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ABSTRACT The priority of building hardware-oriented neural network models is growing steadily. The
target goals for their development are the performance and energy efficiency of promising hardware-software
solutions. Simultaneously, for different classes of computing architectures of the computer, the optimal
neural network models will differ. The most interesting from a practical point of view are application-specific
integrated circuits (ASICs), field-programmable gate arrays (FPGAs) and central processing units (CPUs).
We have recently proposed a bipolar morphological network as a hardware-oriented model for these
computer types, the computationally intensive parts of which use only maximum and addition. In this work,
we present for the first time a theoretical assessment of the expressive power of a neural network consisting
of BM neurons and show that it corresponds to the expressive power of the classical multilayer perceptron.
In addition, we summarize the current results on the use of the bipolar morphological model in typical
tasks of technical vision: image classification and semantic segmentation. We consider simple LeNet-5-like
neural networks, as well as deeper ResNet and UNet architectures. We show that BM networks demonstrate
accuracy that allows their practical use, with significantly higher performance in terms of a transistor budget
for two (ASIC, FPGA) of the three architectures under consideration. The source code of the model and
ResNet experiments are available at https://github.com/SmartEngines/bipolar-morphological-resnet.

INDEX TERMS ASIC, bipolar morphological networks, computational complexity, expressive power,

FPGA.

I. INTRODUCTION

Neural network recognition has gone far beyond academic
tasks and is widely used in end users’ products [1]-[4]. The
rising importance of the edge computing concept forces us to
move calculations closer to the end-user. Therefore, in today’s
world, execution speed, required memory amount, and energy
efficiency have become very important parameters as well
as recognition quality. These parameters are often decisive
when choosing a specific solution, for example, in the case
of unmanned vehicles and embedded systems, such as smart
homes. Moreover, energy efficiency is also important for
environmental protection, so more and more attention is paid
to it [5], [6].
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Thus, to assess a particular solution’s applicability, we need
to select a neural network model that provides sufficient
accuracy and analyze its inference on the target device.
At the same time, there are many modern computer types
and various opportunities for the development of specialized
devices. For example, central (CPU) and graphic process-
ing units (GPU) are widely available for software projects.
However, they have a fixed architecture, which is often not
optimized for neural networks. On the other hand, developers
of hardware platforms spend a lot of resources to create
an optimal low-level device for solving a specific prob-
lem, often without being able to change the solution itself.
Application-Specific Integrated Circuits (ASICs, for exam-
ple, Google TPU or Intel VPU) for neural network processing
is a compromise, as well as specialized neuromorphic pro-
cessors. They are optimized for the fast inference of certain
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classes of existing models, which have proven themselves
well both in terms of quality and performance. Developers
can easily use them within their existing infrastructure.

The next step in developing neural network technologies is
creating a model, allowing efficient and easily scalable hard-
ware implementation still maintaining sufficient quality. This
task requires integrating knowledge from technical vision
and hardware engineering with a certain amount of luck and
inspiration. The bipolar morphological (BM) neuron model
is an attempt to create such a device-oriented neural network
model.

In this paper, we describe current research on the bipolar
morphological neuron model. Our contribution is as follows:

o we summarize the accuracy study of convolutional BM
networks in technical vision problems;

« for the first time, we analyze the expressive power of a
neural network consisting of BM neurons;

o we estimate the complexity of the BM network imple-
mentation on CPU and FPGA.

The paper is organized as follows: Section 2 is devoted to
computer models, the evolution of an artificial neuron model,
and an artificial neural network to show the BM neuron’s
origin. In Section 3, we present the BM neuron, the expressive
power of BM networks, their computational complexity for
various computers, and the accuracy of BM networks in
several technical vision tasks. Section 4 contains an overview
of related works devoted to creating efficient neural network
models, and Section 5 concludes the work. In Section 6,
we discuss the further development of the proposed model.

Il. THE EVOLUTION OF COMPUTING AND ARTIFICIAL
NEURAL NETWORKS

Modern computing devices have a rather complex archi-
tecture. For example, they support pipelining, out-of-order
instructions execution, a hierarchical data caching system,
etc. Thus, the actual inference time of a particular neural
network depends on the number of parameters and its archi-
tecture inextricably for each device. Let us consider the most
relevant computer models.

A. COMPUTER MODELS

1) LOGIC CIRCUITS

A logic gate is a physical device that realizes a Boolean
function. A logic circuit is a directed acyclic graph in which
all vertices except input vertices carry the labels of logic
gates [7]. It means that the logic circuit computes a binary
functionf : B, — By, B € 0, 1 that is a mapping from the
values of its n input variables to the values of its m outputs.
Using logic circuits one can execute programs without loops
and branches (straight-line programs).

The main characteristics of the logic circuits are size and
depth. The size is the number of vertices in the circuit graph,
while the depth is the number of edges in the longest path
from the input to the output. The size defines the required
number of gates to implement the logic circuit and therefore is
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connected to energy-efficiency and complexity of the result-
ing chip. The depth characterizes latency, i.e. time required
to obtain correct output for a new supplied input.

2) FINITE-STATE MACHINE

The finite-state machine (FSM) is a machine with memory,
where its state is stored. It always acts taking into account the
state. It can be seen as a logic circuit which takes current state

as one of inputs and outputs a target function and a new state
(see Fig. 1).

3) RANDOM-ACCESS MACHINES

The random-access machines (RAM) model is the most
close to the traditional computer. The RAM is modeled by
two synchronous interconnected FSMs, a central processing
unit (CPU) and a random-access memory (see Fig. 2) [7].
The CPU has its own data storage places called registers.
The number of registers is usually small. The CPU is able to
perform operations only on the data stored in registers. The
random-access memory is a large data storage.

The CPU works in a fetch-and-execute cycle, i.e. reads
instructions from random-access memory and executes them.
A CPU typically has five basic kinds of instruction: a) arith-
metic and logical instructions, b) memory load and store
instructions for moving data between random-access memory
and registers, ¢) jump instructions for breaking out of the
current program sequence, d) input and output instructions,
and e) a halt instruction.

The random-access memory operates three input words
and one output word. These three words are an address,
a data word, a command. The command can be reading,
writing or doing nothing. While reading the memory returns
a word (out_word) from the address location (addr) and
while writing it stores a data word (in_word) to the address
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location (addr). The memory is called random-access
because it has the same time to access a word for all words.
The RAM model can have bounded-memory, which means
that the storage amount is limited to some value m = 2", data
words have fixed size of 2” bytes and addressed with r-bit
variables.

4) CORRESPONDENCE TO REAL COMPUTERS
In practice, performance-demanding mobile and embedded
systems typically use FPGAs, specialized hardware, and
central processors. In the case of an FPGA or embedded
device, the primary importance have the size and depth of the
logic circuit. For central processing units, internal parallelism
must also be considered. The data-level parallelism is often
supported through Single Instruction Multiple Data (SIMD)
extensions that allow one to perform the same arithmetic
operation on several data elements of a vector simultaneously.
We will consider SIMD instructions as ordinary arithmetic
operations, remembering that it is necessary to load and
prepare several data values before an operation. Other types
of parallelism will remain outside the scope of this paper.
Another CPU difference is the hierarchical memory struc-
ture. Generally, coefficients, input data, and intermediate val-
ues do not fit into registers and even L1 cache during neural
networks inference. Therefore, memory access must be paid
attention to when creating an optimal implementation.

B. NEURON MODELS IN COMPUTER VISION
In living systems, signals from the nervous system and the
brain control all processes. Modeling the nervous system
and its parts is an area of interest for many researchers.
Most models describing the state of a neuron use differential
equations — for example, the integrate-and-fire model and its
generalizations, the Hodgkin-Huxley model, etc. [8].
Physically, these signals represent electric potential dif-
ferences, so it is not surprising that people have tried to
simulate them using electrical circuits. Such devices were
called neuromorphic devices or neuromims. Their creation
began in the 60s of the 20th century by L. Harmon [9] and E.
Lewis [10], who proposed electrical circuits to simulate the
Hodgkin-Huxley neuron. However, the production of devices
with a large number of neurons to solve meaningful tasks was
impossible at that time. Therefore, the studies were focused
on simplified models of neurons and neural structures repro-
ducing information processing in living systems.

1) CLASSICAL MATHEMATICAL NEURON MODEL

In 1943 Warren McCulloch and Walter Pitts published an
article «A logical calculus of the ideas immanent in nervous
activity» [11]. They studied neurons in the brain to create
their mathematical model, which could become the basis
of artificial intelligence. Their artificial neuron was binary,
i.e., depending on the input signals, it could only be in an
excited or unexcited state. Like biological neurons, it had
a body connected by synapses to several dendrites, which
received input signals, and one axon, which served as an
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output. Dendrite synapses attenuate or amplify input sig-
nals by multiplying by a weighting factor and transmit the
result to the neuron body represented by an adder. When
this sum exceeds a certain threshold value, the neuron moves
to an excited state. The following expression describes the
McCulloch-Pitts neuron:

N

fx)=6 (Z wix; + Wo) : )
i=1

where x is the vector of input signals, w is the weight vector

of the neuron, 6 is a threshold activation function:

1, x>0,
6() = {0, x < 0. @

McCulloch and Pitts built the simplest neural network from
such mathematical neurons and showed that it could calculate
various mathematical functions. They also proposed simulat-
ing the self-learning phenomenon observed in natural neural
networks by changing the weight coefficients in response to
specific sequences of input signals.

This model was later generalized to an artificial neuron
using an arbitrary activation function ¢. It is this model that
is often called the classical mathematical neuron model:

N
fe)y =09 <Z wix; + vm) : 3)
i=1

2) MORPHOLOGICAL NEURON MODEL

In 1990 G. Ritter and his colleagues proposed an alternative
neuron model and the neural network structure, which he
called the morphological model of the neuron and the mor-
phological neural network, respectively [12]. In the morpho-
logical model, the neuron’s body does not add but takes the
maximum or minimum. Weighting factors affect input signals
additively, not multiplicatively. Further, the found value of the
maximum or minimum is compared with the threshold, and,
thus, the output of the morphological neuron is binary. The
following formula can describe a morphological neuron:

fx) =46 <p m_lgilx ri(xi +wi) — WO> : “4)

where x is the vector of input signals, w is the weight vector of
the neuron, 6 is a threshold activation function, r; € {—1, 1}
are responsible for the effect of the i input signal (excitation
or inhibition), and p € {—1, 1} manipulates the output sign.

Such a neuron turns out to be more computationally
efficient than a classical mathematical neuron since the
operations of addition/subtraction and taking the maxi-
mum/minimum require fewer logical gates for implementa-
tion than the multiplication operation. Therefore it is more
energy-efficient and needs significantly less time to compute.

Further development of the morphological neuron was the
model of a morphological neuron with dendrites proposed by
Ritter in 2003 [13]:

K
fx) =0 (rkn_i?pk (miln<—1>1—l(x,- + w§k>) —b) NG
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where x is the vector of input signals, w is the weight vector
of the neuron, 6 is a threshold activation function, [/ € {0, 1},
and p € {—1, 1} manipulates the output sign.

Dendrites made it possible to control the neuron’s excita-
tion and inhibition flexibly since the neuron state depended on
several input signals’ combinations with different signs and
weights. A feature of the model is that the required number
of dendrites was obtained during training the model, i.e., den-
drites «grow» as needed. Also, in this work, the authors
proved that a morphological perceptron with dendrites can
solve any classification problem with any given accu-
racy. However, the number of neurons required can be
extremely large, which negates the advantages of each neu-
ron’s simplicity.

Nevertheless, these morphological models were unable
to provide sufficient recognition quality compared to the
quality of classical perceptron networks and the quality of
convolutional neural networks in typical problems. Only
recently, the studies of morphological networks have been
resumed: new training methods are being developed [14],
[15], and ways of using morphological models in real prob-
lems are considered (for example, electroencephalogram
decoding [16]). Also, layers of morphological neurons with
dendrites show promising results in hybrid models where
morphological neurons are used to extract features in some
network layers [17].

3) SPIKING NEURON MODELS

With the increase in the computing power of microchips,
the interest in constructing devices simulating the natural
neural network has increased. A feature of the transmission
of real nerve impulses is their spike nature; that is, neurons’
input and output signals are sequences of impulses. The first
model of a spiking neuron was the model by Alan Hodgkin
and Andrew Huxley, proposed in 1952. They described the
mechanisms underlying the origin and propagation of signals
along an axon. This model is one of the most biologically
accurate models, and therefore it is pretty complex: it contains
four differential equations, and a lot of parameters [8].

However, the most famous impulse neuron model was
proposed by the French physiologist Louis Lapicque in 1907.
This model is called the «integrate-and-fire» neuron. The idea
behind it is that when there is some signal at the neuron’s
input, its output rises until a threshold. Then the output drops
drastically, and the process starts over. The disadvantage of
this model is that with a linear increase in the input sig-
nal, the firing frequency of the neuron grows indefinitely.
To eliminate this drawback, too frequent neuron triggering
was prohibited. The second drawback is that the output signal
will remain intermediate value between the maximum and
minimum if the neuron did not trigger. To fix it, a new «leaky
integrate-and-fire» neuron was developed.

The leaky integrate-and-fire model introduces the «resis-
tance» of the neuron, which causes a progressive leakage,
so the output gradually resets even if the input did not reach
the threshold [8].

97572

In 2003 Evgene Izhikevich developed a new class of spik-
ing neuron models described by just two simple differential
equations. On the one hand, such neurons are quite simple and
computationally efficient, and on the other hand, they retain
the biological accuracy of the Hodgkin-Huxley model [18].

Today, spiking neural networks are developing as math-
ematical models and as special neuromorphic chips. These
chips are processors that effectively implement spiking neural
networks and are characterized by extremely low power con-
sumption. For example, in 2014, IBM released the TrueNorth
neuromorphic chip, which consists of a million neurons that
can form 256 million connections. In 2017, Intel introduced
the Loihi neuromorphic chip that supports training neural
network models. In 2020, the Akida neural processor was
created with approximately 1.2 million neurons that can form
10 billion connections.

However, despite the variety of models and active research
of spiking neural networks, there are still no stable training
methods that would allow obtaining sufficiently accurate
solutions to modern recognition problems [19]. Simultane-
ously, work in this area continues and shows promising
results [20]-[22].

4) ARTIFICIAL NEURON MODELS IN STATE-OF-THE-ART
NETWORKS

After creating the McCulloch-Pitts neuron, the following
fundamental issue was the organization of neurons into a
network. One option was the perceptron, in which individ-
ual neurons were organized into layers, and each neuron
of the next layer was connected to some neurons of the
previous one. At first, the training was performed with an
error-correction method (F. Rosenblatt, [23]), and later with
an error back-propagation method using various metrics (D.
Rumelhart, [24]). Despite criticism and limitations of such a
model (for example, image analysis was non-invariant to spa-
tial shifts), this model solved a number of simple problems.

Another option for organizing a neural network was
the cognitron (1975), and the neocognitron (1980) by
K. Fukushima [25]. The neocognitron allowed for invariant
analysis of the input image. It used neurons of two types for
this purpose: S- («simple») and C- («complex»). «Simple»
neurons were connected with some fixed area of input sen-
sors and selected some specific feature. «Complex» neurons
received the outputs of «simple» ones and located features
in the entire image. The neocognitron had a hierarchical
structure and could include several layers of «simple» and
«complex» neurons. As a result, it was able to recognize
objects in the image, regardless of their position and small
deformations. Although neocognitron applications were lim-
ited only to image recognition tasks, it demonstrated impres-
sive results in these tasks.

Convolutional neural network architectures we know, start-
ing with LeNet-5 [26] and AlexNet [27], are based on the
neocognitron and the classical mathematical neuron. The
combination of a relatively simple convolutional layer struc-
ture with a small number of weights and the increased

VOLUME 9, 2021



E. E. Limonova et al.: BM Neural Networks: Gate-Efficient Architecture for Computer Vision

IEEE Access

computing power of computers made it possible to solve
practical problems. At the same time, researchers began to
study not individual neurons but entire layers with special
properties, which were then combined to create a network.
Let us list the main layers of state-of-the-art networks:

« fully-connected layer;

« convolutional layer;

« pooling layer;

« normalizing layer;

« long short-term memory layer;

« and etc.

Layers can be combined in complex ways to form a graph
with layers as vertices and edges representing data flow.

In our work, we propose a new bipolar morphological
neuron and suggest to modify neuron type keeping layer
types and overall graph structure of the network unchanged.
Currently we recommend to use BM neuron in convolutional
layers only.

Ill. BIPOLAR MORPHOLOGICAL NEURON
A. THE BIPOLAR MORPHOLOGICAL NEURON
The idea behind the proposed neuron is to simplify com-
putations in the classical mathematical neuron (3) to get
maximum and addition as the main neuron operations.

To construct such a neuron we use the approximation of the
classical one. At first we consider the case x; > 0, w; > 0:

N N
ZX,‘W,’ = exp{ln inw,-}
i=1 i=1
= (1 + k) expmax(Inx; + Inw;)
1
= (I + k) exp max(y; + v;)
1
A exp max(y; + v;), 6)
1

where y; = Inx; are new inputs, v; = Inw; are new weights,
and

N
_Zl XjWj
k=1 —1, )
M = max(x;wj). 8)
J

Then we consider a full classical neuron:
N N N
4+ +—
> xwi =y pitxilwi— Y pi T xilwil
i=1 i=1 i=1

N N
=N klwi+ Y p nillwil, (9)
i=1 i=1

where

1, ifx;>0andw; >0

otherwise

1, ifx;<Oandw; >0

otherwise
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- 1, ifx;>0andw; <0
p;i = 0.

— 1, ifx;<Oandw; <O
pi = 0, otherwise

otherwise

Each term here deals with non-negative inputs and weights
and can be approximated using (6).
Finally we obtain a new neuron:

N
yam(x, V, v) = ¢ (exp H_1al><(lnxj+ +vi)
j=
—exp rjr_lzalx( nx;"” +v; )
b

N _
—expmax(Inx; + v;
Jj=1 J J

+exp ml\z/lf((lnx; +vi)+ Vo) ., (10)
=

R (11)
J 0, x <0,
o = —xj, xj <0, (12)
J 0, Xj = 0,

where X is an input vector of length N, v, v~ are weight

vectors of size N, vg is bias, ¢(-) is a nonlinear activation
function. We define In0 = —oo and replace it by a big enough
negative value for actual computations.

We call it bipolar morphological (BM) neuron. The term
bipolar means that they participate in two separate processes:
excitation and inhibition. In the equation (10) each pair of
input and weight is included in one sum only depending
on the sign combination. In real life bipolar neurons are
specialized neurons for sensory perception and can be found,
for example, in the retina.

The BM neuron is not computationally efficient yet,
because of logarithm and exponent operations. However, neu-
rons in the neural network are organized into layers. In the
BM layer consisting of BM neurons (fully-connected or con-
volutional layer) In and exp operations are performed on the
activation (the signal transmitted between network layers)
and can be considered as a part of an activation function.
Normally the activation functions do not make significant
contributions to the computational complexity of a neural
network, so the increase of computational complexity should
be of little consequence.

In the Fig. 3 we illustrate the BM layer structure. The
rectifier (ReLU) allows us to take values above zero and
create four computational path for positive and negative input
or weights. Then we take the logarithm of rectified input (x)
and perform essential morphological operation of the layer.
The results are passed to the exponential unit and subtracted
to get the output (y).

B. BM NEURON ACCURACY AND EXPRESSIVE POWER
In the above Subsection we considered the BM neuron as
the approximate classical mathematical neuron. However,
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FIGURE 3. The structure of a BM neuron with input vector x and weights Vi+ s

the approximation (6) is good only in case k < 1. For a real
neuron 0 < k < N —1, and the best case is the sum containing
only one non-zero term (k = 0) and the worst case is the
sum with all equal terms (k = N — 1). In this case the real
value for the sum will be N times more than approximated.
On one hand, we can use additional coefficients to improve
the approximation accuracy, on the other hand, BM networks
already have the same expressive power as traditional multi-
layer perceptrons have.

Though we are going to mix up BM and other more
traditional neurons in a single network, here we consider
networks of BM neurons only (pure BM networks). Namely,
each continuous function f on any compact set in the feature
space R" can be approximated uniformly with any precision
by some pure BM network.

The idea of the proof is the same as that for 3-layer
perceptrons. Here are some hints how to construct such an
approximating BM-network.

Let us consider identity activation function ¢(-). The first
two layers of the approximating BM network will depend
only on the bounding box of the domain of the function f
to be approximated.

The first layer consists of a number of neurons with sin-
gle input (any of the features x;), computing functions of
shape x; + bl.+, —x;j + b; for some set of biases b?‘, and
one neuron with bias —1 and no input. The second layer
consists of neurons with 2n+- 1 inputs and computes indicator
functions of a number of parallelepipeds in the feature space.
At last, the only neuron of the third layer has a huge num-
ber of inputs and computes a piecewise-linear (and almost
piecewise-constant) function approximating f.

C. COMPUTATIONAL EFFICIENCY

1) COMPUTATIONAL COMPLEXITY

At first it should be noted that although computing the pos-
itive and negative part of input (x* and x~ in (10)) doubles
its length, there are exactly half of zero elements in them in
total. These terms do not require logarithm computation.
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The standard convolutional layer with input Iz« xc and
output Op xym xr does the following:

C K-1 K-1

ol,m,f) =g <Z > > IU+ AlLm+ Am, o)

c=1 Al=0 Am=0
w(Al, Am, C,f)-f-b(f)),
f=1FIl=1,Lm=1,M (13)

Here F is the number of filters, C is the number of input
channels, K x K is the spatial dimensions of the filter, input
image size is L x M x C, w is a set of convolutional filters, b
is the bias. We suppose I is padded properly for the result to
be of the same size.

The BM convolutional layer with the same input and output
sizes:

J=9¢ ZZpo‘p exp(In/® ©v/) +b |,
a B

Where o e {_7 +}9 /3 € {_7 +}9 p+ = 19 p7 = _15 © iS a
BM convolution operation:
C K-1 K-1
(o) V)n,m,c = max max max (InJrAn,erAm,c + VAk,Am,c,f)
c=1 An=0 Am=0

The standard fully-connected layer with input /p and out-
put Og does:

P
Og) =0 Zl(p) wp, ) +b(@) ]|, g=1,0 (14
p=1
Here P is the number of inputs, Q is the number of neurons
in the layer, w is a set of fully-connected weights, b is set of
biases.
The BM fully-layer with the same input and output sizes:

P
O(q) = o | _p*p’ expmax(inl“(p) +v'p,q)+b(q) |,
p:
a.B

=10 5)
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TABLE 1. The number of operations in the convolutional (conv) layer of
BM and standard models. F is the number of filters, C is the number of

input channels, K x K is the spatial dimensions of the filter, input image
sizeis L x M x C.

[Op [ Standard conv [ BM conv
a() FLM FLM
Exp 0 AFLM
Log 0 CLM
Add |FK?CLM 2F(K?C +2)LM
Max |0 2F(K?C — 1)LM
Mul FK?CLM 0

TABLE 2. The number of operations in the fully-connected (fc) layer of
BM and standard models. P is the number of inputs, Q is the number of
neurons in the layer.

[Op [ Standard fc [BM fc
ORI g
Exp 0 4Q
Log 0 P
Add QP 2Q(P +2)
Max |0 2Q(P - 1)
Mul QP 0

The number of operations for the standard and BM convo-
lutional layers is shown in Table 1. In Table 2, we show the
number of operations for standard and BM fully-connected
layers.

2) THE BM NETWORKS FOR CPUs

Modern CPUs use general-purpose Arithmetic Logic
Units (ALUs) for computations like addition, multiplication
and maximum. They also include SIMD-extensions for arith-
metics that operate 128-512 bit vector data. In the Table 3 we
show operating time and throughput for these operations for
several x86_64 and ARM processors. There is no difference
for single-precision floating-point data and a little difference
for integer data. It means that the BM networks have practi-
cally no advantage on CPUs over classical networks.

3) FPGA COMPLEXITY

The most promising application of BM networks is FPGA
and ASIC devices, because specialized addition and maxi-
mum blocks are able to perform faster than general-purpose
ALUs. Moreover, BM neuron/layer can be constructed using
4 sets of parallel units to speed up execution (one for each
computational branch).

Firstly, we estimate the number of logic gates and
clock cycle latency required for the arithmetical operations
involved in the computations. We obtain register transfer
level description of addition, multiplication and maximum
computation arithmetic units using Verilog HDL conforming
to IEEE 754 single-precision floating-point standard, and
Synopsys Design Compiler to implement them at gate-level
and get logic gate complexity and latency characteristics.
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TABLE 3. The latency and average throughput of arithmetic operations
for scalar and vector data types [28], [29].

[Op [ Tatency [ throughput |
Intel Skylake-X, floating-point 128-bit vector
add 4 0.5
max 4 0.5
mul 4 0.5
Intel Skylake-X, integer 128-bit vector
add 1 0.33
max 1 0.5
mul 5 0.5
mul+add 5 0.5
Intel Skylake-X, single-precision floating-point
add 3 1
max 4 0.5
mul 5 1
Intel Coffee Lake, floating-point 128-bit vector
add 4 0.5
max 4 0.5
mul 4 0.5
Intel Coffee Lake, integer 128-bit vector
add 1 0.33
max 1 0.5
mul 5 0.5
mul+add 5 0.5
Intel Coffee Lake, single-precision floating-point
add 3 1
max 4 0.5
mul 5 1
ARM Cortex-A57, floating-point 128-bit vector
add 5 2
max 5 2
mul 5 2
ARM Cortex-A57, integer 128-bit vector
add 3 2
max 3 2
mul 5 1
mul+add 5 1
ARM Cortex-A57, floating-point 128-bit vector
add 5 2
max 5 2
mul 5 2

We show the results for 65 and 16 nm technologic libraries
in Table 4.

We use software approximation for logarithm and expo-
nent. The exponent is implemented as in a reference imple-
mentation from Intel [30]. For a logarithm we construct our
own implementation, which gives the precision of 4 decimal
digits and uses only 5 multiplications and 6 additions [31].

We estimate the benefits from BM neuron for convolu-
tional layers in Table 5. We use the number of operations from
Tables 1, 2 and their characteristics from Table 4. We also
suppose that four terms in (10) are computed in parallel (twice
less operation for add and max for one thread and 4 times
less for exp).

These ratios demonstrate that for core layers inside the
network with quite a large number of input channels, we can
get 2.1-2.9 times fewer gates for 65 nm technology or
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TABLE 4. The estimate number of gates and latency for arithmetical
operations.

Op Gates Gates Latency, clock
(65nm) |(16 nm) |cycles

add 16048 2659 3

max 1464 563 2

mul 35345 3247 4

log 154179 | 32189 35

exp 256965 | 17718 21

TABLE 5. The approximate gate number and latency ratios for standard
and BM convolutional layers.

F C | K | Gates stan- | Gates stan- | Latency
dard/BM dard/BM stan-
(65 nm) (16 nm) dard/BM
16 1 1 | 0.16 0.21 0.22
16 16 1 | 1.14 0.89 0.80
32 1 1 ]0.17 0.22 0.23
32 32 1 | lL.o4 1.20 1.02
64 1 1 ] 0.17 0.23 0.23
64 64 1| 211 1.45 1.18
128 1 1 ] 0.17 0.23 0,23
128 | 128 | 1 | 2.45 1.62 1.28
256 1 1 ] 0.17 0.23 0.23
256 | 256 | 1 | 2.67 1.72 1.34
512 1 1 | 0.17 0.23 0.23
512 | 512 | 1 | 2.80 1.77 1.37
16 1 3 | 1.02 0.99 0.87
16 16 | 3 | 2.50 1.64 1.29
32 1 3 | 1.03 1.01 0.89
32 32 | 31270 1.73 1.34
64 1 3 | 1.03 1.02 0.89
64 64 | 3 | 281 1.78 1.37
128 1 3 | 1.04 1.03 091
128 | 128 | 3 | 2.87 1.81 1.39
256 1 3 | 1.04 1.03 0.90
256 | 256 | 3 | 29 1.82 1.39
512 1 3 | 1.04 1.03 0.90
512 | 512 | 3 | 292 1.83 1.40

1.4-1.8 times fewer gates for 16 nm, and 15-30% lower
latency for the BM layer. As the real FPGAs and ASICs do
not use separate implementation for each layer, these values
are shown for demonstration only.

D. TRAINING

The BM networks need special approaches for training,
because there is only one non-zero gradient element due
to max operation and only one weight is updated at each
iteration on the back-propagation. A lot of weights are never
updated and hold inefficient values. The approach to training
them was introduced in [32].

The idea is to train a neural network with classical neurons,
modify desired layers sequentially from the first to the last
using classical weights and fine-tune the resulting network.
This approach is widely used with low-bit neural networks
for lossless quantization [33], [34].
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Algorithm 1: Training of BM Network

Data: Training data
Result: BM neural network
1. Train classical neural network by standard methods;
foreach conv and fc layers do
2. Replace neurons of type (3) with weights w by the
BM-neurons with weights (v, v™, v}, where:

V-"_ _ ]Ile', iij > 0,
J —o00, otherwise,
_ In |Wj|, iij < 0,
V., =—=
J —00, otherwise,
Vo = Wp. (16)

3. Fine-tune the resulting network by standard
methods;

TABLE 6. Accuracy for different training methods.

Test accuracy, %

Dataset | Network From scratch | Ours
MNIST | CNN; (conv) 98.48 98.76
MNIST | CNN2 (conv) 98.70 99.37

FIGURE 4. Sample images of MRZ characters.

The method of training can be summarized as:

One may perform steps 1-3 several times with different
initial conditions and choose the best result.

In the Table 6 we compare this method with training from
scratch (see Section IV for experimental setup and network
structure). It shows that even for simple neural network archi-
tectures introduced training approach works significantly
better.

IV. EXPERIMENTS
In this Section we summarize the results from [31], [32], [35]
on BM network training for various problems.'

IThe  Tensorflow  code  for training  is  available  at
https://github.com/SmartEngines/bipolar-morphological-resnet
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A. IMAGE CLASSIFICATION
We consider image classification problem on 3 different
datasets:

1) Private dataset with symbols extracted from real docu-
ments with machine-readable zone (MRZ) [36].
Classes: 37.
Image size: 21 x 17 pixels, gray.
Full dataset size: about 3,7 x 10°.
Validation size: 2, 8 x 10%.
Test size: 9,4 x 10%.

2) MNIST [37].
Classes: 10.
Image size: 28 x 28 pixels, gray.
Full dataset size: 60000.
Validation size: 6000.
Test size: 10000.

3) CIFAR-10 [38]
Classes: 10.
Image size: 32 x 32 pixels, 3 channels.
Full dataset size: 60000.
Validation size: 6000.
Test size: 10000.

We test simple LeNet-5-like networks with custom archi-
tectures and ResNet-like architectures. The training is per-
formed via layer-by-layer conversion from the Section III-D.

We use the following notation:

e conv(n, wy, wy) — convolutional layer with » filters of
size wy X wy;

o fc(n) — fully-connected layer with n neurons;

o maxpool(wy, wy) — max-pooling layer with the window
of size wy X wy;

« dropout(p) — dropout the input signals with the proba-
bility p;

o relu — rectifier activation function ReLU(x) = max
(x, 0);

« softmax — standard softmax activation function.

The CNN; architecture is: conv1(30, 5, 5) - relul -
dropout1(0,2) - fc1(10) - softmax1.

The CNN, architecture is: conv1(40, 5, 5) - relul - max-
pooll(2, 2) - conv2(40, 5, 5) - relu2 - fc1(200) - relu3 -
dropout1(0,3) - fc2(10) - softmax]1.

The CNNj3 architecture is: conv1(8, 3, 3) - relul - conv2(30,
5,5) -relu2 - conv3(30, 5, 5) - relu3 - dropout1(0,25) - fc1(37)
- softmax1.

The CNNy architecture is: conv1(8, 3, 3) - relul - conv2(8,
5, 5) - relu2 - conv3(8, 3, 3) - relu3 - dropoutl(0,25) -
conv4(12, 5, 5) - relud - conv5(12, 3, 3) - relu5 - conv6(12, 1,
1) - relu6 - fc1(37) - softmaxl1.

The obtained accuracies are shown in Table 7. We can
see that using BM fully-connected layers dramatically
reduces accuracy, BM convolutional layers are almost loss-
less for CNN* and cause noticeable accuracy decrease for
ResNet with 22 converted layers and almost no descend for
partly-converted network.
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TABLE 7. Classification accuracy for BM neural networks. The orig acc
refers to the accuracy of standard network, the BM part denotes
converted to BM layers and BM acc shows the resulting accuracy.

Dataset Network Orig acc, % BM part BM acc, %

CNN 98,72 1 conv 98,76
1 conv + fc 94,00
MNIST CNNy 99,45 2 conv 99,37
2 conv + fc 97,86

ResNet-22 99.3 22 conv 99.1
CNN3 99,63 2 conv 99,57
3 conv + fc 93,38

MRZ CNN; 99,67 & conv 99.61
6 conv + fc 95,46

CIFAR-10 ResNet-22 85.3 22 conv 77.7
16 conv 85.1

This problem can be solved by using hybrid networks with
BM and standard convolutional layers. Such networks will
still benefit from BM layers because normally convolutions
take major time at inference stage.

B. SEMANTIC SEGMENTATION

We consider the Document Image Binarization Competition
(DIBCO) 2017. It is a challenge on the binarization of his-
torical documents.The organizers provided 86 training and
20 testing images with ideal binary markup (see example
in Fig. 6a, b), and evaluation tools.

The winning solution of the DIBCO 2017 was a U-Net
convolutional network [39]. It is shown in Fig. 5. It includes
10 convolutional layers with 3 x 3 kernel size and ReLU
activation, and final convolution with 1 x 1 kernel and sigmoid
activation.

The images were made grayscale and split into 128 x 128
patched. The data was divided into train and validation in the
80/20 ratio so that all patches from one image were either in
the train or the validation sets. Data augmentation was per-
formed, adding shifts, noise, contrasting, scaling, and lines.
The network was trained with Adam optimizer using binary
cross-entropy as a loss function and mean Intersection over
Union (mloU) to estimate binarization accuracy. To obtain
binary output, output values are rounded. We use this solution
as a baseline. In Fig. 6 we show the output of the U-Net in
comparison to the ideal markup.

The metrics to evaluate binarization quality were presented
in [40]:

o F-Measure (FM)

« pseudo F-Measure (Fps)

« PSNR

« Distance Reciprocal Distortion Metric (DRD)

The results of the fine-tuning of BM U-Net are shown
in Table 8. There is no accuracy degradation in mIoU value
for 2 BM layers, a small decrease for 7 layers, and a 1.9-time
error increase for the whole network. Full evaluation shows
that BM U-Net outperforms Otsu and Sauvola methods but is
inferior to standard U-Net. However, the accuracy decrease in
this problem is also increasing with the number of BM layers,
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FIGURE 6. The example of binarization: a) input image, b) ideal markup,
c) standard U-Net, d) BM U-Net.

so that one can choose the desired balance between quality
and network complexity.
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TABLE 8. Evaluation results for different methods on DIBCO 2017.

[ Method [ moU | FM | Fps | PSNR | DRD |
Otsu [39] - [ 7773 [ 7789 | 13.85 | 15.5
Sauvola [39] -~ | 7711 | 8410 | 1425 | 8.85
UNet [39] -~ | 91.01 | 9286 | 1828 | 3.40
UNet (ours) 99.36 | 90.89 | 92.77 | 18.15 | 331

BM-UNet (10 layers) | 98.79 | 85.82 | 88.02 | 17.00 5.13
BM-UNet (7 layers) 99.08 | 88.97 | 90.59 | 17.49 4.19
BM-UNet (2 layers) 99.33 | 90.35 | 92.56 | 18.00 3.50

V. RELATED WORK
Neural network usage on end devices is growing steadily.
On the one hand, this leads to the development of methods
for increasing the computational efficiency of neural network
models, and on the other, to the development of specialized
devices capable of performing the necessary calculations
quickly.

Today, there are many deep learning ASICs that have
a predefined architecture and cannot be customized. They
are already specialized for executing modern models and
supporting current trends like compact low-bit models. Such
devices include Google Tensor Processing Unit [41], Intel
Vision Processing Unit [42], Huawei Ascend [43], etc.

Alternatively, the use of FPGA gives developers a lot of
freedom in implementing a calculator for a specific neu-
ral network model and in optimizing hardware architecture.
Works on this topic are usually aimed at improving the
efficiency of utilizing logic gates without modifying neural
network architecture and training methods [44]-[47].

A. METHODS FOR IMPROVING NEURAL NETWORK
EFFICIENCY

There are many different methods for inference time reduc-
tion. They can be roughly divided into two groups. The
methods of the first group reduce the number of weight
coefficients and computational operations in the network,
so it works faster. These include tensor decompositions of
convolutions, model compression, and neural network archi-
tectures search. Methods of the second group are oriented
to hardware characteristics and replace some computational
operations and structures with others that and require less
time to calculate. For example, these are low-precision com-
putations or efficiently computable neuron/layer models that
replace traditional ones.

Low-precision neural networks store coefficients and use
low-bit data types for computations (typically integers). Such
computations are faster than in single-precision floating-
point data types. Neural networks with 8-bit coefficients
are widely used; there are a number of libraries developed
for various device architectures [48]—[50]. There are both
end-to-end systems and systems of mixed precision that use
low-precision quantization, and integer computations [51].
For example, Z. Cai and N. Vasconcelos [52] note that using
the same quantization method for all filters is not opti-
mal and suggest performing a search for sufficient accuracy
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quantization parameters. They show that it can significantly
improve the classification results compared to uniformly
quantized networks.

Also, many researchers try to reduce the bit depth fur-
ther. Since standard approaches to weight quantizing are not
differentiable and direct conversion does not provide suffi-
cient accuracy, accuracy improvement methods are desired.
In [53], the authors propose an approach to finding weights,
which improved the accuracy for a large set of bit-widths
(1, 2, 4 bits for weights and 1, 2, 4, 8, 32 bits for activations).
Zhuang et al. [54] add a full-precision auxiliary module to
the network during the training stage. They demonstrate
noticeable accuracy improvement on ImageNet, CIFAR-100,
and COCO datasets. In [55], a model ternary weights and
a novel training method for it are proposed. Their approach
allows to create a network without multiplication and control
its sparseness, i.e., the number of zero weights.

Binary neural network models are also very popular
because they can be implemented with fewer multiplications
(or no multiplications at all). Their usage does not lead to
recognition accuracy loss in many practical problems com-
pared to models with floating-point coefficients [56]-[59].
Such solutions can provide a high inference speed but are
limited to products with specially designed hardware.

At the same time, there are also works devoted to the use
of low-precision floating-point data types in neural network
models [60]-[62]. Their main advantage is improving the
computation accuracy because the floating-point has limited
relative error. Such models even allow training in an 8-bit
floating-point data type, but they also need hardware support
for practical use.

B. ALTERNATIVE NEURONS/LAYERS

Modifications of neural network layers are also actively
developed to reduce their computational complexity or
improve recognition quality. For example, in the DeepShift
model [63], the authors trained the network to use a bitwise
shift instead of multiplication. In [64], the authors introduce
MConv layers, which compute erosion/dilatation operations
in a sliding window. Since min /max operations are not
differentiable, PConv, LMorph and SMorph layers with con-
tinuous structure were proposed [65], [66]. Chen et al. [67]
modify only convolutional layers to use the Lj-norm instead
of covariance. It dramatically simplifies convolutional lay-
ers; however, other layers still use multiplication. In [68],
the authors proposed a knowledge distillation method to train
convolutional layers with Lj-norm without accuracy loss on
CIFAR-10, CIFAR-100, and ImageNet.

VI. CONCLUSION

In this paper, we summarized our work on the new BM
neuron and BM network models. The BM layers are aimed to
replace multiplications with additions and thus demonstrate
lower hardware complexity and latency. We proposed to use
BM convolutional layers in standard neural network archi-
tectures instead of conventional convolutional layers, as they
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are normally most computationally intensive. We showed
that BM networks do not give advantages on CPUs but can
significantly improve gate number and latency on FPGAs.

In this paper, we prove that the representational power of
BM networks is not less than those of classical neural net-
works. We demonstrate and compare training approaches for
the BM networks. Training from scratch shows poor result-
ing accuracy, so we propose the layer-by-layer technique.
We used it for image classification (MNIST, CIFARI10)
with LeNet-5 and ResNet architectures showing no accu-
racy decrease for LeNet and some accuracy degradation
for ResNet, which increases with the number of BM lay-
ers. We also considered the semantic segmentation problem
(DIBCO 2017) with UNet with pretty good results. However,
as the accuracy is not perfect, we look forward to further
research on training methods and propose BM networks with
hybrid structure (some BM and some standard convolutional
layers) as a quick workaround.

FUTURE WORK
The need for highly efficient devices capable of executing
neural networks will only grow over time. As far as we know,
two hardware-based neural network models potentially reach
classical models in terms of accuracy. These are BM networks
and AdderNet. AdderNet shows the recognition accuracy
practically no worse than that of classical models. It is also
efficient for hardware implementation [69]. BM networks
also demonstrate promising results when evaluating hardware
implementation, but they are still inferior in accuracy to
classical networks. Thus, one of the leading research areas of
BM networks should be the development of training methods.
We consider approximation and additional training-based
methods to be promising, as well as knowledge distillation
methods. We should also consider modifying activation func-
tions (using more simple trainable functions instead of 1n and
exp construction) to minimize the layer approximation error.

Another essential aspect unconsidered at the moment is the
quantization of BM networks. The use of integer coefficients
is important for hardware implementation and will signifi-
cantly speed up and simplify it. An interesting point here
will be the integer approximation of the activation function
since they use exponent and logarithm in the current model.
We believe that the next step towards quantizing the BM net-
work will be simplifying the activation functions, especially
when the BM layers are stacked sequentially. In this case,
sequences of layers with operations exp - combine - relu
- 1n appear in the network, which we would like to replace
with some nonlinear function of a more straightforward struc-
ture.

And finally, the concluding stage will be the creation of
a prototype device for fast inference of the BM network.
It is an engineering problem that can be solved based on
existing FPGAs or by creating a unique, specialized device.
On the one hand, the first solution is limited by the available
FPGA configurations, and on the other hand, it will allow
one to rapidly implement BM networks in real-world tasks.
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Specialized devices will be able to demonstrate maximum
performance but will require separate design and manufac-
turing.
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