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ABSTRACT Low detection accuracy and narrow detection range are observed when detecting weak guided
wave signals with the Duffing oscillator as a result of a limited frequency band. In order to solve these
problems, we proposed a detectionmethod for detecting weak ultrasonic guided waves of arbitrary frequency
based on a defect detection method using the Duffing oscillator scanned by a moving window and combined
with variable scale and resampling. In this paper, the proposed method by examining the defect echo
signals collected on steel pipe samples and detecting ultrasonic guided wave signals excited by arbitrary
frequency was effectively validated. Experiment results show that the proposed approach can be used to
detect guided wave signals of arbitrary frequency and arbitrary sampling step size with the fixed system.
It is very important for expanding the range of defect detection in pipes with guided ultrasonic waves and
improving the sensitivity for detecting small defects in engineering applications.

INDEX TERMS Duffing oscillator, ultrasonic guided waves, pipe detection, variable scale and resampling.

I. INTRODUCTION
In recent years, pipelines have been widely used, becom-
ing the fifth-largest way to transport certain materials after
railways, highways, aviation, and navigation [1]–[3]. It is of
great significance to monitor long-distance pipeline health,
especially to detect defects in pipes, so as to ensure the
safe application of such pipes and reduce the occurrence
of major accidents. Ultrasonic guided-wave technology is a
new non-destructive defect-detection method based on the
propagative characteristics of stress wave in solids, the main
detection principle of which is that ultrasonic guided wave
signals with specific modes and frequencies are transmitted
and spread in pipes, causing reflection, transmission, and
modal conversion. At the same time, the echo signals of
reflection with some defect information will be generated by
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the ultrasonic guidedwave. The defect information, including
the location and size of defects in pipes, can be identified
and extracted by detecting the features of the echo signals of
reflection with defect information [4].

However, the defect echo signal is difficult to identify
with weak signal characteristics under strong noise because
the ultrasonic guided wave will render some complicated
features while spreading in the pipes, such as dispersion,
attenuation, and multi-modal features, which will seriously
affect the efficiency of the ultrasonic guided wave in testing.
With the development of non-linear science, some methods
of detecting weak signals based on non-linearity are con-
stantly emerging, e.g., chaotic theory [5]–[7] and stochastic
resonance [8]–[10]. In recent years, both Li and Yang [11]
and Hongwei [12]–[17] have carried out several studies on
the detection capabilities of ultrasonic guided waves based
on the Duffing system. Zhang and Ma [12], Zhang et al. [13]
discussed the parameter settings of ultrasonic guided waves
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known as the Duffing system, identifying the normalized
guided-wave signals by their phase trajectory, showing that
it was efficient to use a Duffing oscillator in testing using
guided waves. Wu et al. [17] proposed the method of ultra-
sonic guided-wave identification based on chaotic quantita-
tive indexes with a Lyapunov exponent and considering the
sensitivity of a Duffing system to periodic signals.

However, direct calculation of the Lyapunov exponent of
the Duffing oscillator and the fractal dimension method can
only detect the initial phase and describe signals within the
measurement range. Signals with an initial phase beyond
this range cannot be detected. To solve this problem,
Wu et al. [17] proposed a time-shifted Duffing system detec-
tion method based on fractal dimension; that is, they con-
structed a time-shifted window function to scan a signal to
be measured in segments for entry into the Duffing system.
They are equivalent to sinusoidal signals with different initial
phases; that is, when superimposed with an external driving
force, they can lead to different results. Using the changes
of the Lyapunov exponent and fractal dimension, one can
identify the characteristic signals of the arbitrary phase. Fur-
thermore, the time of occurrence of the weak guided wave
signal in the defect echo can be determined by computing the
curve of the fractal dimension of the system relative to the
center time of the signal to be measured and by observing
the range of the sudden change on the curve. Combining this
time with the propagation speed of the guided wave, one can
determine the location of the defect.

However, some problems remain with this method for
pipeline inspection. For example, inspection using a Duffing
system is constrained by the frequency and the sampling step
size. To identify guided waves of arbitrary frequency and
arbitrary sampling step size, the inspection parameters of the
system must be reset. This can lower the detection efficiency
and prevent broad industrial application.

The goal of our study was to resolve the restrictions on
frequency and on sampling step size, carry out a scale trans-
formation on the test signal, and detect guided wave signals
of arbitrary frequency and arbitrary sampling step size.

II. THE RESEARCH OF THEORY
A. LYAPUNOV EXPONENT AND FRACTAL DIMENSION
The improved Duffing equation can be described as [18]

ẍ + cẋ − x3 + x5 = F cosωt (2.1)

where c is the damping ratio; −x3 + x5 is the non-linear
term; F is the amplitude of the periodic force; ω is the circle
frequency of the driving force.

The Lyapunov exponent can be used to characterize the
average exponential rate of convergence or divergence of
the adjacent orbits in the phase space over time, which is
one of quantitative indexes used to describe the sensitivity
of a chaotic system, approaching quantitative identification
of the state of the chaotic system. In this study, as the main
criteria of the Duffing system, the Lyapunov exponent, and
fractal dimension are used to judge the dynamic changes

of the system between after inputting the guided wave and
before, which can finally achieve the objective of locating
the destruction in defective pipes. The Lyapunov exponen-
tial spectrum is that the three-dimensional Duffing equation
corresponds to three Lyapunov exponents, sorted by their
size [16], the relation of which is expressed as
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The entire state of the dissipative system (a Duffing system
is a dissipative system) can be described by attractors. The
strange attractor is known as ‘‘chaotic attractor,’’ which is
a set of infinitely many points in the phase space. These
points correspond to the chaotic state of the system, and one
of its characteristics is that the final state value is closely
related to the initial value. (These points are extremely sen-
sitive to the initial value.) Thus, the chaotic state of a sys-
tem can be researched by studying the state of the strange
attractor. Moreover, the strange attractor is a typical fractal
structure with fractal dimension. The fractal dimension is
another effective index used to measure chaotic characteris-
tics, which can include Hausdorff, correlation, self-similar,
box, Lyapunov, and information dimensions. The Lyapunov
dimension of the chaotic attractor is defined as [17].

D = j+

j∑
i=1

Li∣∣Lj+1∣∣ (2.3)

Then,
j∑

i=1

Li > 0,
j+1∑
i=1

Li < 0 (2.4)

It is effective to characterize the chaotic attractor based
on the fractal dimension, which indicates that the chaotic
state of the system can be judged by calculating the fractal
dimension. Only when the system is in chaotic state do the
positive Lyapunov exponent and fractal dimension appear.
When the system is in periodic and quasi-periodic motion,
it corresponds to the integer dimension. To compare the
integer dimension with the fractal dimension of the chaotic
state, in this paper the dimension of the system in the periodic
state is defined as integer 2, the maximum of the Lyapunov
exponent as L1, and the Lyapunov dimension as D. Frac-
tal dimension D is mainly used for detection in the work
described in this paper.

B. THE RELATIONSHIP BETWEEN THE LYAPUNOV
EXPONENT AND DIMENSION
Suppose a closed surface is taken in the three-di A closed
surface is taken in the three-dimensional phase space of x,y,z,
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and the change of the volume V enclosed by the surface with
time has the following relationship with the motion of the
representative points [19]:

dV
dt
=

∫
V

dV (
d
dx
ẋ +

d
dy
ẏ+

d
dz
ż) (2.5)

in which ẋ, ẏ, ż represent the velocities of the points in the
corresponding direction of the phase space. Apply this for-
mula to the above Duffing equation [19]:

d
dx
ẋ = 0,

d
dy
ẏ = −c,

d
dz
ż = 0 (2.6)

Thus,

dV
dt
= −cV (2.7)

From the Eq. (2.7)

V (t) = V0e−ct (2.8)

where V0 is volume of the initial phase space. Because c > 0,
the volume of the phase space of the Duffing equation shrinks
with time and finally shrinks to a point. This shows that the
Duffing system is a dissipative system. The Lyapunov expo-
nent describes the development of phase space and Eq. (4)
determines the contraction of the Duffing system. According
to the definition of Lyapunov exponent, could be written as
the following Eq. (2.9)

L1 + L2 + L3 =
1
V
dV
dt
= −c (2.9)

Therefore, Therefore, when the strange attractor appears,
the maximum of the Lyapunov exponent is greater than 0
(L1 > 0). In the Duffing system, L2 = 0 is always satisfied.
From this, the Lyapunov exponent is satisfied as

L3 = −c− L1 (2.10)

The definition of Lyapunov dimension can be transformed
as:

D = 2+
L1

c+ L1
(2.11)

The core of determining the dimension is calculating the
maximum of the Lyapunov exponent, and the order of mag-
nitude is larger than the effect of directly calculating the
Lyapunov exponent because of the definition of the fractal
dimension, which is more efficient in detection. Combined
with the previous analysis and the change of the internal
driving force F , not only has the state of system changed, but
the Lyapunov exponent and fractal dimension have changed
as well. A different state of the system can be judged by using
the Lyapunov exponent and fractal dimension; the results are
shown in Table. 1.

TABLE 1. System of the relationship between the state and the Lyapunov
exponents, dimension.

FIGURE 1. Principle of detecting pipeline defects by duffing system.

C. DETECT PIPELINE DEFECTS USING THE CHAOS SYSTEM
Using the Lyapunov exponent and fractal dimension to deter-
mine the parameters of the detection system. The method as
shown in Figure 1.
Step 1: Determine the angular frequency ω of the driv-

ing force of the detection system according to the center
frequency of the signal to be measured. By comparing the
change in the maximum Lyapunov exponent of the Duffing
oscillator with the amplitude F of the driving force before
and after no signal input, weak guided wave signal input, and
pure noise signal input, the F value for identifying the guided
wave signal may be determined. Then, the identification of
the weak guided wave signal in the presence of strong noise
can be accomplished using the change in the state of the
Duffing oscillator.
Step 2: Determine the width and moving speed of the

rectangular window by combining the method proposed pre-
viously [17] for detecting the signal under test using the
time-shifted Duffing detection system.
Step 3: Detect the defect echo received in the defective

pipeline using the above-mentioned time-shifted Duffing sys-
tem. The way to use this method is to scan the defect echo
signal by shifting the scanningwindow, input each segment of
the signal into the Duffing system, calculate the correspond-
ing fractal dimension number of the signal, and then plot the
D-t curve of the dimension number versus the center time of
the signal. By observing the time when the sudden change
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occurs on the D-t curve, one can find the time of occurrence
of theweak guidedwave in the defect echo. Further, the actual
location of the defect in the pipeline may be determined
using the ultrasonic propagation velocity of the guided wave
or the proportional relationship between the incident wave,
the defect echo, and the end-face echo.

It follows from the above-described detection process that
the excitation frequency of the signal to be measured and the
sampling step size both have an important influence on the
determination of the parameter F of the detection system.
In the traditional detection method, one needs to combine the
center frequency of the signal to be measured in determin-
ing the driving force amplitude F , and each frequency will
correspond to a complicated calculation process.

III. DETECTION OF GUIDED WAVE SIGNALS
OF ARBITRARY FREQUENCY AND
ARBITRARY STEP SIZE
A. PRINCIPLE OF DETECTING GUIDED WAVE SIGNAL OF
ARBITRARY FREQUENCY
The basic principle of the Duffing system used to identify
weak ultrasonic guided wave signals is that the center fre-
quency of the guided wave signal to be measured coincides
with the frequency of the internal driving force term of the
Duffing system. Thus, the frequency of the internal driv-
ing force term of the Duffing system is set to be the same
as the center frequency of the guided wave signal to be
measured. When the center frequency of the signal to be
measured changes, the frequency of the internal force term
of the Duffing system changes accordingly, and so does the
F value of the Duffing detection system. Then, it is nec-
essary to re-determine the F value of the detection system
according to Step 1 of the above-described procedure so that
different center frequencies correspond to different detection
systems.

Therefore, if the center frequency of the guidedwave signal
to be measured is not 70 kHz, the above-mentioned detection
system cannot be used for detection. In order to realize the
detection of signals of any frequency and any step size,
a method of variable scale transformation and linear inter-
polation of experimental data and resampling are introduced.
There are mainly two scenarios in detecting signals of any
frequency and any step size.

For the experimental data of any frequency, scale transfor-
mation is used to stretch or shrink the step size to change the
frequency into the same frequency as that of the detection
system. At this time, the actual measurement data have not
changed, but the sampling step size and the frequency have
changed.

After obtaining the same frequency, if the sampling step
size is different from the integration step size of the detection
system, proceed to re-sample the signal using the integra-
tion step size of the detection system by interpolation or
under-sampling.

After these two steps, a signal of arbitrary frequency and
arbitrary sampling step size may be transformed to have the

same frequency and the same step size as the fixed detection
system.

The so-called scale transformation [20] refers to changing
the frequency/time scale of the signal under test, that is, com-
pressing or stretching the scale of the signal under test without
changing the discrete value. For example, the sampling time
interval may be 1t .
For a guided wave signal under test with a center frequency

of fc (fc > f ), we introduced a variable scale factor fc/f If
the time scale of the signal is enlarged by fc/f times, the time
interval is also magnified by fc/f times, i.e.,

1t ′ =
(
fc
/
f
)
1t (3.1)

This is equivalent to compressing the frequency scale of the
periodic signal by fc/f times or compressing the guided wave
signal by a factor of fc/f so that it becomes f. Hence, through
scaling, the signal with a center frequency of fc is converted
to be the same as the center frequency of the fixed detection
system. In short, the relation between center frequency and
the step size of changing scales and before is

fc ·1t = f · h (3.2)

where f and h are center frequency and the sampling time
interval, which are as same as the fixed detection system.

The transformation of signals of different frequencies
through variable scale coefficients is an equivalent linear
mapping transformation. This time scale transformation does
not change the values of the data involved in the calculation;
it only reorders them on the time or frequency axis.

With scale transformation, signals of any frequency can be
converted into the center frequency of the fixed detection sys-
tem under different sampling steps. In the following sections,
we focus on the detection of signals with different sampling
step sizes as the detection system.

B. EFFECT ON SAMPLING STEP
Generally, the step size of the detection has a greater impact.
For an ultrasonic guided wave signal with an excitation center
frequency of 70 kHz, when the sampling step size is 0.04 µs,
a suitably chosen detection system would have F = 0.28
according to the above-describedmethod of selecting a detec-
tion system [21]. The detection results would be better if this
system were used on the signal under test.

However, such a system would be considerably different
from the detection system used in this article. In fact, the sam-
pling step sizes of the signals acquired in actual experiments
would all be different. If a different detection system is chosen
for each sampling step size, the detection efficiency would
be quite low, which is not conducive to the promotion of
broad application of this method. We therefore proposed that
the acquired test signals be re-sampled to be consistent with
the integration step size of the fixed Duffing system. Then,
guided wave signals of any step size could be detected under
the fixed detection system.

When the sampling step size is different, it is greater than
the integration step size of the fixed detection system, and is
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FIGURE 2. Experimental instruments.

an integer multiple of that of the fixed detection system so
that the signal under test can be re-sampled using segmented
linear interpolation.

When the sampling step size is greater than the integra-
tion step size of the fixed detection system but is not an
integer multiple of that of the fixed detection system, one
could use either segmented linear interpolation or some other
interpolation method, such as spline interpolation. Then,
the re-sampling would be an up-sampling.

When the sampling step is smaller than the fixed step, only
a down-sampling is required.

The specific procedure for the up-sampling is as follows:
1. First, perform a linear interpolation between every 2 data

points of the test signal.
2. Re-sample the interpolated function using a step size of

0.02 µs.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL DEVICE
In order to validate the performance of proposed method,
the experiment is carried out in this section. In this experi-
ment [16], steel pipes 3-m and 6-m long with inner radius of
50.75 mm and wall thicknesses of 2.32 mm were chosen as
separate detecting objects to verify the proposed method. The
main instruments include an arbitrary signal generator, low-
frequency power amplifier, and digital oscilloscope, which
are shown in Figure.2. The piezoelectric ring and piezoelec-
tric sheet are made of PZT5, which were used as an exciting
sensor and receiving sensor shown in Figure.3, respectively.

Experimental principle is shown in Figure. 4. Specifically,
the piezoelectric ring with the same size as the detected pipeis
used to generate the guided wave signal. Simultaneously,
sixteen piezoelectric patches are used to receive the guided
wave signal. Piezoelectric patches can receive L(0,2) mode
guided wave and restrict the flexural mode as soon as pos-
sible. The arbitrary signal generator used to output signal,
low frequency power amplifier with the capability of signal
amplification, and oscilloscope used to record tested signal.

The artificial defects of 3-m-long steel pipe were made
1.5 m from the sensor by a saw, adding three varieties of

FIGURE 3. Piezoelectric ring and piezoelectric sheet.

FIGURE 4. Experimental principle.

FIGURE 5. Defects setting.

cross-sectional reduction ratios [16] in turn, and radial depth
and circle angle can be used to calculated section reduction
ratio (%), and the results are 3.8%, 9%, 17% in turn. Similarly,
it can be calculated that the defect sizes at 2m and 4m in 6m
pipeline are 21% and 15% respectively. Defects setting are
shown in Figure.5.

B. DETECTION SYSTEM AND EXPERIMENT RESULTS
During ultrasonic inspection of pipelines, 10-cycle Hanning-
window modulated guided wave signals with a center
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frequency of 70 kHz are often used to excite the L(0,2) mode
of guided wave in the pipeline [7]. In this work, we used
signal with a center frequency of 70 kHz as the characteristic
signal. The expression of the normalized guided wave signal
was [17]:

s̄(t) =
1
2
(1− cos

2π fct
n

)sin(2π fct) (4.1)

where n is the number of selected single audio; fc is center
frequency.

Following Step 1, the detection system parameter F =
0.569 and 2σ = T for the moving window can be used
to detect signals with the usual center frequency of 70 kHz
and sampling step size of 0.02 µs from the reference [17].
2σ is the windowwidth, and T is the cycle of the guided wave
signal.

In this paper, the above-described system with F = 0.569,
2σ = T was used for detecting defects in 3-meters and
6-meter pipes, respectively. Test signals with a center fre-
quency of 70 kHz and sampling step size of 0.04 µs were
acquired for defects of different sizes from the 3-meter steel
pipe, which section reduction ratio are 3.8%, 9%, 17% in turn.
These signals were first linearly interpolated, re-sampled, and
with their sampling step size were converted to 0.02 µs. The
signals were then input into the detection system, and the cor-
responding fractal dimension were calculated. The results are
shown in Figure. 6. In Figure. 6, the blue line represents the
experimental time-history curve with 0.04 µs time interval,
which shows that there are defect echoes at the corresponding
times 1.5 m are reached. The red line in Figure.6 represents
the fractal dimension, calculated from the time-shift Duffing
system, which shows that there are three peaks are greater
than 2. These peaks correspond to the incident wave, defect
echo and end echo. This was consistent with the results
obtained by using the proposedmethod, which also illustrated
the feasibility of the method.

In order to illustrate the advantage of the method, a band-
pass filter method was used for the comparison, and the
results are shown in Figure. 7 blue line. Figure 7 shows
that, relative to the amplitude of the incident wave and the
back-wall echo, the defect echoes after filtered were too
small to be observed directly. However, the sudden change
in the calculated fractal dimension was very prominent; they
enhanced the defects and made the defective echoes directly
visible in the time-history curve. Then the method of the
fractal dimension is better than band-pass filter.

The same method was used to detect the artificial defects
2 and 4 m from the sensor in the 6-m-long steel pipe, and
the results obtained are shown in Figure. 8. In Figure.8,
the blue line represents the experimental time-history curve
with a center frequency of 70 kHz and sampling step size
of 0.1 µs, which shows that there are defective echoes at the
corresponding times that 2 and 4 m are reached. The red line
in Figure.8 represents the fractal dimension, calculated from
the time-shift Duffing system, which shows that there are
the fractal dimensions at the corresponding time that 2 and

FIGURE 6. Comparison between fractal dimension and signal in different
cases.

4 m are reached. Therefore, it is known that these defective
echoes could be detected by calculating the fractal dimen-
sion. Figure.9 represents the result of calculating the cross-
correlation, which shows that there are defective echoes at
the corresponding times that 2 and 4 m are reached. Through
comparison with Figure.8 and Figure.9, it is feasible and
better to use fractal dimensions to identify defects.

At last, test signal with a center frequency of 60 kHz and
sampling step size of 0.04µs was acquired for defect from the
3-meter steel pipe. The signal was first scale transformation,
linearly interpolated, re-sampled, and with their sampling
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FIGURE 7. Comparison between fractal dimension and filtered signal in
different cases.

step size were converted to 70 kHz and 0.02 µs. The signal
was then input into the detection system, and the correspond-
ing fractal dimension and cross-correlation were calculated
respectively. The results are shown in Figure. 10, which
fractal dimension was still better than cross-correlation.

In summary, the two steps of the procedure above may
be used on signals of any arbitrary frequency and any
arbitrary step size to achieve signal pre-processing and ulti-
mately obtain a parameter consistent with the fixed detection
system.

The first step is to use a variable scale transformation
to convert the signals of different frequencies to a fixed

FIGURE 8. Compared with the fractal dimension and filter.

FIGURE 9. The result of the cross-correlation.

FIGURE 10. Compared with the fractal dimension and cross-correlation.

frequency. In this work, we took the 70 kHz often used in
pipeline inspection as an example, but under normal circum-
stances, 10 kHz may be used for the universal fixed detection
system.

A second step is to up-sample the data by linear interpola-
tion in segments.
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As all the pre-processing steps such as linear interpolation
are linear operations, they are not expected to have a big effect
on the system.

Therefore, the detection system can theoretically be used in
the detection of signals of any arbitrary frequency and of any
arbitrary step size. However, actually sampled signals with a
large step size may be severely distortion when up-sampled
by linear interpolation. In such cases, it is preferable to use the
detection system selection method described above to choose
a new detection system.

V. CONCLUSION
The basic principle of using the Duffing system to iden-
tify weak ultrasonic guided wave signals is that the center
frequency of the guided wave signal to be measured is the
same as the frequency of the internal driving force term
of the Duffing system, and that different center frequencies
correspond to different detection system parameters. In order
to achieve the detection of signals of any frequency and
any step size, a method of variable scale transformation and
linear interpolation of experimental data was introduced. This
method effectively resolved the problem, in actual inspection,
of different defect types on different pipes corresponding to
different detection frequencies and different sampling step
sizes, confirming the need for changing the chaos detec-
tion system. Through scale transformation, re-sampling, and
changing the step size, signals of any frequency and any
step size can be converted into ones of the same frequency
and integration step size as the fixed detection system so
that the detection may be carried out using a fixed detection
system. Through calculating the fractal dimensions of defect
echos of 3m and 6m crack pipeline with different center
frequencies and time intervals, relative to the amplitude of
the incident wave and the end echo, the defect echoes after
filtered or cross-correlation were too small to be observed
directly. However, the sudden change in the calculated fractal
dimension number was very prominent; they enhanced the
defects and made the defective echoes directly visible in the
time-history curve. Then the method of the fractal dimension
is better than band-pass filter and cross-correlation.
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