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ABSTRACT Estimation of unknown noise covariances in a Kalman filter is a problem of significant practical
interest in a wide array of applications. Although this problem has a long history, reliable algorithms for
their estimation were scant, and necessary and sufficient conditions for identifiability of the covariances
were in dispute until recently. Necessary and sufficient conditions for covariance estimation and a batch
estimation algorithm were presented in our previous study. This paper presents stochastic gradient descent
algorithms for noise covariance estimation in adaptive Kalman filters that are an order of magnitude faster
than the batch method for similar or better root mean square error. More significantly, these algorithms are
applicable to non-stationary systems where the noise covariances can occasionally jump up or down by an
unknownmagnitude. The computational efficiency of the new algorithms stems from adaptive thresholds for
convergence, recursive fading memory estimation of the sample cross-correlations of the innovations, and
accelerated stochastic gradient descent algorithms. The comparative evaluation of the proposed methods on
a number of test cases demonstrates their computational efficiency and accuracy.

INDEX TERMS Adaptive Kalman filtering, noise covariance estimation, Adam, RMS prop, bold-driver,
stochastic gradient descent, sequential, fading memory.

I. INTRODUCTION
The Kalman filter (KF) [8] is the minimum mean square
error (MMSE) state estimator for discrete-time linear
dynamic systems under Gaussian white noise with known
mean and covariance parameters. It is also the best linear esti-
mation algorithm when the noise processes are non-Gaussian
with known first and second-order statistics, i.e., mean and
covariance. It has found successful applications in numer-
ous fields, such as navigation, weather forecasting, signal
processing, econometrics and structural health monitoring,
to name a few [2]. However, in many practical situations,
including the ones mentioned above, the statistics of the
noise covariances are often unknown or only partially known.
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Exploiting the whiteness property of the innovations in an
optimal Kalman filter [4], [13]–[15], previous work [15], [21]
has derived necessary and sufficient conditions for esti-
mating the unknown process noise and measurement noise
covariances from data. In [21], we have presented a batch
optimization algorithm to estimate the unknown covari-
ances to minimize the sum of the normalized tempo-
ral cross-correlations of the innovations. In this paper,
we explore enhanced covariance estimation methods based
on sequential mini-batch stochastic gradient descent (SGD)
algorithms with adaptive step sizes and iteration-dependent
convergence thresholds.

A. PRIOR WORK
The key to process noise and measurement noise covari-
ance estimation is an expression for the covariance of the
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state estimation error and of the innovations of any stable
suboptimal filter as a function of noise covariances. This
expression serves as a fundamental building block for the
correlation-based methods for noise covariance estimation.
Pioneering contributions using this approach were made by
[4], [13]–[15]. Relatively recently, Särkkä and Nummenmaa
[17] proposed a variational Bayesian method for the joint
recursive estimation of the dynamic state and measurement
noise parameters in linear state space models. This method
is based on forming a separable variational approximation to
the joint posterior distribution of states and noise parameters
at each time step separately. This method does not consider
changes in process noise. In general, the variational methods
require tuning parameters to converge to the correct noise
covariances and often converge to a local minimum.

Recently, Zhang et al. [21] proposed a new approach to
estimate the process noise and measurement noise covari-
ances of a system using the entire time series of inno-
vation samples. For estimating the unknown covariances,
Zhang et al. [21] proved that the identifiability conditions
are related to the rank of a matrix involving the auto and
cross-covariances of a weighted sum of innovations, where
the weights are the coefficients of the minimal polynomial
of the closed-loop system transition matrix of any stable,
not necessarily optimal, Kalman filter. An optimization algo-
rithm was developed to estimate the steady-state Kalman
filter gain, the unknown noise covariance matrices, as well
as the state prediction (and updated) error covariance matrix.
A drawback of this approach is that it is a batch optimization
method requiring the entire observation sequence to compute
the cost and the gradient, is computationally expensive, and is
applicable only to stationary systems. The present paper seeks
to overcome these limitations.

B. CONTRIBUTION AND ORGANIZATION
In this paper, we develop sequential mini-batch estimation
methods with adaptive step size rules to improve the com-
putational efficiency of the algorithm in [21]. Our approach
replaces the batch innovation covariance estimates with
sequential fading memory mini-batch estimates when updat-
ing the Kalman filter gain. We also enhance the algorithm by
investigating the performance of several accelerated stochas-
tic gradient descent (SGD) algorithms, viz., Bold driver [3],
[21], Constant, Subgradient [6], RMSProp [19], Adam [11],
Adadelta [20] step-size selection methods, and enhance their
computational efficiency via iteration-dependent dynamic
thresholds for convergence. The SGDmethods, together with
change detection algorithms, enable the estimation of noise
covariances in non-stationary systems in a decision-directed
manner. The jumps are assumed to occur occasionally and
after the filter has reached a steady-state. The validation of
the proposed method on several test cases from the literature
and on non-stationary systems demonstrates its efficacy.

The paper is organized as follows. In Section II, we provide
an overview of the batch gradient descent method for esti-
mating the unknown noise covariances. Then, in Section III,

we present the sequential mini-batch gradient descent method
for optimizing the Kalman gain and consequently estimating
the measurement and process noise covariances. We also dis-
cuss how we enhanced our approach using a fading memory
filter-based innovation correlation estimation, SGD update of
the Kalman gain, dynamic thresholding for algorithm conver-
gence, and accelerated step size rules for the SGD update.
Section IV provides evidence that the computational perfor-
mance of the proposed methods is substantially better than
the batch estimation algorithm via numerical examples and
demonstrates their applicability to non-stationary systems
where the noise covariances abruptly jump by an unknown,
but finite, magnitude occasionally. Lastly, we conclude the
paper and discuss our future work in Section V.

II. BATCH GRADIENT DESCENT METHOD FOR
ESTIMATING Q AND R
Consider a linear discrete-time stochastic dynamic system

x(k + 1) = Fx(k)+ 0v(k) (1)

z(k) = Hx(k)+ w(k) (2)

where x(k) is the state vector, z(k) is the measurement vector,
F and H are the state transition matrix and the measurement
matrix, respectively, and 0 is the noise gain matrix. Here,
the process noise, v(k) and the measurement noise, w(k) are
assumed to be zero-mean white Gaussian noise processes
with unknown process noise covarianceQ and unknownmea-
surement noise covariance R, respectively. We allow for Q
and R to change occasionally (see Section IV). These two
noise covariances and the initial state are assumed to be
mutually independent in time.

When Q and R are known, the Kalman filter involves
consecutive processes of prediction and update given by

x̂(k + 1|k) = Fx̂(k|k) (3)

ν(k + 1) = z(k + 1)−Hx̂(k + 1|k) (4)

x̂(k + 1|k + 1) = x̂(k + 1|k)+W (k + 1)ν(k + 1) (5)

P(k + 1|k) = FP(k|k)F ′ + 0Q0′ (6)

S(k + 1) = HP(k + 1|k)H ′ + R (7)

W (k + 1) = P(k + 1|k)H ′S(k + 1)−1 (8)

P(k + 1|k + 1) = P(k+1|k)−W (k+1)S(k + 1)W (k + 1)′

(9)

The Kalman filter predicts the next state estimate at time
index (k+1), given the observations up to time index k in (3)
and the concomitant predicted state estimation error covari-
ance in (6), using system dynamics, the updated state error
covariance P(k|k) at time index k and Q. The updated state
estimate at time (k+1) in (5) incorporates the measurement at
time (k+1) via the Kalman gain matrix in (8), which depends
on the innovation covariance S(k+1) (which in turn depends
on R) and the predicted state error covariance P(k+1|k). The
updated state error covariance P(k + 1|k + 1) is computed
via (9).
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A. IDENTIFIABILITY CONDITIONS FOR ESTIMATING
Q AND R
When Q and R are unknown, consider the innovations cor-
responding to a stable, suboptimal closed-loop filter matrix
F̄ = F(Inx −WH ) given by [18], [21]

ν(k) = HF̄mx̃(k − m|k − m− 1)

+

{
H

m−1∑
j=0

F̄m−1−j
[
0v(k − m+ j)

−FWw(k − m+ j)
]}
+ w(k) (10)

where x̃(k −m|k −m− 1) = x(k −m)− x̂(k −m|k −m− 1)
is the predicted error at time (k − m). Given the innovation
sequence (10), let us define a weighted sum of innovations,
ξ (k) =

∑m
i=0 aiν(k−i), where theweights are the coefficients

of the minimal polynomial of the closed-loop filter matrix F̄ ,∑m
i=0 aiF̄

m−i
= 0, a0 = 1. It is easy to see that ξ (k) is the

sum of two moving average processes driven by the process
noise and measurement noise, respectively, given by [21]

ξ (k) =
m∑
l=1

Blv(k − l)+
m∑
l=0

Glw(k − l) (11)

Here, Bl and Gl are given by

Bl = H
( l−1∑
i=0

aiF̄ l−i−1
)
0 (12)

Gl =
[
alInz−H

( l−1∑
i=0

aiF̄ l−i−1
)
FW

]
(13)

G0 = Inz (14)

Then, if we define the cross-covariance between ξ (k) and
ξ (k − j) as Lj, we obtain

Lj = E[ξ (k)ξ (k − j)′] =
m∑

i=j+1

BiQB′i−j +
m∑
i=j

GiRG′i−j (15)

The noise covariance matrices Q = [qij] of dimension
nv×nv and R = [rij] of dimension nz×nz are positive definite
and symmetric. By converting noise covariance matrices and
the Lj matrices as vectors, Zhang et al. [21] show that they
are related by the noise covariance identifiability matrix I as
in (16).

I
[
vec(Q)
vec(R)

]
=


L0
L1
...

Lm

 (16)

As shown in [21], if matrix I has full column rank, then the
unknown noise covariancematrices,Q andR, are identifiable.

B. OBJECTIVE FUNCTION AND THE GRADIENT
Innovations of an optimal Kalman filter are white, meaning
that they are uncorrelated over time [4], [13]–[15]. In contrast,
the innovation sequence {ν(k)}Nkk=1 will be correlated if the

Kalman filter gain is not optimal. The correlation methods
exploit this non-whiteness property of the innovations of a
suboptimal Kalman filter by minimizing a measure of the
cross-correlations of the innovations over a lag window of
length up to M ≥ nx for estimating the optimal Kalman
filter gain W from the computed correlated innovations.
The M sample covariance matrices Ĉ(i) for each lag i =
0, 1, 2, ..,M − 1 are given by (17).

Ĉ(i) =
1

Nk −M

Nk−M∑
j=1

ν(j)ν(j+ i)′, i = 0, 1, 2, . . . ,M − 1

(17)

On the other hand, the ensemble cross-correlations
of the innovations of a steady-state suboptimal Kalman
filter,C(i), i = 1, 2, .. are related to the closed-loop filter
matrix F̄ , the matrix F , the measurement matrix H , the pre-
dicted covariance matrix P̄, filter gain W and the innovation
covariance, C(0) via [4], [13]

C(i)=E[ν(k)ν(k−i)′]=HF̄ i−1F[P̄H ′−WC(0)] (18)

The objective function J formulated in [21] involves min-
imization of the sum of normalized C(i) with respect to the
corresponding diagonal elements ofC(0) for i > 0. Formally,
we can define the objective function J to be minimized with
respect toW as

J =
1
2
tr
{M−1∑

i=1

[
diag(C(0))

]− 1
2
C(i)′

×

[
diag(C(0))

]−1
C(i)

[
diag(C(0))

]− 1
2
}

(19)

where diag(C) denotes the diagonal matrix of C or equiva-
lently the Hadamard product of an identity matrix with C .
We can rewrite the objective function by substituting (19)
into (18) as

J =
1
2
tr
{M−1∑

i=1

2(i)XϕX ′
}

(20)

where

2(i) = [HF̄ i−1F]′ϕ[HF̄ i−1F] (21)

X = P̄H ′ −WC(0) (22)

ϕ = [diag(C(0))]−1 (23)

The gradient of objective function ∇W J can be computed
as [21]

∇W J = −
M−1∑
i=1

[HF̄ i−1F]′ϕC(i)ϕC(0)− F ′ZFX

−

i−2∑
l=0

[C(l + 1)ϕC(i)′ϕHF̄ i−l−2]′ (24)
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The Z term in (24) is computed by the Lyapunov equation;
it is often small and can be neglected for computational
efficiency.

Z = F̄ ′ZF̄ +
1
2

M−1∑
i=1

(HF̄ i−1F)′ϕC(i)ϕH

+ ((HF̄ i−1F)′ϕC(i)ϕH )′ (25)

In computing the objective function and the gradient,
we replace C(i) by their sample estimates, Ĉ(i). Evidently,
the noise covariance estimation is a stochastic optimization
problem.

C. ESTIMATION OF Q AND R
1) ESTIMATION OF R
Let us define µ(k), k = 1, 2, · · · ,Nk , as the post-fit residual
sequence of the Kalman filter, which is related to the innova-
tions ν(k), k = 1, 2, · · · ,Nk via

µ(k) = z(k)− Hx̂(k|k) = (Inz − HW )ν(k) (26)

From the joint covariance of the innovation sequence ν(k)
and the post-fit residual sequence µ(k), and the Schur deter-
minant identity [5], [7], one can show that [21]

G = E[µ(k)µ(k)′] = RS−1R (27)

where S is the innovation covariance. Knowing the sampled
estimates of G and S, the measurement noise covariance R
is estimated. Because (27) can be interpreted as a simulta-
neous diagonalization problem in linear algebra [7] or as a
continuous-time algebraic Riccati equation, the measurement
covariance R can be estimated by solving the simultaneous
diagonalization problem via Cholesky decomposition and
Eigen decomposition, or by solving a continuous-timeRiccati
equation as in [1], [21].

2) ESTIMATION OF Q
Given the estimated R, we can compute the process noise
covarianceQ and the steady-state updated covariance P. This
requires an iterative process because Q and P are coupled in
the general case, Wiener process being an exception where
an explicit non-iterative solutionQ = WSW ′ is possible [21].
Letting t and l denote the iteration indices starting with t = 0
and l = 0, and using an initial Q(0)

= WSW ′, we initialize
the steady-state updated covariance matrix P as the solution
of the Lyapunov equation in (28)

P(0) = F̃P(0)F̃ ′+WRW ′ + (Inx −WH )0Q(t)0′(Inx−WH )

(28)

where F̃ = (Inx −WH )F . We iteratively update P as in (29)
until convergence

P(l+1)=
[(
FP(l)F ′+0Q(t)0′

)−1
+H ′R−1H

]−1
(29)

Given the convergedP,Qwill be updated in the t-loop until
the estimate of Q converges. Note that λQ is a regularization

parameter used for ill-conditioned estimation problems.

Q(t+1)
=0†

[(
P+WSW ′−FPF ′

)(t+1)
+λQInx

]
(0′)† (30)

D. BATCH ESTIMATION ALGORITHM
A sample pseudocode of the batch estimation algorithm is
shown below. In the outer-loop, the estimated Q and R of the
previous iteration are used to refine the estimates. Typically,
less than 10 outer-loop iterations are needed.

Algorithm 1 Pseudocode of Batch Gradient Descent-Based
on Adaptive Kalman Filtering Algorithm
1: input: W0, α F W0: initial gain, for example, by solving
a steady-state Riccati equation from an initial R(0) and
Q(0) α: step size

2: for t = 1 to Nt do F Nt : Max. Num. outer-loop iter.
3: for l = 1 to Nl do F Nl: Max. Num. inner-loop iter.
4: for k = 1 to Nk do F Nk : Num. samples
5: compute the innovation correlations, ν(k)
6: end for
7: compute Ĉ
8: compute objective function J
9: compute gradient ∇W J
10: update the step size α(l)

11: update gainW (l+1)
= W (l)

− α(l)∇W J (W (l))
12: check the convergence every inner-loop iteration
13: end for
14: check the convergence every outer-loop iteration
15: update R(t+1) and Q(t+1)

16: end for

III. SEQUENTIAL MINI-BATCH GRADIENT DESCENT
METHOD FOR ESTIMATING Q AND R
In this section, we provide an overview of the sequen-
tial mini-batch SGD method for estimating the unknown
Q and R. We introduce five enhancements to the batch esti-
mation algorithm: recursive fading memory estimation of the
sample cross-correlations of innovations, mini-batch SGD,
dynamic thresholds for inner-loop termination, accelerated
SGD, and simplified gradient computation by neglecting
the Z term in (24). The recursive nature of our algorithm
makes it amenable for the estimation of noise covariances
in non-stationary systems. The non-stationarity is assumed
to arise from abrupt changes of unknown magnitude in
noise covariances occasionally and after the filter reaches the
steady-state.

A. RECURSIVE FADING MEMORY
We compute the sample correlation matrix Ĉk

seq(i) at sample k
for time lag i as a weighted combination of the correlation
matrix Ĉk−1

seq (i) at the previous sample (k − 1) for time lag i
and the samples of innovations ν(k − i) and ν(k). The tuning
parameter λ, a positive constant between 0 and 1, is theweight
associated with the previous sample correlation matrix. The
tuning parameter λ assumes that innovations at the current

VOLUME 9, 2021 99223



H.-S. Kim et al.: Multi-Pass Sequential Mini-Batch SGD Algorithms for Noise Covariance Estimation

time do not depend on infinite past and serves as a means to
model non-stationary noise processes in the current context.
The current M sample correlation matrices are used as the
initial values for the next pairs of samples.

Ĉk
seq(i) = (1− λ)ν(k − i)ν(k)′ + λĈk−1

seq (i), (31)

Ĉ0
seq(i) = 0, i = 0, 1, 2, . . .M − 1; k = M , . . . ,Nk (32)

B. UPDATING GAIN W SEQUENTIALLY
Let B be the mini-batch size and let K = Nk/B be the number
of min-batches (we assume that Nk is divisible by B for
simplicity). While the mini-batch gradient descent sequen-
tially updates the M sample covariance matrices at every
input sample, we update the Kalman filter gain W when the
sample index k is divisible by the size of mini-batch B using
the gradient of the objective function at sample k . Several
accelerated gradient methods, which will be discussed in the
next section, can be applied for updating the optimal Kalman
filter gain. Sequential mini-batch gradient descent allows
more opportunities to converge to a better local minimum by
frequent update of the gain than the batch algorithm. This is
the key to estimation of noise covariances in non-stationary
systems, since the Kalman gain can be sequentially adapted
as the system noise parameters change. This also enables us
to experiment with dynamic convergence thresholds, while
the batch estimation algorithm performs poorly with such
adaptations. The generic form of gain update is

W (r+1)
= W (r)

− α(r)∇W (r)J (33)

Equation (9) for the updated state error covariance P(k +
1|k + 1) can be replaced with (34) in the Joseph form.
Although (34) is more expensive computationally, it is less
sensitive to round-off error because it guarantees that the
updated state covariance matrix will remain positive definite.
Raghavan et al. [16] suggested another way to ensure positive
definiteness of the updated state covariance matrix via square
root factorization algorithms.

P = (Inx −WH )P̄(Inx −WH )′ +WRW ′ (34)

C. ENHANCEMENT OF COMPUTATIONAL EFFICIENCY
1) SIMPLIFIED GRADIENT COMPUTATION
Computational testing has shown that the Z term in (25)
needed for the gradient computation in (24) is typically small.
Consequently, we simplified the gradient computation by
neglecting the Z term. Although the gradient is approximate,
the simplification can reduce the computational cost of the
algorithm with little or no impact on the RMSE of the covari-
ance estimates.

∇W J = −
M−1∑
i=1

[
HF̄ i−1F

]′
ϕ2C(i)ϕ2C(0)

−

i−2∑
l=0

[
C(l + 1)ϕ2C(i)′ϕ2HF̄ i−l−2

]′
(35)

2) DYNAMIC THRESHOLDS FOR THE INNER-LOOP
TERMINATION
We have found experimentally that the termination threshold
during the initial outer-loop iterations can be relaxed consid-
erably and can be made progressively tighter as the iterations
progress. Consequently, we apply an exponentially decaying
dynamic threshold to terminate the inner-loop gain updat-
ing process. The following outer-loop iteration-dependent
dynamic threshold to terminate the inner-loop gain update
was found to work well in our computational experiments.
This has a substantial impact on the speedup of the sequential
algorithm by up to 8 times without loss in the accuracy of
RMSE. However, the batch algorithm in [21] exhibits erratic
behavior with a significant increase in RMSE when dynamic
thresholds are used.

ζ : e−6 + e−10(
t−1
Nt

)
× (e−3 − e−6); t = 1, 2, · · · ,Nt (36)

Note that the dynamic threshold is related to conditions 1 to
3 of the following termination conditions:
Condition 1: The converged Kalman filter gainW is less than

the dynamic threshold ζ .
Condition 2: The gradient of Kalman filter gain (24) is less

than the dynamic threshold ζ .
Condition 3: The objective function value in (19) is less than

the dynamic threshold ζ from zero.
Condition 4: The number of epochs exceeds a parameter

‘‘Patience’’ described in [21].
Condition 5: The maximum number of inner-loop iterations

is reached.

D. ACCELERATED GRADIENT METHODS
The incremental gradient algorithm in (33) can be sped up by
adaptively selecting the step size α(r).

1) BOLD DRIVER METHOD
The bold driver method used in [3], [21] is an adaptive step
size algorithm. We initialize this algorithm as

α(0) = min
(
c
K

(Nk
Ns

)2
, c
)

(37)

where c > 0 is a constant, Ns is a hyper-parameter, Nk is the
total number of observed samples and K = Nk/B. We use a
smaller step size to prevent unstable gains if the mini-batch
size is small.

The step size α(r) is determined automatically at each
iteration after comparing the current objective function value
J (r) to the previous value J (r−1), shown in (38):

α(r) =

{
0.5α(r−1), if J (r) > J (r−1)

max(1.1α(r−1), c̄), otherwise
(38)

where c̄ is the maximum step size defined as,

c̄ = min
((Nk

Ns

)2
, cmax

)
(39)

We set the maximum step size cmax at 0.2.
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2) CONSTANT STEP SIZE METHOD
Compared to the bold driver method, the constant step size
method uses a fixed step size at every iteration. The step size
needs to be small to avoid unstable gains.

3) SUBGRADIENT
The subgradient method [6] is a simple algorithm for min-
imizing non-differentiable functions. Since zero is a lower
bound on the cost function (recall that innovations of an
optimal Kalman filter are uncorrelated over time), we use the
following step size for this method

α(r) = α(0)
J

||∇W (r)J ||2F
(40)

where 0 ≤ α(0) ≤ 2. We used α(0) = c̄ in (39). The
subgradient method can be combined with the bold driver
method as discussed in [5]. We have not experimented with
this combination.

4) RMSProp
Root Mean Square Propagation (RMSProp) [19] keeps track
of the moving average of the squared incremental gradients
for each gain element for adapting the element-wise step size.

τr,ij = γ τr−1,ij + (1− γ )[(∇W (r)J )ij]2; τ0 = 0 (41)

α
(r)
ij =

α(0)

√
τr,ij + ε

(42)

Here, γ = 0.9 is the default value and ε = 10−8 to prevent
division by zero.

5) ADAM
Adaptive Moment Estimation (Adam) [11] update computes
an adaptive learning rate from the filtered estimates of the gra-
dient and the mean square value of the gradient. The method
is appropriate for non-stationary systems and for problems
with very noisy and/or sparse gradients. Adam keeps track of
exponentially decaying averages of the past gradients mr and
the past mean squared gradients τr via

mr = β1mr−1 + (1− β1)∇W (r)J ; m0 = 0 (43)

τr,ij = β2τr−1,ij + (1− β2)[(∇W (r)J )ij]2; τ0 = 0 (44)

Here β1 = 0.9, β2 = 0.999 and ε = 10−8 are used as default
values in this paper.

Then, we compute bias-corrected gradient and mean
square estimates m̂r and τ̂r as

m̂r =
mr

1− βr1
(45)

τ̂r =
τr

1− βr2
(46)

Finally, (33) is used with the filtered and bias-corrected gra-
dient m̂r instead of the incremental gradient ∇W (r)J and with
the adaptive step size α(r)ij given by

α
(r)
ij =

α(0)√
τ̂r,ij + ε

(47)

6) ADADELTA
Adadelta [20] dynamically adapts the learning rate over time
using a fading memory average of all past squared gradients
and squared gain (parameter) changes. The filtered gradient
squared τr and filtered squared gain increments 1r are com-
puted as

τr,ij = γ τr−1,ij+(1−γ )[(∇W (r)J )ij]2; τ0=0 (48)

1r,ij = δ1r−1,ij+(1−δ)(W
(r)
ij −W

(r−1)
ij )2; 10=0 (49)

Typical default decay rates are δ=γ =0.9. The element-wise
step size for Adadelta algorithm is given by

α
(r)
ij =

√
1r−1,ij + ε
√
τr,ij + ε

(50)

The pseudocode for the multi-pass sequential mini-batch
SGD estimation algorithm is included as Algorithm 2.

Algorithm 2 Pseudocode of Multi-Pass Sequential
Mini-Batch Gradient Descent-Based on Adaptive Kalman
Filtering Algorithm

1: input: W 0, α0, B F W 0: initial gain, α0: initial step size,
B: batch size

2: for t = 1 to Nt do F Nt : Max. Num. outer-loop iter.
3: for l = 1 to Nl do F Nl: Max. Num. inner-loop iter.
4: r = 0 F Initialize the updating index r
5: for k = 1 to Nk do F Nk : Num. samples
6: compute innovation correlations ν(k)
7: if k > Nb +M then F Nb: Num. burn-in samp.
8: compute Ĉ
9: if Mod(k,B) = 0 then

10: compute objective function J
11: compute gradient ∇W J
12: update the step size α(r)

13: W (r+1)
ij = W (r)

ij − α
(r)
ij [∇W (r)J )]ij

14: r = r + 1
15: end if
16: end if
17: end for
18: check the convergence every inner-loop iteration
19: end for
20: check the convergence every outer-loop iteration
21: update R(t) and Q(t)

22: end for

E. SEQUENTIAL MINI-BATCH GRADIENT DESCENT
METHOD FOR NON-STATIONARY SYSTEMS
Killick et al. [9] proposed an algorithm for detecting multiple
abrupt changes in a signal sequence. The changes can be in
the mean of the signal, its root-mean-square (RMS) value,
or its standard deviation (STD). The sequential algorithm
of this paper was coupled with the change-point detection
algorithm in [9] to detect changes in the statistical behavior
of innovations to restart the parameter estimation procedure
at every change point. We used the RMS deviation in innova-
tions as the characteristic change-point to be detected.
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Our decision-directed estimation procedure works as fol-
lows: First, we invoke the estimation algorithm on all
observation samples assuming a stationary system. Then,
the change-point detection algorithm is invoked to detect
abrupt changes in the RMS value of the innovation sequence
using the algorithm in [9]. Then, the sequential estimation
algorithm is invoked for samples between two consecutive
change points, that is, the sequential estimation algorithm
is restarted at every change point. The pseudocode of the
sequential mini-batch SGD algorithm for non-stationary sys-
tems is shown below.

Algorithm 3 Pseudocode of Multi-Pass Sequential
Mini-Batch SGD Algorithm for a Non-Stationary System

1: input: W 0, Q0, R0, α0, B, Nk , Np F W 0: initial gain, Q0:
initial Q,R0: initial R, α0: initial step size, B: batch size,
Nk : Num. of samples, Np: Num. of change points

2: Obtain the innovation sequence {ν(k)}Nkk=1
FCall Algorithm 2 assuming a stationary system

3: Detect the p abrupt change-points �y, y = 1, 2, · · · , p
F Call Change-point detection algorithm given
{ν(k)}Nkk=1 and Np described in Algorithm 4

4: for y = 1 to p do
5: Select samples from Nrange = [�y−1 : �y];�0 = 1
6: Update R(y),Q(y)

F Call Algorithm 2 with samples
from Nrange = [�y−1 : �y]

7: end for

IV. NUMERICAL EXAMPLES
In this section, we first investigate the performance of the
accelerated stochastic gradient descent (SGD) methods using
the five examples in [21]. These examples consist of 1) a
second-order kinematic system (a white noise acceleration
or nearly constant velocity model); 2) A system described
in [14]; 3) A five-state system with diagonal Q and R;
4) A detectable, but not completely observable, system; and
5) A three-state ill-conditioned system.

We perform 100 Monte Carlo simulations for each case
with an assumed ‘‘patience’’ of 5, the lagsM = 5, a dynamic
threshold ζ in (36), cmax = 0.2, c = 0.01, Nt = 20,
Nl = 100, Nk = 1, 000 and Ns = 1, 000. The lag
M = 30 is applied to Case 1 to conform with [21], and
we used 10,000 samples for Case 3. The ill-conditioned
Case 5 was simulated with 200 Monte Carlo runs to be
consistent with [15], [21]. We show that the SGD methods
are considerably faster than the batch method used in [21],
especially for difficult Cases 3-5. We show that there is a
modest speedup of 10% when the Z term in (24) is neglected
without loss in RMSE accuracy.

For each case, the best gradient descent method and the
optimal mini-batch size were somewhat different in terms
of RMSE and computation time. However, when consid-
ered in aggregate, Adam update with a mini-batch size
of 64 works well across all the example cases. Conse-
quently, we show the computational speedup of the Adam

Algorithm 4 Pseudocode of Change-Point Detection Algo-
rithm

1: input: {ν(k)}Nkk=1, Np F {ν(k)}
Nk
k=1: innovation sequence,

Np: Num. change points
2: ERES.M = Nk log( 1

Nk

∑Nk
k=1[ν(k)]

2)
3: ERES.F , ERES.R = zeros(size(ν(k),1)),respectively

F ERES.M : Maximum residual error, ERES.F : For-
ward residual, ERES.R: Reverse residual

4: Lm = log(Rmin)
F Rmin: The smallest positive normalized
floating-point number, Rmin = 2−1022

5: for t = 1 to Nk do
6: ERES.F = ERES.F + ν2(t)
7: ERES.R = ERES.R + ν2(Nk − t + 1)
8: FRES.F = sum(max(Lm − log(t), log(ERES.Ft )), 1)
9: RRES.R = sum(max(Lm − log(t), log(ERES.Rt )), 1)
10: ERES.T (t) = t · (FRES.F +RRES.R)
11: end for
12: β = ERES.M − min(ERES.T ) F β: Penalty constant
13: � = [ ] F Set � as change-points indexes
14: F(0) = −β F Set the optimal cost value F(0)
15: while Num. of � 5 Np do
16: β =

β
2

17: for k = 1 to Nk do
18: F(k) = mins∈Rt [F(s)+ C(ν(s+ 1 : k))+ β]

F F(k): The optimal cost value of ν(1 : k)
19: �latest = argmins∈Rt [F(s)+ C(ν(s+ 1 : k))+ β]

F �latest : The latest change-point in the opti-
mal segmentation of ν(1 : k)

20: �k = [�k , �latest ]
F �k : The change-points in the optimal seg-
mentation of ν(1 : Nk )

21: Rt = {s ∈ Rt : F(s)+ C(ν(s+ 1 : k)) < F(t)}
22: end for
23: end while

version of the sequential mini-batch algorithm over the batch
method. The SGD algorithms are particularly effective on
Case 3 and the ill-conditioned estimation problems repre-
sented by Cases 4 and 5.

We also demonstrate the utility of the sequential method
in estimating Q and R in non-stationary systems by cou-
pling it with a change detection method [9], [12] to
obtain a decision-directed adaptive Kalman filter. For the
non-stationary system, we apply our proposed method to the
system used in [14]. In this paper, computational simulations
were run on a computer with an Intel Core i7-8665U proces-
sor and 16 GB of RAM.

A. COMPARISON OF ACCELERATED SGD METHODS AND
THE BATCH METHOD
1) CASE 1
The system is described by

F =
[
1 0.1
0 1

]
, H =

[
1 0

]
, 0 =

[
0.005
0.1

]
(51)
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Fig. 1 shows the RMSE of accelerated gradient descent
methods for estimating Q and R for varying mini-batch sizes.
In estimating Q, RMSE values of all sequential algorithms
are larger than the batch algorithm, but the RMSE itself
was very small. In estimating R, RMSProp and Adam show
good performance over all mini-batch sizes. Constant, Bold
driver and Subgradient methods have slightly higher RMSE
for Case 1. All the update methods resulted in consistent
state estimates, as measured by the normalized innovation
squared (NIS) metric [2].

FIGURE 1. Performance of accelerated gradient descent methods on
Case 1.

Table 1 shows Monte Carlo simulation results for estimat-
ing the noise parameters using Adam for various mini-batch
sizes. Adam with a mini-batch size of 128 shows a good
trade-off between computational efficiency and RMSE for
this example.

Fig. 2 shows the averaged NIS of SGD (Adam; a
mini-batch size of 64) method and the 95% probability
region. As with the batch method, the Adam SGD-based
Kalman filter is consistent.

2) CASE 2
For Case 2, the system simulated is assumed to be as follows.

F =
[
0.8 1
−0.4 0

]
, H =

[
1 0

]
, 0 =

[
1
0.5

]
(52)

In Case 2, RMSProp shows similar or better performance
than the batch method in estimating Q and R as shown
in Fig. 3. Adam can provide very good estimates of Q and R
when the mini-batch size is larger than 64. The Subgradient,
Constant, and Bold driver updates tend to have higher RMSE
values than the batch method for the ranges of mini-batch

FIGURE 2. Averaged NIS of SGD method for Case 1.

FIGURE 3. Performance of accelerated gradient descent methods on
Case 2.

sizes examined as shown in Fig. 3, but the state estimates are
consistent as measured by NIS.

As one can see from Table 2, Adam shows improved com-
putational efficiency over the batch method for all mini-batch
sizes, but it is more effective when the batch size is larger
than 64. Note that RMSProp shows the least RMSE in esti-
mating the noise parameters among the accelerated SGD
methods for Case 2. In particular, RMSPropwith amini-batch
size of 64 provided the best parameter estimates with the
least computation time of 114 seconds for all 100 MC runs,
i.e., 1.14 seconds per run (not shown).

3) CASE 3
The system matrices in Case 3 are

F =


0.75 −1.74 −0.3 0 −0.15
0.09 0.91 −0.0015 0 −0.008
0 0 0.95 0 0
0 0 0 0.55 0
0 0 0 0 0.905

 (53)
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TABLE 1. Monte Carlo simulation for Case 1 with M = 30 (100 Runs; 1,000 samples).

TABLE 2. Monte Carlo Simulation for Case 2 with M = 5 (100 Runs; 1,000 samples).

H =
[
1 0 0 0 1
0 1 0 1 0

]
, 0 =


0 0 0
0 0 0

24.64 0 0
0 0.835 0
0 0 1.83

 (54)

Fig. 4 shows that all the accelerated SGD methods have
larger RMSE values than the batch method in estimatingQ11,
and the subgradient and Adam updates show lower RMSE for
the estimated R11 at all mini-batch sizes. The RMSE values
of the SGDmethods are slightly larger than the batch method
in Case 3.

Table 3a and Table 3b show the simulation results with
100 Monte Carlo runs for estimating the noise parameters
based on 10,000 samples using the Adam update. Adam with
a mini-batch size of 64 shows a good trade-off between com-
putational efficiency and RMSE among all the accelerated
SGD methods.

4) CASE 4
The unobservable (but detectable) system for Case 4 is
described by

F =
[
0.1 0
0 0.2

]
, H =

[
1 0

]
, 0 =

[
1
2

]
(55)

Fig. 5 clearly shows that SGDmethods can estimateQ and
R with lower RMSE when compared to the batch method.
In this example, Constant andBold drivermethods have lower
RMSE values for estimatingQ and R for mini-batch sizes less
than 32. The RMSE values in estimating noise parameters

are smaller with larger mini-batch sizes as shown in Table 4.
As in the case of batch gradient descent method, better esti-
mates are obtained by the addition of a regularization term
with λQ = 0.1.

FIGURE 4. Performance of accelerated gradient descent methods on
Case 3.
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TABLE 3. W Estimates for Case 3.

TABLE 4. Monte Carlo Simulation for Case 4 with M = 5 (100 Runs; 1,000 samples).
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FIGURE 5. Performance of accelerated gradient descent methods on
Case 4.

5) CASE 5
The system matrices for Case 5 are assumed to be as follows.

F =

0.1 0 0.1
0 0.2 0
0 0 0.3

 , H = [0.1 0.2 0
]
, 0 =

12
3


(56)

Fig. 6 shows the performance of accelerated SGD meth-
ods. RMSE values of estimated Q and R decrease as the
mini-batch size increases, and the RMSE of all SGDmethods
are smaller than that of the batch method when the batch size
is larger than 64. Note that Constant and Bold driver meth-
ods have lower RMSE values among the accelerated SGD
methods.

As shown in Table 5, the sequential algorithm improves the
computational efficiency by up to 8 times when compared to
the batch method on Case 5. Note that Adam update with a
mini-batch size of 128 estimates the noise parameter closer to

FIGURE 6. Performance of accelerated gradient descent methods on
Case 5.

the corresponding true value. We can improve the estimation
accuracy by using a regularization term with λQ = 0.3.

B. COMPUTATIONAL SPEEDUP ANALYSIS
1) SIMPLIFIED GRADIENT COMPUTATIONS
Fig. 7 shows the computational efficiency of the Adam update
with a mini-batch size of 64 over the batch algorithm in [21]
on all five example cases. The proposed method improves the
computational efficiency by a factor of 4.4 on Case 3 and a
factor of 8 on Cases 4 and 5 when compared to the batch
gradient descent method. By neglecting the Z term in the
gradient computations (24), the computation time is reduced
by less than 10% with almost the same RMSE.

2) DYNAMIC THRESHOLDS
Using a dynamic threshold has a substantial impact on
the speedup of the sequential algorithm, but it is not suit-
able for implementation in the batch estimation algorithm.
Table 6 shows the estimation results of batch algorithm with

TABLE 5. Monte Carlo Simulation for Case 5 with M = 5 (200 Runs; 1,000 samples).
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FIGURE 7. The improvement of computational efficiency.

TABLE 6. Batch estimation algorithm with dynamic thresholds for
Case 2 and Case 4 (100 Runs; 1,000 samples; M = 5 each case).

a dynamic threshold applied for Case 2 and Case 4, respec-
tively. In each example case, the batch algorithm with a
dynamic threshold estimates parameters that are far from their
corresponding true values. Consequently, a fixed threshold
of 10−6 is used for conditions 1 to 3 discussed in III-C2 for
terminating the batch algorithm.

C. APPLICATION TO NON-STATIONARY SYSTEMS
We simulated 100 MC runs with 5,000 observation samples
in each run using system matrices of Case 2 in (52) and
varying Q and R. We considered three non-stationary sce-
narios: 1) Only Q changes every 1,000 samples, 2) Only R
changes every 1,000 samples, and 3) both Q and R change
every 1,000 samples. In the estimation procedure, we set the
outer-loop iterationsNt = 20, inner-loop iterationsNl = 100,
number of burn-in of samples Nb = 50, c = 0.2 and the
number of lags M = 5. The iteration-dependent dynamic
thresholds for convergence were also applied.

FIGURE 8. The change-points in innovation correlations in a
non-stationary system.

For non-stationary systems, both RMSProp and Adam
showed the best performance among all the accelerated
SGD algorithms. Here, we show the results averaged over
100 Monte Carlo runs when using the Adam update with a
mini-batch size of 64. Given innovation correlations, the algo-
rithm for detecting the change points is able to track the
multiple abrupt changes accurately, as shown in Fig. 8.

1) VARYING Q
In this scenario, the process noise variance Q changes every
1,000 samples, while measurement noise variance R is con-
stant over all 5,000 samples, as shown in Fig. 9. The
decision-directed estimation algorithm can track Q and R
values quite well and the resulting Kalman filter is consistent
as measured by NIS.

Table 7a shows the MC simulation results for the
non-stationary system with varying Q, and the estimated
parameters are very close to their corresponding true values.

FIGURE 9. Trajectory of Q and R in varying Q system.
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TABLE 7. The case of varying Q and R.

2) VARYING R
In the scenario, measurement noise variance R changes every
1,000 observation samples, but the process noise variance Q
is kept constant over the 5,000 samples. Fig. 10 shows that the
sequential mini-batch gradient descent algorithm can track Q
and R quite accurately.
As shown in Table 7b, the noise parameters can be esti-

mated accurately by the sequential algorithm.

FIGURE 10. Trajectory of Q and R in varying R system.

3) VARYING Q AND R
The situation where Q and R vary is more difficult to track
than when eitherQ and R is constant. However, the sequential
algorithm, when coupled with the change-point detection
algorithm, can track Q and R accurately as shown in Fig. 11.
Fig. 11c shows the averaged NIS of the SGD (Adam; a
mini-batch size of 64) algorithm when Q and R are varied.

The Adam SGD-based Kalman filter is consistent as mea-
sured by NIS.

In the scenario when both Q and R vary, Table 7c shows
that the proposed method can track the noise parameters quite
accurately resulting in a consistent filter.

FIGURE 11. Trajectory of Q and R in varying Q and R system.
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The trajectory of Q and R estimates can be smoothed by
a simple first order fading memory filter. Fig. 12 shows the
trajectory results with a smoothing weight of 0.9.

FIGURE 12. Trajectory of Q and R with signal smoothing at smoothing
weight = 0.9.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented multi-pass stochastic gradient
descent algorithms for the noise covariance estimation in
adaptive Kalman filters that are an order of magnitude faster
than the batch method for the same or better root mean square
error and are applicable to non-stationary systems where the
noise covariances can occasionally exhibit abrupt, but finite,
jumps. The computational efficiency of the new algorithms
stems from adaptive thresholds for convergence, recursive
fading memory estimation of the sample cross-correlations of
the innovations, and accelerated stochastic gradient descent
algorithms. The comparative evaluation of the proposed
method on a number of test cases demonstrated its compu-
tational efficiency, accuracy and filter consistency.

A limitation of the proposed method for noise covari-
ance estimation is that it requires multiple passes through
the observed samples to converge, thereby increasing the
computational cost of the algorithm. For non-stationary sys-
tems, the accuracy of noise covariance estimates depends
on the accuracy of the change-point detection algorithm
because the proposedmethod is invoked for observed samples
between consecutive change points. Our preliminary work on
a single-pass algorithm that avoids the change-point detection
step and multiple passes through the data may be found
in [10]

In the future, we plan to pursue a number of research
avenues, including 1) estimating Q and R using one-step
lag smoothed residuals; 2) automatic model selection from
a library of models; 3) formalization of decision-directed
adaptive Kalman filtering with probabilistic change-point
detection and state estimation; 4) explore the utility of the
covariance estimation algorithm in adaptive interacting mul-
tiple model filters or as an alternative to interactive multiple
model filters.
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