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ABSTRACT Information routing strategy is a hot issue in the study of complex network traffic dynamics.
In this paper, we define a new gravitational centrality and introduce parameter α1 to control the centrality of
nodes. When α1 is appropriate value, the gravitational centrality has the function of dividing the centrality
of the same degree nodes. According to the gravitational centrality, we propose an effective gravitation
path routing strategy in which the optimal paths between all pairs of nodes are chosen according to a cost
function that incorporates gravitational centrality of nodes in paths. The purpose of this strategy is to improve
network traffic capacity. The simulation results on the scale-free networks show that our routing strategy is
more effective than the efficient routing strategy proposed by Yan et al. [Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top. 73, 046108 (2006)].

INDEX TERMS Complex networks, scale-free networks, congestion, traffic capacity.

I. INTRODUCTION
In many interconnected networks, such as the Internet, trans-
portation networks, power networks, communication net-
works and so on, have been well studied in the past few
decades [1]–[3]. In these actual networks, packets over-
load is the main reason for congestion. Large number of
packets can be transmitted in time, which has a positive
effect on user experience. An important topic related to
these networks is how to improve traffic capacity and avoid
traffic congestion by optimizing network structure [4]–[7],
designing routing strategy [8]–[12] and allocating resource
reasonably [13]–[18]. Most of the existing studies on the
optimization of the structure are focused on deleting, adding,
making certain links unidirectional and rewiring certain
links [19]–[24]. The main method of resource allocation is
how to effectively allocate node delivery capabilities [25],
[26]. In addition, there are also some other types of resource
allocation methods. Such as, in order to solve the prob-
lem of 5G optical network and data center network are
often sudden traffic congestion and performance degradation,
Yu et al. proposed to improve the scheduling efficiency
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of burst traffic method which is the burst traffic scheduling
for hybrid E/O switching DCN: an error feedback spiking
neural network approach [27], and Yao et al. proposed a core
and spectrum allocation algorithm based on association rules
which can effectively make improvement on the blocking and
resource utilization [28]. Optimizing network structure and
allocating resource require a higher economic and labor cost.
The industry declares the optical network and data center
network in 5G can use better routing strategy to avoid conges-
tion. This is because that the routing strategy is a technology
that modifies routing information to change the path through
which network traffic passes, and only needs to modify the
routing algorithm through software, which is relatively easy
to implement, and economic andmanpower cost are relatively
low. By far, many scholars have done a lot of researches on
routing strategy.

Under the shortest path (SP) routing strategy [29], [30],
large number of packets usually accumulate on the core nodes
of a network. In the above case, some packets cannot reach
the destination in time, which leads to congestion. Yan et al.
proposed an efficient routing (ER) strategy which made the
packets bypass the larger degree nodes, so that the packets
weremore evenly distributed in the network [31]. Danila et al.
presented an heuristic algorithm for the optimization of
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transport on complex networks, their algorithm balanced traf-
fic on a network by minimizing the maximum node between-
ness with as little path lengthening as possible as [32].
Wu et al. studied the information packet routing process in
scale-free network bymimicking Internet traffic delivery and,
incorporated both the global shortest paths information and
local degree information of the network in the dynamic pro-
cess, via two tunable parameters, α and β, to guide the packet
routing [33]. Beacuse betweenness centrality can more accu-
rately reflect the traffic load situation of the network, Jiang
and Liang proposed an improved efficient routing strategy
based on the betweenness centrality to enhance the network
traffic capacity [34]. Jiang and Liang decomposed the routing
process into N (the network size) steps and, at each step,
computed all paths or calculated the spanning tree for one
source node by considering dynamic betweenness centrality
and degree information, while propose the incremental rout-
ing (IR) strategy [35]. Li et al. used punishment selection
method to bypass the nodes with larger betweenness cen-
trality, so that the betweenness centrality of the network are
more evenly distributed, and the traffic load of each node in
the network is balanced [36]. Liu et al. presented a simple
dynamic routing strategy that allowed each vehicle to dynam-
ically choose the path to its destination while imposing the
minimum travel time, it balances traffic load distribution [37].
Considering the different node delivery capability, Shao and
Cheng proposed two novel routing strategies which speci-
fied the shortest path according to three kinds of different
node delivery capability schemes to enhance the network
transfer capacity in weighted networks [38]. For scale-free
network, Gao et al. proposed a global hybrid routing strat-
egy integrated the dynamic queue length information and
the static degree information which achieved higher traffic
capacity and shorter average packets travel time compared
with the state-of-the-art global dynamic routing strategy and
ER strategy [39].

Considering that the different centralities of the same
degree nodes on the overall network may be led to not com-
pletely homogeneous of the traffic load distribution on the
network. In this paper, we explore the different centralities of
the same degree nodes and propose a new routing strategy.
We test our strategy on scale-free networks. According to
the simulation results, our strategy outperforms ER strategy
in terms of traffic capacity and the average packet travel
time.

The remainder of this paper is organized as follows:
Section II describes the related models and concepts. Models
included the network model and traffic model are used for
experimental simulations. Concepts included gravitational
centrality and routing strategy are defined. In addition, some
performance parameters used to evaluate the performance of
our routing strategy also be introduced. Section III introduces
and discusses the experimental results of our strategy and
ER strategy on scale-free networks. Finally, we conclude our
work in Section IV.

II. THE MODEL AND DEFINITIONS
A. THE NETWORK MODEL
As most of large communication networks are scale-free
properties [40], we will employ the famous Barabási-Albert
model [41] to generate the underlying networks. This model
is defined with three steps:

1) Initial network: there arem0 nodes in an fully connected
state.

2) Growth network: at each time step, a new node with
m(m ≤ m0) number of edges joins the network.
3) Connection rule: the probability of each new node con-

necting to the existing node vi is proportional to node vi
degree:

P(vi) =
kvi∑
vj kvj

(1)

where kvi is the degree of node vi, and
∑

vj kvj is the sum
of the degree of all nodes in the network. The size of the
network is N with adding N − m0 nodes to the network,
the degree distribution of the network follows a power law
which is p(kvi ) ≈ k−3vi . Average degree is 〈k〉 = 2m.

B. TRAFFIC MODEL
The traffic model is used to describe the transmission behav-
ior of packets, and can also show the relationship between
traffic capacity and network state [29]. The model is intro-
duced as follows:

1) Setting about node: each node has the function of pro-
ducing and delivering packets. The queue length of each
node is assumed to be unlimited. The first in first out (FIFO)
discipline is employed at the queue of each node.

2) Packet generation: at each time step, R packets are
generated in the network, the source and destination of each
packet are random determined.

3) Packet transmission: if the current node where a packet
arrives is not the destination, the packet will be delivered
to a neighboring node according to some routing strategy
used. All nodes in the network have the same delivering
capability C .
4) Packet reception: the node delivers C packets generated

form other nodes and the cache queue of the node save the
undelivered packets which are handled at the next time step.
If the packet reaches the destination, it is removed from the
network immediately.

C. GRAVITATIONAL CENTRALITY
The law of universal gravitation discovered by Newton
in 1687 is a law of interaction between objects [42]. There is
mutual attraction between any objects. The magnitude of this
force is proportional to the mass of each object and inversely
proportional to the square of the distance between them.
If m1 and m2 are used to represent the masses of two objects,
and r is the distance between them, the mutual attraction
between objects is f = G ∗ m1m2/r2, G is called the
gravitational constant.
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Considering that the node degree characterized the network
local structure cannot completely describe the overall struc-
ture of the network, so the same degree nodes may have dif-
ferent centralities, it is flawed to simply use the node degree
as an evaluation index of node centrality. We define gravita-
tion between nodes based on the law of universal gravitation.
Mean value of gravitation of the node to each node (including
node itself) is defined as the node centrality which named
as gravitational centrality (GC). GC is comprehensively inte-
grated the local (degree) and overall (path) structure of the
network. Some nodes which are the same degree centrality
may have different centralities under the GC. The relevant
definition is as follows:

fvivj = G
kvikvj
(rvivj )α1

,GεR (2)

rvivj =
plvivj
l!
+

∑
k>l

wkvivj
k!

(3)

GCvi =
1
N

N∑
j=1

fvivj (4)

where fvivj represents the gravitation between node vi and
node vj when vi 6= vj. fvivj represents the self-gravitation of
node vi when vi = vj. G is the gravitation constant, but it can
be any constant in GC. kvi represents the degree of node vi.
α1 represents the control parameter of gravitational centrality.
plvivj is the number of shortest paths between nodes vi and vj
of length l, and wkvivj is the number of steps connecting vi and
vj of length k . The path rvivj not only represents a single path
connecting two nodes, but also needs to consider all paths
through the node vj to the target node vi. Since some of these
detours can be very long, the totals are weighted in descend-
ing order of path length. GCvi represents the centrality of
nodes vi.
In order to easily calculate rvivj , wemake l = 0 and k = ∞,

so, equation (3) becomes as equation (5). Equation (5) is as
follows:

rvivj = (
∞∑
l=0

1
l!
Al)vivj (5)

Figure 2 shows the comparison the node GC of different
parameters α1 with node degree centrality under the example
network shown in Figure 1. When α1 = 0, we can find
that the node GC distribution trend is completely equivalent
to the node degree centrality distribution trend. When α1 is
a small value, the node GC distribution trend is similar to
the node degree centrality distribution trend, but the nodes
with same degree centrality may have different GCs. From
the GC perspective, GC can distinguish different centrali-
ties in these nodes. As the α1 value becomes more larger,
the difference between the GC distribution trend and the node
degree centrality distribution trend is getting bigger and big-
ger. At the same time, the overall trend of GC distribution is
severely disrupted. When the overall trend of GC distribution
is extremely different from the overall trend of node degree

FIGURE 1. Example network.

centrality distribution, it is no longer just distinguish GC of
nodes with the same degree centrality.

Table 1 shows the difference between GC and degree cen-
trality in the example network when α1 = 0.1 (α1 can be
adjusted according to the strategy) and the constant G = 10.
From the perspective of degree centrality, nodes v24, v25, v26,
v27, v28, v29, v30 have the same degree centrality, whichmeans
that they have the same importance. From the perspective of
GC, the nodes v24, v25, v26, v27, v28, v29, v30 have different
GCs, which means that they have different importance.

TABLE 1. The GC of part nodes with same degree in example network.

D. ROUTING STRATEGY
A large number of packets accumulate in the central nodes,
which will lead to a longer waiting time for packets in the
network, so congestion will easily occur. The ER strategy
constructs a cost function according to the node degree to
make packets avoid the core nodes of the network reason-
ably during the transmission process, the traffic load of core
nodes with larger degree is distributed to other non-core
nodes, which is good for improving network traffic capability.
If there are some nodes with the same degree have differ-
ent influences (centralities) in the entire network, network
traffic capacity will be affected. Therefore, we are inspired
by ER strategy to study a new effective path based on GC
and propose a new strategy called effective gravitation path
routing (EGPR) strategy which can make the packets more
reasonably through transmission path. Under EGPR strategy,
P(vi → vj) := vi ≡ x0, x1, x2, · · · , xn−1, xn ≡ vj, that
is the sequence of nodes from the source to the destination,
represents the effective path between any two nodes. The cost
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FIGURE 2. In example network, comparison of node GC distribution under different control parameters α1 and distribution of
node degree centrality.

FIGURE 3. (a) The relationship between the order parameter H(R) and the packet generation rate R in network size N = 400 under
EGPR and ER strategies. (b) The relationship between the order parameter H(R) and the packet generation rate R in network size
N = 600 under EGPR and ER strategies. (c) The relationship between traffic capacity Rc and network size N under EGPR and ER
strategies. Network average degree

〈
k
〉
= 6 and node delivering capacity C = 1 with EGPR and ER strategies.

function of effective path is as follows:

L
(
P(vi→ vj) : α2

)
=

n−1∑
i=0

(
GCxi

)α2 (6)

where a2 is the control parameter, n represents the effective
path length. we select the optimal effective path that has the
smallest cost as the transmission path of packets. If the cost
function values of the two paths are equal, one is selected
randomly. When α2=0, EGPR strategy equivalent to SP rout-
ing strategy. In EGPR strategy, α2 takes the optimal control
parameter value.

E. PERFORMANCE PARAMETER
1) THRESHOLD OF PACKET GENERATION RATE
To explore the traffic behavior on the networks, the order
parameter H (R) is employed to describe the transition of
traffic flow [29]:

H (R) = lim
t→∞

C
R
〈1W 〉
1t

(7)

where C is the delivering capability of each node, R is
the packet generating rate, 〈1W 〉 = W (t + 1t) − W (t),
〈· · · 〉 denotes the average over the time windows of width1t ,
W (t) is denoted as the number of packets in the network at
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FIGURE 4. (a) Network size N = 400. (b) Network size N = 600. (c) Network size N = 800. Under ER and EGPR strategies,
the distribution of the traffic load versus the node degree k in the different congested networks.

FIGURE 5. Under EGPR and ER strategies, the relationship between the
maximum node betweenness Bmax and network size N .

time t . There exists a critical packet generation rate Rc at
which the network undergoes a phase transition from free
flow (H = 0) to congested phase (H > 0). When R < Rc,
the number of created packets and the removed packets are in
balanced state, which means that no congestion occurs.When
R > Rc, the packets in the network accumulate continuously,
which leads to network congestion because of the limited
delivering capacity of each node.

2) THE NODE BETWEENNESS
The node betweenness can be used to theoretically evaluate
the traffic capacity of a network [43]. If the network generates
R packets at each time step, the number of packets arriving at
node vi is:

nvi =
RBvi

N (N − 1)
(8)

whereN is the size of the network, and Bvi is the betweenness
of node vi. In order to avoid network congestion, it is neces-
sary to ensure that all nodes in the network cannot accumulate
packets. Each node needs to meet the following conditions:

nvi ≤ Cvi (9)

FIGURE 6. Under EGPR and ER strategies, the relationship between the
average path length

〈
L
〉

and network size N .

where Cvi represents the delivering capacity of node vi. If the
delivering capacity of each node is C , then the formula are
organized as follows:

R ≤
CN (N − 1))

Bvi
(10)

from above formula, it can be known that R and Bvi are
inversely proportional, and the maximum node betweenness
in the network becomes the restriction point of R, so the
critical Rc for the packet generation rate can be expressed as
follows:

Rc =
CN (N − 1))

Bmax
(11)

Therefore, the traffic capacity can be calculated by observ-
ing the maximum node betweenness in the network, and the
change of the network traffic capacity can be calculated by
observing the fluctuation of the maximum node betweenness
in the network.

3) AVERAGE PACKET TRAVEL TIME
In order to better describe network traffic performance,
the average packet travel time 〈T 〉 usually be used to measure
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FIGURE 7. (a) Network size N = 400 (b) Network size N = 600. (c) Network size N = 800. Under ER and EGPR Strategies,
the relationship between the average packet travel time

〈
T

〉
and the packet generation rate R in congested network.

the traffic performance of the network. The average packet
travel time 〈T 〉 is defined as follows:

〈T 〉 = lim
t→∞

1
n

n∑
xi=1

Txi (12)

where n represents the number of packets arriving at the
destinations within a fixed time, and Txi is the travel time of
packet xi, which includes the travel time in the network and
the waiting time at the nodes.

4) AVERAGE PATH LENGTH
The average path length can be used to evaluate the traffic
performance of the network. The average path length repre-
sents the average number of hops experienced from a certain
source to destination. It is defined as:

〈L〉 =

∑N
vi=1,vj=1,vi 6=vj Lvivj
N (N − 1)

(13)

where Lvivj represents the number of hops from node vi
to node vj. 〈L〉 can reflect the efficiency of packet traf-
fic in the network. When the congestion does not occur,
the smaller average path length indicates that the relative
distance between any two nodes in the network is closer and
the packet reaches the destination faster.

III. SIMULATION RESULTS
In this section, the performance of the EGPR strategy and ER
strategy are compared. Taking into account the characteristics
of most actual networks, here we set m0 = 4 and m = 3
in the Barabási-Albert model [41] to generate the scale-free
networks of different network size N (N ranges from 400
to 1200 and the average degree 〈k〉 = 6) for simulations.
Each simulation result is the average value of more than
20 independent networks. In order to improve the accuracy,
the running time steps for each packet generation rate is
10, 000 in our simulations.

The relationship between the order parameter H (R)
and the packet generation rate R is shown in Figure 3.
When N = 400, Rc = 31 under the ER strategy, while
Rc = 38 under the EGPR strategy. When N = 600, Rc = 50
under the ER strategy, while Rc = 59 under the EGPR
strategy. When N = 800, Rc = 68 under the ER strategy,
while Rc = 72 under the EGPR strategy. When N = 1000,
Rc = 80 under the ER strategy, while Rc = 83 under the
EGPR strategy. When N = 1200, Rc = 91 under the ER
strategy, while Rc = 99 under the EGPR strategy. As the
network size changes, it can be clearly found that the EGPR
strategy has obvious advantages.

In order to illustrate the degree of the complexity of the
routing strategy in the network, the traffic load distribution
in the network is studied when the network is congested.
By observing Figure 4, we find that the traffic load of the
network is the largest under the ER strategy. Under the EGPR
strategy, the traffic load is the smallest. It fully shows that
the EGPR strategy is more adequate than the ER strategy in
that the packets flow is evened and the traffic capacity of the
network is improved.

The node betweenness can also be used as an index to mea-
sure network traffic capacity. Therefore, we compared the
maximum node betweenness under the ER and EGPR strate-
gies. Figure 5 shows that it can be intuitively observed that the
maximum node betweenness under the EGPR strategy is less
than the maximum node betweenness under the ER strategy.
According to the inverse proportional relationship between
the traffic capacity Rc and the maximum node betweenness
Bmax , the EGPR strategy is better than the ER strategy.
〈L〉 represents the average path length between any two

nodes based on some routing strategy. By observing Figure 6,
as the network size changes, it can be found that the average
path length under the ER strategy is always more than the
EGPR strategy. By observing Figure 7, in a congested net-
work, as the network size changes, the average packet travel
time of the EGPR strategy is always less than the ER strategy.
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From the perspective of the average packet travel time, EGPR
strategy comparing with the ER strategy optimizes the traffic
capacity of the network and improves the transmission effi-
ciency of packets. Considering the average path length and
the average packet travel time, the EGPR strategy is overall
better than the ER strategy.

IV. CONCLUSION
In summary, considering that nodes with the same degree
value have different influences in the network, we proposed
a node centrality algorithm based on the universal gravitation
between nodes and proposed the EGPR strategy accordingly,
and then we analyzed the traffic dynamics on scale-free
networks, in which the processing capacity of all nodes is
the same. Under this strategy, we investigated the variation
of traffic capacity Rc, the maximum node betweenness Bmax ,
and the average path length 〈L〉, and the average packet travel
time 〈T 〉. Compared with the ER strategy, our strategy can
spend a small path cost to achieve a much higher traffic
capacity. The comparisons of critical values of Rc, the max-
imum node betweenness Bmax , the average path length 〈L〉,
and the average packet travel time 〈T 〉 among the two strate-
gies indicate that EGPR strategy is efficient to improve the
whole network performance. The work of this paper also
provides new ideas for the measurement of node centrality.
In future work, wewill apply our strategy to networks of other
structures.

REFERENCES
[1] Y. Wang, J. Zhan, X. Xu, L. Li, P. Chen, and M. Hansen, ‘‘Measuring

the resilience of an airport network,’’ Chin. J. Aeronaut., vol. 32, no. 12,
pp. 2694–2705, Dec. 2019.

[2] R. Lai, X. Qiu, and J. Wu, ‘‘Robustness of asymmetric cyber-
physical power systems against cyber attacks,’’ IEEE Access, vol. 7,
pp. 61342–61352, 2019.

[3] H. Yang, X. Zhao, Q. Yao, A. Yu, J. Zhang, and Y. Ji, ‘‘Accurate fault
location using deep neural evolution network in cloud data center inter-
connection,’’ IEEE Trans. Cloud Comput., early access, Feb. 17, 2020, doi:
10.1109/TCC.2020.2974466.

[4] J. Cai, Y.Wang, Y. Liu, J.-Z. Luo,W.Wei, and X. Xu, ‘‘Enhancing network
capacity byweakening community structure in scale-free network,’’Future
Gener. Comput. Syst., vol. 87, pp. 765–771, Oct. 2018.

[5] R. B. Chen, W. Cui, C. L. Pu, J. Li, B. Ji, K. Gakis, and P. Pardalos,
‘‘Information transmission on hybrid networks,’’ Phys. A, Stat. Mech.
Appl., vol. 490, pp. 524–532, Jan. 2018.

[6] Z. Chen, J. Wu, Z. Rong, and C. K. Tse, ‘‘Optimal topologies for maximiz-
ing network transmission capacity,’’ Phys. A, Stat. Mech. Appl., vol. 495,
pp. 191–201, Apr. 2018.

[7] Z. Zhang, S. Liu, Y. Yang, and Y. Bai, ‘‘A link-adding strategy for
improving robustness and traffic capacity in large-scale wireless sensor
networks,’’ Cluster Comput., vol. 22, no. S3, pp. 7687–7694, May 2019.

[8] C. H. Kai, J. Long, X. Ling, and M.-B. Hu, ‘‘Upper bound of network
capacity and a static optimal packet routing strategy,’’ Phys. A, Stat. Mech.
Appl., vol. 401, pp. 174–181, May 2014.

[9] Y. Liu, W. Peng, J. Su, and Z. Wang, ‘‘Assessing the impact of cascading
failures on the interdomain routing system of the Internet,’’ New Gener.
Comput., vol. 32, nos. 3–4, pp. 237–255, Aug. 2014.

[10] C.-L. Pu, W. Cui, and J. Yang, ‘‘Tunable path centrality: Quantifying the
importance of paths in networks,’’ Phys. A, Stat. Mech. Appl., vol. 405,
pp. 267–277, Jul. 2014.

[11] Z.-Y. Jiang, J.-F. Ma, and X. Jing, ‘‘Enhancing traffic capacity of scale-
free networks by employing hybrid routing strategy,’’ Phys. A, Stat. Mech.
Appl., vol. 422, pp. 181–186, Mar. 2015.

[12] N. Ben Haddou, H. Ez-zahraouy, and A. Rachadi, ‘‘Implantation of the
global dynamic routing scheme in scale-free networks under the shortest
path strategy,’’ Phys. Lett. A, vol. 380, no. 33, pp. 2513–2517, Jul. 2016.

[13] K. H. Lee and P. M. Hui, ‘‘High-performance distribution of limited
resources via a dynamical reallocation scheme,’’Phys. A, Stat.Mech. Appl.,
vol. 387, no. 26, pp. 6657–6662, Nov. 2008.

[14] F. Shao, ‘‘Optimal transport on weighted networks for different node
delivery capability schemes,’’ Sci. World J., vol. 2013, Dec. 2013,
Art. no. 378083.

[15] X. He, K. Niu, Z. He, J. Lin, and Z.-Y. Jiang, ‘‘Efficient packet transporta-
tion on complex networks with nonuniform node capacity distribution,’’
Int. J. Mod. Phys. C, vol. 26, no. 10, Oct. 2015, Art. no. 1550118.

[16] H. Yang, Q. Yao, A. Yu, Y. Lee, and J. Zhang, ‘‘Resource assignment based
on dynamic fuzzy clustering in elastic optical networks with multi-core
fibers,’’ IEEE Trans. Commun., vol. 67, no. 5, pp. 3457–3469, May 2019.

[17] H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu, and J. Zhang, ‘‘Distributed
blockchain-based trusted multidomain collaboration for mobile edge com-
puting in 5G and beyond,’’ IEEE Trans. Ind. Informat., vol. 16, no. 11,
pp. 7094–7104, Nov. 2020.

[18] H. Yang, A. Yu, J. Zhang, J. Nan, B. Bao, Q. Yao, and M. Cheriet, ‘‘Data-
driven network slicing from core to RAN for 5G broadcasting services,’’
IEEE Trans. Broadcast., vol. 67, no. 1, pp. 23–32, Mar. 2021.

[19] G.-Q. Zhang, D. Wang, and G.-J. Li, ‘‘Enhancing the transmission effi-
ciency by edge deletion in scale-free networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 1, Jul. 2007,
Art. no. 017101.

[20] Z. Liu, M.-B. Hu, R. Jiang, W.-X. Wang, and Q.-S. Wu, ‘‘Method to
enhance traffic capacity for scale-free networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 3, Sep. 2007,
Art. no. 037101.

[21] W. Huang and T. W. S. Chow, ‘‘Effective strategy of adding nodes and
links for maximizing the traffic capacity of scale-free network,’’ Chaos,
Interdiscipl. J. Nonlinear Sci., vol. 20, no. 3, Sep. 2010, Art. no. 033123.

[22] K. Hu, C. Liu, T. Hu, and Y. Tang, ‘‘Enhancing traffic capacity for scale-
free networks by the one-way links,’’ J. Phys. A, Math. Theor., vol. 43,
no. 17, Apr. 2010, Art. no. 175101.

[23] J. Cui, J. Xiang, Y. Liu, K. Hu, and Y. Tang, ‘‘An efficient strategy
to improve traffic capacity of the scale-free network by link-directed
method,’’ J. Phys. Soc. Jpn., vol. 89, no. 1, Jan. 2020, Art. no. 014802.

[24] Z.-Y. Jiang, M.-G. Liang, andW.-J. An, ‘‘Effects of efficient edge rewiring
strategies on network transport efficiency,’’ Phys. A, Stat. Mech. Appl.,
vol. 394, pp. 379–385, Jan. 2014.

[25] C. Jiang, Y. Chen, Y. Ren, and K. J. R. Liu, ‘‘Maximizing network capacity
with optimal source selection: A network science perspective,’’ IEEE
Signal Process. Lett., vol. 22, no. 7, pp. 938–942, Jul. 2015.

[26] Y.-B. Zhu, X.-M. Guan, and X.-J. Zhang, ‘‘Heterogeneous delivering
capability promotes traffic efficiency in complex networks,’’ Int. J. Mod.
Phys. C, vol. 26, no. 6, Jun. 2015, Art. no. 1550069.

[27] A. Yu, H. Yang, K. K. Nguyen, J. Zhang, and M. Cheriet, ‘‘Burst traffic
scheduling for hybrid E/O switching DCN: An error feedback spiking
neural network approach,’’ IEEE Trans. Netw. Service Manage., vol. 18,
no. 1, pp. 882–893, Mar. 2021.

[28] Q. Yao, H. Yang, B. Bao, A. Yu, J. Zhang, and M. Cheriet, ‘‘Core and
spectrum allocation based on association rules mining in spectrally and
spatially elastic optical networks,’’ IEEE Trans. Commun., early access,
May 21, 2021, doi: 10.1109/TCOMM.2021.3082768.

[29] A. Arenas, A. Díaz-Guilera, and R. Guimerá, ‘‘Communication in net-
works with hierarchical branching,’’ Phys. Rev. Lett., vol. 86, no. 14,
pp. 3196–3199, Apr. 2001.

[30] L. Zhao, Y.-C. Lai, K. Park, and N. Ye, ‘‘Onset of traffic congestion
in complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 71, no. 2, Feb. 2005, Art. no. 026125.

[31] G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, and B.-H. Wang, ‘‘Efficient routing
on complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 73, no. 4, Apr. 2006, Art. no. 046108.

[32] B. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, ‘‘Optimal transport
on complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 74, no. 4, Oct. 2006, Art. no. 046106.

[33] Z.-X. Wu, G. Peng, W.-M. Wong, and K.-H. Yeung, ‘‘Improved routing
strategies for data traffic in scale-free networks,’’ J. Stat. Mech., Theory
Exp., vol. 2008, no. 11, Nov. 2008, Art. no. P11002.

[34] Z.-Y. Jiang and M.-G. Liang, ‘‘Improved efficient routing strategy on
scale-free networks,’’ Int. J. Mod. Phys. C, vol. 23, no. 2, Feb. 2012,
Art. no. 1250016.

VOLUME 9, 2021 96037

http://dx.doi.org/10.1109/TCC.2020.2974466
http://dx.doi.org/10.1109/TCOMM.2021.3082768


J. Ma et al.: Effective Gravitation Path Routing Strategy on Scale-Free Networks

[35] Z.-Y. Jiang and M.-G. Liang, ‘‘Incremental routing strategy on scale-free
networks,’’ Phys. A, Stat. Mech. Appl., vol. 392, no. 8, pp. 1894–1901,
Apr. 2013.

[36] L. Shi-Bao, L. Lin-Lin, C. Rui-Xiang, and H. Li, ‘‘A pervasive opti-
mized algorithm for complex network routing strategy,’’ Acta Phys. Sinica,
vol. 63, no. 2, 2014, Art. no. 028901.

[37] G. Liu, W. Long, J. Wang, P. Gao, J. He, Z. Luo, L. Li, and Y. Li, ‘‘Improv-
ing the throughput of transportation networks with a time-optimization
routing strategy,’’ Int. J. Geograph. Inf. Sci., vol. 32, no. 9, pp. 1815–1836,
Sep. 2018.

[38] F. Shao and B. Cheng, ‘‘Optimal routing strategy based on specifying
shortest path,’’ Int. J. Comput. Commun., vol. 9, no. 5, pp. 602–609, 2014.

[39] X. Gao, H. Guo, Y. Chen, Y. Tang, C. Wang, S. Xu, and J. Wu,
‘‘Global hybrid routing for scale-free networks,’’ IEEE Access, vol. 7,
pp. 19782–19791, 2019.

[40] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, ‘‘Com-
plex networks: Structure and dynamics,’’ Phys. Rep., vol. 424, nos. 4–5,
pp. 175–308, 2006.

[41] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[42] I. Newton, C. Huygens, A. Motte, F. Cajori, and S. P. Thompson, Mathe-
matical Principles of Natural Philosophy. Chicago, IL, USA: Encyclopæ-
dia Britannica, 1955.

[43] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, ‘‘Attack vulnerability
of complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 65, no. 5, May 2002, Art. no. 056109.

JINLONG MA received the Ph.D. degree in infor-
mation and communication engineering from the
Harbin Institute of Technology, Harbin, China,
in 2016. He is currently an Associate Professor
with the School of Information Science and Engi-
neering, Hebei University of Science and Technol-
ogy, Shijiazhuang, China. His research interests
include information spreading dynamics in com-
plex networks and data analysis of online social
networks.

JUNFENG ZHANG is currently pursuing the
master’s degree with the Hebei University of
Science and Technology, Shijiazhuang, China.
His research interests include traffic, information
spreading dynamics, and structure of networks.

YONGQIANG ZHANG received the M.A.Eng.
degree from the School of Computer Science,
Anhui University of Technology, Ma’anshan,
China, in 2007. He is currently an Associate Pro-
fessor with the School of Information Science
and Engineering, Hebei University of Science and
Technology, Shijiazhuang, China. His research
interests include information spreading dynamics
in complex networks and data analysis of online
social networks.

96038 VOLUME 9, 2021


