherical coding method is used,
which has more randomness and diversity than the traditional
random coding method. Therefore, the coding method used
in this manuscript is Bloch spherical coding (the population
generated by Bloch spherical coding is the experimental
data).

C. PARAMETER SETTINGS
The combination of ant colony algorithm and genetic algo-
rithm is used to solve the problem of DNA coding set design.
The CPU of this experiment is i7-10070, 16GB memory.
MATLAB is used to experiment and compare the results.
Table 1 shows the parameters of ant colony algorithm, and
table 2 shows the parameters of genetic algorithm.

D. EXPERIMENTAL PROCESS
In this experiment, we first use Bloch spherical coding to
initialize the population (the population obtained by Bloch

TABLE 1. Parameter details of ant colony algorithm.

TABLE 2. Genetic algorithm parameter details.

TABLE 3. The meaning of corner mark.

spherical coding can have randomness and diversity), then
remove the same coding and put the coding into the improved
ant colony algorithm to get the optimal one or more DNA
coding sets, and then use genetic algorithm (crossover and
mutation) to expand the DNA coding set, After many cycles,
the final DNA coding set is obtained.

E. MEASURE STANDARD
In this experiment, Bloch spherical coding, improved ant
colony algorithm and genetic algorithm are used to obtain
DNA coding set, so the evaluation index of this experiment is
to obtain as many DNA coding sets as possible under certain
conditions (given constraints and DNA coding length).

F. EXPERIMENTAL RESULT
Table 3 shows the meaning of the upper corner of each
experimental data, that is, the experimental results of each
algorithm. Table 4 and table 5 are the maximum num-
ber of sets obtained by each algorithm of ARC4 (n, d) and
AGC,R C
4 (n, d,w) respectively. The value range of coding

length is [4, 13], and the range of distance D is [3, n]. A in
each column represents the previous experimental results
(the letter in the upper right corner of each result represents
the method used, see Table 3 for details), B represents the
experimental results of this paper. The symbol ‘‘-’’ indicates
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FIGURE 6. Algorithm flowchart.

that the value of distance D is greater than the length of the
code. The number in bold indicates that the experiment in this
paper is better than the previous experiment, and the symbol
‘‘.’’ indicates that the experiment has not been run. In this
paper, the value range of w is bn/2c.
In Table 4, most of the previous research results come

from Variable Neighborhood Search algorithm (VNS), sim-
ulated annealing algorithm, linear construction and nonlin-
ear construction. It can be seen from table 4 and table
5 that some results in this experiment, such as ARC4 (12, 6)
and AGC,R C

4 (12, 6, 6), are far from the existing experimental
results, and some results are equal to the previous results,
such as ARC4 (9, 7) = 8. There are also some cases where
the number of codes in the new algorithm is larger than that
of the existing codes in the range of coding length [4, 13],
such as ARC4 (7, 3) = 197, ARC4 (8, 3) = 633, ARC4 (9, 3) =
2077, ARC4 (11, 6) = 138, AGC,R C

4 (10, 3, 5) = 4552,
AGC,R C
4 (11, 4, 5) = 2569, etc. This shows that the algorithm

can find more codes that meet the constraints in some cases.
The reason why the algorithm based on Bloch sphere coding,
improved ant colony algorithm and genetic algorithm can get

TABLE 4. The maximum number of codes obtained by ARC
4 (n, d ) set.

better results is that: (1) the method of randomly generated
coding is replaced by Bloch sphere coding, which makes
the generated population more random, so as to achieve a
larger search range, and also has a certain impact on the
subsequent search solution space (2) compared with random
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TABLE 5. The maximum number of codes obtained by AGC,R C
4 (n, d , w)

set.

search, the coding set obtained by crossover and mutation
of genetic algorithm can approach the optimal space, while
random search has no such evolutionary mechanism, which is
blind search. Although the algorithm can obtain better coding
set in some cases, the coding set obtained in many cases
is not better than the previous one, which indicates that the
algorithm still has a lot of room for improvement. At the same
time, the latest intelligent optimization can be added to the
algorithm to obtain better performance.

V. CONCLUSION
In this paper, we combine Bloch sphere coding, ant colony
algorithm and genetic algorithm to design a DNA coding
method that meets the constraints. Bloch spherical coding
method is more diverse than the traditional random genera-
tion method, which makes the search space of the algorithm
larger and more able to find the DNA coding set that meets
the constraints; ant colony algorithm has better stability and
global search ability; genetic algorithm makes the population
better adapt to the new environment and expand the existing
solutions through mutation crossover and other operations
Space.

Through experiments, we find that the size of DNA coding
set found by the proposed algorithm in some cases is better
than the existing results. This also proves the feasibility of the
algorithm to a certain extent, and provides a strong support for
the future research of DNA coding set.
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