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ABSTRACT The problem of tracking the maximum power point for the wind energy conversion sys-
tem (WECS) is taken into consideration in this paper. The WECS in this article is simultaneously affected
by the uncertainties and the arbitrary disturbance that cause the WECSs to be much more challenging to
control. A new method to synthesize a polynomial disturbance observer for estimating the aerodynamic
torque, wind speed, and electromagnetic torque without using sensors is proposed in this paper. Unlike the
previous methods, in this work, both the uncertainties and the disturbance are estimated, then estimations
of the uncertainties and disturbance are transmitted to the Linear Quadratic Regulator (LQR) controller for
eliminating the influences of the uncertainties and disturbance; and tracking the optimal power point of
WECS. It should be noted that the uncertainties in this work are time-varying and both uncertainties and
disturbance do not need to satisfy the bounded constraints. The wind speed and aerodynamic torque are
arbitrary and unnecessary to fulfill the low-varying constraint or r th time derivative bound. On the basis of
Lyapunov methodology and the sum-of-square technique (SOS), the main theorems are derived to design the
polynomial disturbance observer. Finally, the simulation results are provided to demonstrate the effectiveness
and merit of the proposed method.

INDEX TERMS WECSs, LQR, disturbance observer, uncertainties, polynomial observer, SOS.

I. INTRODUCTION
Nowadays, air pollution and global warming caused by using
fossil fuels are increasingly becoming a serious problem in
the whole world that affects not only human health but also
economic development. Due to this reason, discovering envi-
ronmentally friendly energy resources to replace the fossil
fuels is a pressing issue. Among new renewable energies
developed in recent years, wind energy is considered as an
efficient and free-pollution renewable resource. Recently,
there is a fast-growing number of studies focusing on wind
energy conversion system (WECS) [1]–[7]. For example,
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Wu et al. [1], the sliding mode control was applied for track-
ing the Maximum Power Point of the Low-Power WECS and
improving the performance of the system. The new approach
to synthesize the MPPT (maximum power point tracking)
scheme based on dc-link voltage has been investigated for
the small scale WECS with a fast-changing wind speed con-
dition in paper [2]. Hodzic and Tai [3] have developed the
novel purb and observe (P&O) algorithm to track the optimal
power point and decrease the effects of harmonic distortion
of the wind energy conversion system. Moreover, the MPPT
algorithm for the offshore wind turbine system has been
presented in [6] in which the active-rectifier d-axis current
was employed to control the whole system. Although there
are plenty of studies concentrating on WECS in the past few
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years, up to now, studying WECS is still a promising land for
researchers.

Moreover, to design the controller for tracking optimal
power point, the information of wind speed and other state
variables of the WECS is necessary for sending back to the
controller. Regarding obtaining the wind speed information,
it can be measured directly by anemometers; however, using
anemometers maybe obtain an inaccurate result and it also
causes to increase the cost to build the system. In order to
overcome the mentioned-above limitations, the wind speed
can be estimated by employing the observer [9]–[16] instead
of using the anemometers. For instance, the nonlinear distur-
bance observer and the sliding mode control were studied
to estimate the aerodynamic torque, wind speed [9], and
track the optimal power point and the high-order observer
form was proposed to estimate the aerodynamic torque and
wind speed [10]. The polynomial observer has been proposed
by Vu and Do [11] to aerodynamic torque, electromagnetic
torque, and stator current in axis-d in which aerodynamic
torque did not need to satisfy any constraint. Moreover, a non-
linear observer was designed for WECS to estimate the rotor
speed, position, and the turbine torque in paper [12] where the
frequency of the grid was time-varying and unknown. The
polynomial observer combining with fault-tolerant control
was studied for the WECS to eliminate the influence of faults
as well as tracking the maximum power point of WECS [13].
The sliding mode observer-based nonlinear controller has
been developed by Hussain and Mishra [14] to estimate the
wind speed, aerodynamic torque, and rotor speed of WECS.
Although the observer in previous papers can estimate the
aerodynamic torque and wind speed very well, there still exist
several drawbacks. For example, the aerodynamic torque and
wind speed must satisfy the constraint that the first-derivative
of aerodynamic torque and wind speed is equal to zero [9]; or
the aerodynamic torque and wind speed still need to fulfill the
constraint that the r th time derivative of aerodynamic torque
and wind speed must be bounded [10].

In practice, the systems are always impacted by the uncer-
tainties and the disturbance [17]–[19]. The uncertainties may
origin from the parameter error and/or the modeling error.
Both the uncertainties and system disturbance will make
the controller design more challenging and even cause to
degrade the performance of the system. The WECS is not an
exception, it is also strongly affected by the disturbance and
the uncertainties. Recently, there are several studies paying
attention to the control of the WECS with the existence of the
uncertainties and/or disturbance [9], [20]–[23]. In paper [9],
the time-varying uncertainty affected WECS; however, the
uncertainty of this case was only impacted to the mechanical
part of WECS and the system disturbance was not consid-
ered in this work. The WECS was modeled in terms of the
uncertain T-S fuzzymodel and then the robust observer-based
controller was designed to estimate the wind speed [20].
Nonetheless, the uncertainties considered by Sung et al. [20]
must satisfy the bounded constraints. The high-order observer
was also synthesized for the WECS with the effects of the

uncertainties to estimate the wind speed [21]. However, the
uncertainties in the paper [21] were time-unvarying and this
work omitted the effects of the system disturbance. The
active disturbance rejection controller was synthesized for
the WECS in papers [22] and [23], but these two papers
only consider the existence of the disturbance and did not
concern the influence of the uncertainties. With the above
analyses, it is seen that the previous papers either deal with
the uncertainties [9], [20], [21] or take into consideration
the disturbance [22], [23]. To the best of our knowledge,
up to now, there is not any paper considering the WECS sys-
tem with the existence of both uncertainties and disturbance
simultaneously.

In recent years, a new format to model the system
called ‘‘polynomial linear system’’ was investigated in many
papers [23]–[28]. The polynomial linear system, actually,
is an extended format of the linear system. However, the dif-
ference between the polynomial linear system and the linear
system is that thematrices of the polynomial linear system are
varying matrices and are expressed in terms of polynomial
form while the matrices of the linear system are constant.
Employing the polynomial linear system to model the non-
linear system will decrease the number of linearization terms
and reduce the modeling error as well. Recently, with the
aid of the SOS tool of Matlab [29], solving the conditions
expressed under polynomial format to design controller and
observer becomes easy and efficient. Therefore, in this paper,
the WECS will be represented under the framework of the
polynomial linear system and then the polynomial observer
is synthesized for this system.

On the basis of the above discussions, we are inspired to
develop a new method for designing a robust disturbance
observer-based controller to track the optimal power point
of WECS that is simultaneously influenced by time-varying
uncertainties and the disturbance. The contributions of this
paper are presented as follows

i) Unlike the previous papers that ignored the effects
of the uncertainties and disturbance of WECS sys-
tem [10]–[16], or merely considered the impacts of the
uncertainties [9], [20], 21] or disturbance [18], [19],
the WECS system in our paper is simultaneously influ-
enced by both the uncertainties and disturbance.

ii) The uncertainties in this paper are time-varying uncer-
tainties that more relax than the constant uncertainties
do in paper [21]. In addition, the uncertainties are
unnecessary to fulfill the bounded constraints that are
mandatory in the paper [20].

iii) The WECS is represented in terms of the polynomial
linear system that will assist to decrease the modeling
errors with respect to the method used T-S fuzzy model
in [20].

iv) The wind speed and aerodynamic torque in this article
are more relaxed with respect to the previous studies,
because they do not need to fulfill the low-varying
constraint as in paper [9], and r th time derivative of
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aerodynamic torque and wind speed must be bounded
as in paper 10], [20].

v) The robust polynomial disturbance observer-based
controller that is the combination of disturbance
observer and LQR controller is synthesized to esti-
mate aerodynamic torque, wind speed, electromagnetic
torque to track the maximum power point. Moreover,
both the uncertainties and the disturbance are also esti-
mated and then this information is transmitted to the
LQR controller to eliminate completely the impacts of
the uncertainties and the system disturbance.

The remains of this paper are structured as follows. The
mathematical model of WECS and the problem description
are presented in Section 2. Section 3 provides the method to
design LQR controller. The polynomial disturbance observer
synthesis for WECSs is shown in Section 4. The stability
analysis of the closed-loop WECS system is mentioned in
Section 5. Section 6 will provide the simulation. Finally, the
conclusions are presented in Section 7.
Notations:3T and3−1 indicate the transpose and inverse

of matrix 3, respectively. 3 > 0 (3 < 0) means that 3 is
the positive(negative) definite matrix. I is an identity matrix.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
A. MATHEMATICAL MODEL OF WECS
In practice, the power obtained by the wind turbine (WT) is
described in the following equation:

Pa =
1
2
ρπR2Cp (λ, β) v3 (1)

in which Pa is the aerodynamics power, v indicates the wind
speed; ρ and R denote theWT rotor radius and the air density,
respectively. Cp(λ, β) is for the power coefficient which is a
nonlinear function dependent on the tip-speed ratio λ and the
pitch angle β of the blades.
The tip-speed ratio λ is calculated as follows

λ =
ωrR
v

(2)

where ωr is the rotor speed of the WT.
Let us define Ta to be the aerodynamic torque of WT, then

substituting (1) into (2), one obtains

Ta =
Pa
ωr
=

1
2
ρπR3

Cp (λ, β)
λ

v2

Denote Cq (λ, β) = Cp (λ, β) /λ that is the torque coeffi-
cient, then

Ta =
Pa
ωr
=

1
2
ρπR3Cq (λ, β) v2 (3)

From (1), it is obvious that the power Pa is proportional to
the power coefficient Cp, therefore, the optimal power point
is obtained when the Cp is achieved its maximum value at an
optimal tip-speed ratio λopt .With a specific blade angle, this
optimal ratio is constant.

TABLE 1. Parameters of WECS.

The maximum power is obtained by tracking the optimal
reference of turbine rotor speed

ωr,ref =
λopt

R
v (4)

The turbine is connected to the generator via a gearbox
with ratio ngb, thus the relations of speed and torque between
two sides are determined as

ngb =
ω

ωr
=

Ta
Tgs

(5)

in which ω is the mechanical angular speed of the generator,
and Tgs is the equivalent aerodynamic torque applied to the
generator.

The mathematical model of a permanent magnet syn-
chronous generator (PMSG) is presented as

J
dω
dt
= −Bvω + Tgs − Te

diq
dt
= −

Rs
L
iq − Pωid −

ψmP
L
ω +

1
L
vq

did
dt
= −

Rs
L
id + Pωiq +

1
L
vd

(6)

where the parameters are explained in Table 1.
The electromagnetic torque can be calculated by,

Te = Kiq (7)

in which K = 3/2 ψmP.
Combining equations (5), (6), and (7), the dynamic equa-

tions of a PMSG are expressed as:

dω
dt
= −

Bv
J
ω −

1
J
Te +

1
J .ngb

T
a

dTe
dt
= −

Rs
L
Te − PKωid −

ψmPK
L

ω +
K
L
vq

did
dt
= −

Rs
L
id +

P
K
ωT e +

1
L
vd

(8)
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Assume that WECS system is impacted by the uncertain-
ties and the system disturbance, then (8) is modified in the
following for



dω
dt
= −

Bv
J
ω −

1
J
Te +

1
J .ngb

T
a

dTe
dt
= −

[
Rs
L
+1aTe (t)

]
Te − [PKω +1aid (t)] id

−[
ψmPK
L
+1aω(t)]ω +

K
L
vq + γ1d(t)

did
dt
= −[

Rs
L
+1bid (t)]id + [

P
K
ω +1bTe (t)]T e

+1bω(t)ω +
1
L
vd + γ2d(t)

(9)

where d(t) is the disturbance, γ1 and γ2 are the coef-
ficient of the disturbance; 1aTe (t), 1aid (t), 1aω(t),
1bid (t), 1bTe (t), 1bω(t) are the time-varying uncertain-
ties that may come from the modeling error or parameter
errors.
Remark 1: The uncertainties in this paper are time-varying,

it means that it is a more general case with respect to the
constant uncertainties in the paper [17].

B. PROBLEM STATEMENT
It is assumed that the WECS system is simultaneously influ-
enced by the time-varying uncertainties and the system dis-
turbance. It will cause difficulties to design a controller for
WECS. In addition, the upper/lower bound values of the
uncertainties do not know, hence the previous methods in
papers [9]–[16], [20]–[23] are unable to apply to design the
controller for this case. Additionally, the WECS in this work
also assumes that

1. Both ω and id are measured.
2. iq is unavailable, therefore Te is not known either.
3. Wind speed v and aerodynamic torque Ta are unavail-

able.

The Ta is arbitrary signals, thus, the approaches in
papers [9], [10], [20] are failed to design a controller for
WECS. Owing to these reasons, in this paper a polynomial
observer is proposed to estimate electromagnetic torque Te,
aerodynamic torque Ta, the time-varying uncertainties, and
the system disturbance d(t) without employing the sen-
sors. The information of these signals will be transmitted
to the LQR controller for tracking maximum power point
purposes.

III. LINEAR QUADRATIC OPTIMAL CONTROL DESIGN
To track the maximum power point of WECS, we need to
design the controller to track the optimal reference of turbine
rotor speed.

Let us define that ω̃ is the tracking error of rotor speed,
T̃e is the tracking error of the electromagnetic torque of the
generator, and uqc and udc are the compensating terms of

control input, then the system (9) can be rewritten as follows:

dω̃
dt
= −

Bv
J
ω̃ −

1
J
T̃e

dT̃e
dt
= −

Rs
L
T̃e −

ψmPK
L

ω̃ +
K
L

(
vq − uqc

)
did
dt
= −

Rs
L
id +

1
L
(vd − udc)

(10)

where

ω̃ = ω − ωref ;ωref = ωr,ref .ngb =
λopt

R
v.ngb

T̃e = Te − Te,ref ;Te,ref =
1
ngb

T
a
− Bvωref − J ω̇ref

uqc =
Rs
K
Te,ref +

L
K
Ṫe,ref + ψmPωref + PLωid

+
L
K
[1aTe (t)Te +1aid (t) id +1aω (t) ω −γ1d (t)]

udc = −
PL
K
ωT e + L[1bid (t) id −1bTe (t)Te

−1bω (t) ω − γ2d(t)]

For the sake of simplification, we assign two slack terms
which include both time-varying uncertainties and the distur-
bance in the following forms:

φ1 (t) = [1aTe (t)Te +1aid (t) id +1aω (t) ω − γ1d (t)]

φ2 (t) = [1bid (t) id −1bTe (t)Te −1bω (t) ω − γ2d(t)]

and then

uqc =
Rs
K
Te,ref +

L
K
Ṫe,ref + ψmPωref + PLωid +

L
K
φ1 (t)

udc = −
PL
K
ωT e + Lφ2 (t) (11)

where ωref and Te,ref are the speed reference of the generator
and the reference of electromagnetic torque.
Remark 2: It is seen that two variables φ1 (t) and φ2 (t)

consist of the information of both the time-varying uncertain-
ties and disturbance, therefore, when the φ1 (t) and φ2 (t) are
estimated, it means that the information of the uncertainties
and disturbance are also estimated.

Denote
x =

[
ω̃ T̃e id

]T
, u =

[
vq vd

]T
, uc =

[
uqc udc

]T
, then the

system (10) can be expressed under the state-space frame-
work as follows,

ẋ = Ax + B (u− uc) (12)

in which

A =

 −Bv
J

1
J 0

−
ψmPK
L −

Rs
L 0

0 0 −Rs
L

 ,B =
 0 0
K
L 0
0 1

L

 .
In this section, Linear Quadratic Regulator (LQR) con-

troller is selected to control the system (12) in order to make
the vector of state variables approach zero. It means that the
tracking errors also converge towards zero.
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To design the LQR controller, firstly, let us consider the
cost function as follows:

J (x, u) =
∫
∞

0

(
xTZx + uTRu

)
(13)

in which Z ∈ R3×3 andR ∈ R2×2 denote the positive-definite
weigh-matrices. The matrices Z and R are typically selected
as the following diagonal matrices:

Z =

q1 0 0
0 q2 0
0 0 q3

 ,R = τ [t1 0
0 t2

]
(14)

with

qi =
1

tsi (ximax)2
, ti =

1

(uimax)2
, ρ > 0 (15)

where tsi is considered as expected settling time of xi, τ is a
control parameter, and ximax and uimax are upper bounds of
|xi| and |ui|, respectively.
The optimal controller form for system (12) is

u = uc + Kux (16)

where Ku is the optimal controller gain. The optimal LQR
controller gain is obtained by the following steps:
Step 1: Solving the following algebraic Riccati Equation to

obtain the positive-definite matrix

PuA+ ATPu − PuBTc−1BTPu + Z = 0 (17)

Step 2: Determine the optimal controller gain by following
the formula

Ku = −R−1BTPu. (18)

IV. OBSERVER SYNTHESIS
In this section, a polynomial disturbance observer will be
synthesized to estimate the aerodynamic torque Ta, wind
speed, electromagnetic torque Te, the uncertainties, and the
system disturbance d(t). However, before starting designing
the polynomial disturbance observer, the system mathemati-
cal model of theWECS needs to be modified in the following
steps.

A. MODIFIED WECS SYSTEM
The WECS system model (9) is able to be rewritten in the
following form ω̇Ṫe

i̇d

 =
 −Bv

J −
1
J 0

−
ψmPK
L −

Rs
L PKω

0 P
K ω −

Rs
L


+

− 0 0 0
1aω(t) −1aTe (t) −1aid (t)
−1bω(t) 1bTe (t) 1bid (t)

ωTe
id


+

 0 0
K
L 0
0 1

L

[vq
vd

]
+

 1
Jngb
0
0

Ta +
 0
γ1
γ2

 d(t) (19)

Suppose that the Electromagnetic torque Te is not mea-
sured, thus, the output of the system (19) is represented by

y =
[
1 0 0
0 0 1

]ωTe
id

 (20)

From (19) and (20), the mathematical model of WECS is
rewritten in terms of the polynomial linear system{

˙̃x = [A (ω)+1A (t)] x̃ + Bu+ DTa + Hd(t)
y = Cx̃

(21)

where

x̃ =
[
ω Te i̇d

]T
, u =

[
vq vd

]T
,

A (ω) =

 −Bv
J −

1
J 0

−
ψmPK
L −

Rs
L PKω

0 P
K ω −

Rs
L

 ,
1A (t) =

 0 0 0
−1aω (t) −1aTe (t) −1aid (t)
−1bω (t) 1bTe (t) 1bid (t)

 ,
B =

 0
K
L 0
0 1

L

 ,C = [1 0 0
0 0 1

]
,

D =
[

1
Jngb

0 0
]T
, and H =

 0
γ1
γ2

 .
γ1 and γ2 are the disturbance coefficient.
Assumption 1: suppose that the uncertainty satisfies the

matching condition 1A (t) x̃ = Hϑ(t) where ϑ(t) is an
arbitrary signal with an appropriate dimension.

Under Assumption 1, the system is modified as follows{
˙̃x = A (ω) x̃ + Bu+ DTa + H [ϑ (t)+ d (t)]
y = Cx̃

(22)

Let us define ϕ (t) = [ϑ (t)+ d (t)] then we{
˙̃x = A (ω) x̃ + Bu+ DTa + Hϕ (t)
y = Cx̃

(23)

The system (23) can be modified as follows
˙̃x = A (ω) x̃ + Bu+ [D H ]

[
Ta
ϕ (t)

]
y = Cx̃

(24)

Let us define:

D̃ =
[
D H

]
and ϕ̃ =

[
Ta
ϕ (t)

]
then (24) becomes{

˙̃x = A (ω) x̃ + Bu+ D̃ϕ̃
y = Cx̃

(25)

From (19)-(25), it can see that the system (21) has been
modified to the polynomial system (25)
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B. DISTURBANCE POLYNOMIAL OBSERVER SYNTHESIS
In this section, the modified model (25) is used to replace
the system (21) to design the disturbance for estimating the
unknown state Te, aerodynamic torque Ta, uncertainties, and
the disturbance d(t).

The polynomial disturbance observer form for the sys-
tem (25) is

˙̂x̃ = X (ω) ˆ̃x +Wu+ R (ω) y+ Eẏ

ŷ = C ˆ̃x
ˆ̃ϕ = (CD̃ (ω))−1ẏ− S (ω) ˆ̃x − J (ω) u

(26)

where ˆ̃x, ŷ and ˆ̃ω are the estimation of x̃, y and ϕ̃ (t),
respectively. Polynomial matrix X (ω) ∈ R3×3, W ∈ R3×1,
polynomial matrix R (ω) ∈ R3×1, E ∈ R3×1, polynomial
matrix S (ω) ∈ R1×3, and J ∈ R1×2 are the observer gains
which will be determined later.

The estimation of Ta and ϕ (t) are computed by the follow-
ing formulas

T̂a = [ ˆ̃ϕ]T
[
I
0

]
, ϕ̂ (t) = [ ˆ̃ϕ]T

[
0
I

]
It should be noted that the system (21) and the observer (26)

consist of the polynomial matrices. Therefore, the LMI tech-
nique in paper [17]–[19] is unable to apply to find the
observer gains. Because of this reason, in this work, the Sum-
Of-Square (SOS) tool is used to design the polynomial dis-
turbance observer (26). To help readers easily understand,
the definitions of SOS are presented by the following two
propositions.
Proposition 1 [30]: for a given arbitrary function h(x (t)),

this function is called Sum-Of-Square if only if it can
be decomposed to the form h (x (t)) =

∑n
i=1 [bi(x (t))]

2,
in which bi(x (t)) is expressed in the polynomial form in
x (t). If the function h(x (t)) is an SOS, we can conclude that
h(x (t)) ≥ 0, unfortunately, the converse is not guaranteed.
Proposition 2 [30]: Let us consider a polynomial symmet-

ric matrix 5(x) ∈ Rn×n in x and a vector v ∈ Rn does not
depend on x, it concludes that then5(x) ≥ 0 for all x if only
if vT5(x)v is expressed under the SOS framework.
Theorem 1:The estimation error of the system (25)with the

observer (26) converge towards zero asymptotically if there
exist matrice W ∈ R3×1,E ∈ R3×1, J ∈ R1×2, the polyno-
mial matrices X (ω)∈ R3×3,R (ω) ∈ R3×1, S (ω) ∈ R1×3,
and a symmetric matrix Q∈ R3×3 such that the following
conditions satisfy

A (ω)− R(ω)C − ECA (ω)− X (ω) = 0 (27)

B−W − ECB = 0 (28)

D̃− ECD̃ = 0 (29)

S (ω)− (CD̃)−1CA (ω) = 0 (30)

J − (CD̃)−1CB = 0 (31)

vT1 (Q− ε1I ) v1 is SOS (32)

−vT2
(
XT (ω)Q+ QX (ω)− ε2(ω)I

)
v2 is SOS (33)

where v1, v2 are two vectors which are independent on ω, ε1
is positive scalar and ε2(ω) is positive and ε2(ω) 6= 0 with
ω 6= 0.
Proof:
From Eq. (25), it infers that

ẏ = C ˙̃x = CA (ω) x̃ + CBu+ CD̃ (ω) ϕ̃ (34)

Let us assign the estimation error as follows:

e (t) = x̃(t)− ˆ̃x(t) (35)

Taking the derivative two sides of Eq. (35), one obtains

ė (t) = ˙̃x − ˙̂x̃ (36)

Substituting (25) and (26) into (36) yields

ė (t) = (ω) x̃ + Bu+ D̃ (ω)

−

[
X (ω) ˆ̃x +Wu+ R (ω) y+ Eẏ

]
(37)

From (34) and (37), we have

ė (t) = X (ω) e (t)+ [A (ω)

− R (ω)C − ECA (ω)− X (ω)] x̃

+[B−W − ECB]u+ [D̃− ECD̃]ϕ̃ (38)

From Theorem 1, if the conditions (27)-(29) are satisfied
then (38) is equivalent to

ė (t) = X (ω) e (t) (39)

The Lyapunov function is selected as follows:

V (e (t)) = eT (t)Qe (t) (40)

The condition (32) of Theorem 1means that thematrixQ >
0. Hence, It can conclude that V (e (t)) > 0.
Taking the derivative both sides of Eq.(40)

V̇ (e (t)) = ėT (t)Qe (t)+ eT (t)QėT (t) (41)

Substituting (39) into (41), it yields

V̇ (e (t)) = eT (t) [NT (ω)Q+ QN (ω)]e (t) (42)

It is seen that if the condition (33) of Theorem 1 holds, then
NT (ω)Q + QN (ω) < 0, hence, it infers that V̇ (e (t)) < 0
and the estimation error e (t) converges towards zero asymp-
totically.
Denote the estimation error of the disturbance

eϕ̃ (t) = ϕ̃ − ˆ̃ϕ (43)

Substituting (26) into (43) obtains

eϕ̃ (t) = ϕ̃ − (CD̃ (ω))−1ẏ− S (ω) ˆ̃x − J (ω) u (44)

Combining (34) and (44), we have

eϕ̃ (t) = ϕ̃ − (CD̃)−1
[
CA (ω) x̃ + CBu+ CD̃ϕ̃

]
−S (ω) ˆ̃x − J (ω) u

= [S (ω)− (CD̃)−1CA (ω)]x̃ + [J (ω)− (CD̃)−1CB]

× u+ S (ω) e (t) (45)
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If the conditions (30) and (31) of Theorem 1 fulfill,
then (45) is written in the following form

eϕ̃ (t) = S (ω) e (t) (46)

From Eq. (46), it is clear that if e (t) → 0 when t → ∞
then we can conclude that eϕ̃ (t)→ 0.

The proof of Theorem 1 is completed.
From the condition (33), it is seen that this is a nonlinear

polynomial matrix inequality (BPMI) which is hard to solve
by SOS Tool in MATLAB. Owing to this reason, the con-
dition (33) must be transformed to the Polynomial Linear
Matrix Inequality (PLMI) which is presented in the next
steps.
Theorem 2:The estimation error e (t)with the observer (26)

approach zero asymptotically if there exist the matrices
W ∈ R3×1,E ∈ R3×1, J ∈ R1×2, the polynomial matrices
X (ω)∈ R3×3,R (ω) ∈ R3×1, S (ω) ∈ R1×3, and a symmetric
matrix Q∈ R3×3 to ensure the following conditions satisfy

vT1 (Q− ε1I ) v1 is SOS (47)

−v2T (4 (ω)+ ε2(ω)I ) v2 is SOS (48)

in which

4(ω) = [(I − D̃(CD̃)−1C)A (ω)]TQ

+Q[(I − D̃(CD̃)−1C)A (ω)]

−CT (R̄ (ω))T − QR̄ (ω)C (49)

R (ω) = QR (ω) (50)

v1 and v2 are the vectors that are independent on ω. ε1 is the
positive scalar and ε2 (ω) > 0 with ω 6= 0.

And the observer gains are calculated

E = D̃(CD̃)−1 (51)

R (ω) = Q−1R (ω) (52)

X (ω) = A (ω)− R (ω)C − ECA (ω) (53)

W = B− ECB (54)

S (ω) = (CD̃)−1CA (ω) (55)

J = (CD̃)−1CB (56)

Proof:
From the condition (29) of Theorem 1, it infers that

E = D̃(CD̃)−1 (57)

From (27), we have

X (ω) = A (ω)− R (ω)C − ECA (ω)

= (I-EC)A (ω)− R (ω)C (58)

Substituting (57) into (58) yields

X (ω) =
(
I − D̃(CD̃)−1C

)
A (ω)− R (ω)C (59)

From (33), it implies that

XT (ω)Q+ QX (ω) < 0 (60)

Substituting (59) into (60), one obtains

[(I − D̃(CD̃)−1C)A (ω)

−R (ω)C]TQ+ Q[(I − D̃(CD̃)−1C)A (ω)− R (ω)C]

= [(I − D̃(CD̃)−1C)A (ω)]TQ− CT (R (ω))TQ

+Q[(I − D̃(CD̃)−1C)A (ω)]− QR (ω)C < 0 (61)

Define

R (ω) = QR (ω) (62)

then (61) becomes

[(I − D̃(CD̃)−1C)A (ω)]TQ− CT (R̄ (ω))T

+Q[(I − D̃(CD̃)−1C)A (ω)]− R̄ (ω)C < 0 (63)

From (63), it is obvious that the PBMI (33) has been con-
verted to the PLMI successfully by Theorem 2. The observer
gains will be easily determined by resolving the PLMIs con-
ditions of Theorem by SOS tool of Matlab. The proof is
completed.
To help readers easily understand, the procedure to deter-

mine the observer gains of the disturbance observer (26) is
briefly presented as follows.
Step 1: Resolve the conditions (48) and (50) by SOS tool

in Matlab to get R (ω) and Q
Step 2: Compute the observer gains from (51)-(56).
Step 3: Based on the observer gains in Step 2, constructing

the observer (26) to estimate the ˆ̃x(t), and ˆ̃ϕ(t)
Step 4: The estimation T̂a and ϕ̂ (t) (that consist of uncer-

tainties and disturbance) are estimated by the following for-
mulas

T̂a = [ ˆ̃ϕ]T
[
I
0

]
,

ϕ̂ (t) = [ ˆ̃ϕ]T
[
0
I

]
.

V. OBSERVER-BASED CONTROL SCHEME AND
CLOSED-LOOP STABILITY ANALYSIS
A. OBSERVER-BASED CONTROLLER
With the estimated information of speed reference, aero-
dynamic torque, time-varying uncertainties, and the distur-
bance, the tracking error and compensating terms become

ˆ̃ω = ω − ω̂ref ; ω̂ref =

√
T̂a
kopt

ˆ̃
eT = T̂e − T̂e,ref ; T̂e,ref =

1
ngb

T̂
a
− Bvω̂ref − J ˙̂ωref

ûqc =
Rs
K
T̂e,ref +

L
K
˙̂Te,ref + ψmPω̂ref + PLωid +

L
K
φ̂1 (t)

ûdc = −
PL
K
ωT̂ e + Lφ̂2 (t) . (64)

Under Assumption 1, the estimation of uncertainties and
disturbance φ̂1 (t), φ̂2 (t) are computed as follows

φ̂1 (t) = γ1ϕ̂ (t) , φ̂2 (t) = γ2ϕ̂ (t)
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The controller framework (16) is written as follows

u = ûc + Kux̂ (65)

in which

x̂ =
[
ˆ̃ω
ˆ̃
eT id

]T
, ûc =

[
ûqc ûdc

]T
.

Then, from (31), the following equations are achieved,

x̂ = x + Uẽ

ûc = uc + V ẽ (66)

where

ẽ =
[
eTa ėTa ëTa eTe eφ1 eφ2

]T
U =

u1 0 0 0 0
u2 u3 0 u4 0
0 0 0 0 0

 ,
V =

[
v1 v2 v3 0 v4 0
0 0 0 v5 0 v6

]
,

u1 =
1√

kopt

(
√
Ta +

√
T̂a

) , u2 = 1
ngb
− Bvu1 + Jf2,

u3 = −Jf1, f1 =
1

2
√
koptTa

, f2 =
˙̂
aT

2
√
TaT̂a

u1; f3 =
f1
2Ta

u4 = −1

f =

Ta + T̂a +
√
TaT̂a

2TaT̂a
+

¨̂
aT
˙̂
aT

 f2u1,

v1 = ψmPu1 +
L
K
f3 +

Rs
K
u2, v2 = u3 +

L
K
f4,

v3 =
L
K
f1, v4 =

L
K
, v5 =

PL
K
ω

eTa = Ta − T̂a, eTe = Te − T̂e, eφ1 = φ1 − φ̂1,

eφ2 = φ2 − φ̂2.

B. STABILITY ANALYSIS
From (65) and (66), we can have

u = uc + Kux + Lẽ (67)

where

L = U + KuV ,

From (65) and (12), one obtains

ẋ = (A+ BKu) x + BNẽ (68)

It is seen that the system (68) is considered a closed-loop
system with an observer-based controller.
Lemma 1[30]: For a given system with the following form{

ż = f (z, y)
ẏ = s (y)

(69)

suppose that the system ẏ = s (y) has an asymptotically stable
equilibrium at y = 0. If ż = f (z, 0) has an asymptotically

stable equilibrium at z = 0, then (69) has an asymptotically
stable equilibrium at (z, y) = (0, 0).
Theorem 3: Under Lemma 1, LQR controller design in

Section 2 and observer design in Section 2, the tracking error
x and estimation error ẽwith observer (26) and controller (65)
converge towards zero asymptotically.
Proof:
If there exist the observer gains of the observer (26) that

satisfy the conditions of Theorem 2 in Section 3 then distur-
bance observer (26) successfully estimates the state Te, aero-
dynamic torque Ta, time-varying, and system disturbance.
It means that the estimation error ẽ→ 0 when t →∞. Due
to this reason, the system (68) is modified

ẋ = (A+ BKu) x (70)

According to the LQR controller design procedure in
Section 2, it is clear that system (70) is asymptotically stable
equilibrium at zero. Therefore, under Lemma 1, it is con-
cluded that the closed-loop control system (68) with distur-
bance observer-based controller is stable at the tracking error
x(t) and estimation error ẽ(t) is asymptotically stable at zero.

VI. RESULTS AND DISCUSSION
To prove the effectiveness of the proposed method, in this
section, the system WECS with parameters illustrated
in Table 1. The structure of the WECS with a robust poly-
nomial disturbance observer-based controller is described
in Fig. 1. Suppose that the system is impacted by the
time-varying uncertainties (71) and the random system dis-
turbance is shown in Fig. 2. The waveform of the wind speed
is shown in Fig. 3.

1A (t) =

 0 0 0
6 sin(ω) −3 cos(ω) −3 sin(2ω)
4 sin(ω) 2 cos(ω) 2 sin(2ω)

 (71)

Discussion 1: It is seen that in this simulation, the uncer-
tainties (71) are time-varying and we do not know the
bound range of the uncertainties. Moreover, the disturbance
in Fig. 1 and the wind speed in Fig. 2 are arbitrary and do not
need to satisfy the bounded constraint or the first-order equal
to zero.

Employing the SOS tool of Matlab, the observer gains are
obtained as follows

Q =

 0.8252 2.971 ∗ 10−8 0.636 ∗ 10−3

2.971 ∗ 10−8 3.068 ∗ 10−8 3.61 ∗ 10−9

0.636 ∗ 10−3 3.61 ∗ 10−9 0.8492


R̄ (ω) =

R̄11 R̄12R̄21 R̄22
R̄31 R̄32


R̄11 = 0.5069ω2

+ 0.507× 10−3ω + 0.3154

R̄12 = 4.114×10−6ω22.793× 10−3ω + 0.0043

R̄21 = 2.227× 10−8ω2
− 2.249× 10−5ω − 0.00162

Following the procedure for synthesizing the polynomial
disturbance observer in Theorem 2, the observer gains are
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FIGURE 1. Structure of the WECS with Robust disturbance observer-based
Controller.

TABLE 2. WECS parameters.

computed as follows.

R(ω) =

R11 R12R21 R22
R31 R32


R11 = 0.614ω2

+ 6.433× 10−4ω + 0.384

R12 = 4.548× 10−4ω23.36×10−3ω + 4.708×10−4

R21 = 0.131ω2
− 733.095ω − 52809.933

R22 = −10.202ω2
− 669.247ω + 1180.209

R31 = −4.553× 10−4ω23.285×10−3ω + 5

R32 = 0.596ω2
+ 1.530× 10−4ω + 0.596

E =

1 0
0 1.5
0 1.5

 ,X (ω) =
X11 X12 X13X21 X22 X23
X31 X32 X33


X11 = −0.614ω26.433× 10−4ω − 0.384

X12 = 0

X13 = 4.548× 10−4ω2
+ 0.003ω − 0.0047

FIGURE 2. The disturbance.

X21 = −0.131ω2
+ 733.09ω + 46002.64

X22 = 3.48ω − 103.55

X23 = 10.202ω2
+ 584.957ω − 1024.885

X31 = 4.553× 10−4ω2
+ 0.003ω − 0.005

X32 = 0

X33 = −0.596ω21.53× 10−4ω − 0.596

W = 103 ×

 0 0
1.696 −0.4225
0 0


S(ω) =

[
−1/500 −1 0

0 1.16ω −51.77

]
,

J =
[
0 0
0 140.8451

]
Based on the LQR controller in Section 3, using Matlab

to calculate the optimal controller gain of the LQR controller
with

Z =

10 0 0
0 1 0
0 0 1

 and R = 10−2
[
1 0
0 1

]
,

one obtains

Kµ =
[
−35.8703 9.9394 −0.0000
0.0000 −0.0000 9.6392

]
With the obtained observer and controller gains, WECS

with the proposed observer and the controller is simulated in
MATLAB/Simulink and the simulation results are illustrated
in Figs. 2-7.

The simulation results of the WECS are illustrated
in Figs. 4-7. The mechanical angular speed ω, the estima-
tion ω̂ and their tracking error ω̃ are shown in Fig. 4. The
real aerodynamic torque Ta, estimated signal T̂a and their
estimation error eTa are presented in Fig. 5. The estimation
performance of electromagnetic torque (including real Te,
the estimation T̂e, and estimation error eTe = Te − T̂e)
and estimation performance of stator currents id in d-axis
(including real current id , estimated îd , and estimation error
eid = id − îd ) are demonstrated in Fig. 6 and Fig. 7, respec-
tively. Fig. 4 shows that the mechanical angular speed ω can
be tracked the signal reference very well and the tracking
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FIGURE 3. Wind speed waveform.

FIGURE 4. Speed tracking performance.

FIGURE 5. Estimation of the electromagnetic torque Ta.

error converges towards zero. In addition, the simulation
results in Figs. 5-7 show that the estimation of aerodynamic
torque T̂a, the estimations of electromagnetic torque T̂e, and
estimation of stator currents îd in d-axis are able to approach
real states Ta, Te, and id , respectively; and the estimation

FIGURE 6. Estimation of aerodynamic torque Te.

FIGURE 7. Estimation of the stator currents id in d -axis.

errors eTa, eTe, and eid converge towards zero asymptotically
as well. With these results, it is obvious that the proposed
polynomial disturbance observer and the LQR controller still
work efficiently to estimate Ta, Te, and id , of WECS system
even with the effects of the time-varying uncertainties and
disturbance. In addition, both the time-varying uncertainties
and the disturbance are estimated by the observer and send
back to the LQR controller to eliminate the impacts of the
uncertainties and the disturbance; and track the optimal power
point very well.
Discussion 2: It should be noted that the method in [13]

was proposed for WECS with the effects of the faults, while
in this paper, WECS system is affected both time-varying
uncertainties and disturbance. Therefore, the method in [13]
is impossible to apply for WECS in this work.

VII. CONCLUSION
Anew approach to design a polynomial disturbance observer-
based controller to track the maximum power point of WECS
has been studied in this article. The systemWECS is impacted
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by the time-varying uncertainties and the disturbance. The
robust polynomial disturbance observer is designed to esti-
mate the aerodynamic torque, electromagnetic torque, wind
speed, uncertainties as well as disturbance. The estimation
information of these parameters, uncertainties and the distur-
bance is transmitted to the LQR controller to eliminate the
influences of both uncertainties and disturbance and track the
maximum power point. The conditions for the polynomial
disturbance observer expressed under the polynomial frame-
work are derived in main theorems. Finally, the obtained
simulation results have proved that the robust disturbance
observer-based controller can operate efficiently and the pro-
posedmethod of this paper is successful to control theWECS.
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