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ABSTRACT Breast cancer is one of the most prevalent types of cancer that mainly affects the women
population. chances of effective treatment increase with early diagnosis. Mammography is considered one
of the effective and proven techniques for the early diagnosis of breast cancer. Tissues around masses
look identical in a mammogram, which makes the automatic detection process a very challenging task;
they are indistinguishable from the surrounding parenchyma. In this paper, we present an efficient and
automated approach to segment masses in mammograms. The proposed method uses hierarchical clustering
to isolate the salient area followed by extraction of features to reject false detection. We applied our
method to two popular publicly available datasets (mini-MIAS and DDSM). A total of 56 images from
the mini-mias database and 76 images from DDSM were randomly selected. Results are explained in terms
of ROC (Receiver Operating Characteristics) curves and compared with other state-of-the-art techniques.
Experimental results demonstrate the efficiency and advantages of the proposed system in automatic mass

identification in mammograms.

INDEX TERMS Breast mass detection, automatic mammogram segmentation, mass classification.

I. INTRODUCTION
Breast cancer is the most prevailing source of cancer-related
deaths among women across the globe. Yearly, there are
approximately 450, 000 deaths, out of which, breast cancer
accounts for about 14% of all female cancer deaths [24].
Recent statistics say that 1 out of 10 women is affected by
breast cancer in their lifetime. According to GLOBOCAN
2012, 1.7 million women were diagnosed with breast can-
cer and there were 6.3 million women alive who had been
diagnosed with breast cancer in the previous five years [5].
Although the breast cancer rate is increasing in many parts
of the world, however, the mortality rate is much higher in
less developed countries, because of insufficient facilities
available for diagnosis and treatment. Therefore, there is an
urgent need for reliable and affordable approaches for the
early diagnosis and treatment of breast cancer in less devel-
oped countries. It can have a significant impact on cancer
treatment, faster recovery, and reducing mortality.
Mammography is considered the most effective technique
as it can detect 85~90% percent of all breast cancers [5].
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A mass is an uncontrolled grown tumor and we classify them
into malignant and benign by their size, shape, and other
features. As described earlier that early diagnosis is a key
for effective treatment. Therefore, the job of the radiologist
becomes very important, who can interpret mammograms for
early diagnosis. A mammogram does not have so much infor-
mation imprinted on the film, therefore, a cancer diagnosis in
this scenario becomes a subjective criterion where radiologist
opinion depends on their experience. [37] states that radiol-
ogist’s diagnosis inter-observer variation rate is 65 ~ 75%).
He can miss a significant proportion of abnormalities and in
addition, a large number of masses come out to be benign
after biopsy [37]. Computer-aided diagnosis (CAD) systems
are helpful for radiologists in diagnosis. Detection accuracy
can be improved by combining the expert knowledge with
CAD scheme [25].

Due to the seriousness of accurate detection of abnor-
malities in mammograms, a wide-scale research has been
performed using CAD systems to detect the masses in mam-
mograms [1], [7], [11], [38], [39]. However, the complex
nature of masses; variability in shape, size, margin, and
occlusion within dense breast tissue, the accurate detection
of masses becomes a very difficult task for computational
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approaches [13]. Furthermore, [46] highlighted a standard-
ization issue in their comparative study on mass classifica-
tion. They performed a comparative study with a focus on;
different extraction methods of ROIs, the use of different
machine learning techniques using different datasets, and the
use of different prediction accuracies. It was noted that mostly
the research is done using a single data set. However, in such
a case, the prediction model may perform well in one data set
but fails to give good accuracy when tested on another data
set. It is a challenging task to develop a generalized approach
that performs well on more than one dataset.

To address the above-mentioned challenges, We proposed
an unsupervised learning-based method that effectively and
accurately detects masses for breast cancer diagnosis. The
developed approach prevents the uncontrollable growth of
candidate mass regions and helps to detect the masses
occluded within dense tissue, which was a major limitation
of earlier works [23]-[26]. Also, the proposed method is
generalized to apply on differently sized datasets as compared
to most Al techniques that require a bulk of data to achieve
generalization. Moreover, the use of novel hierarchical clus-
tering with its distance measure is the salient feature of this
work. In addition, the paper introduces a distance measure
to merge clusters for the reduction of false positives (FPs).
Lastly, the method has been validated with cross-data-set
performance. The proposed scheme is novel in the following
ways:

« The application of the proposed detection algorithm is
wider as it can detect multiple types of masses irrespec-
tive of their shape and size. The proposed algorithm was
also tested on many ill-defined masses.

o The proposed mass identification method can accurately
detect masses irrespective of their size and shape.

« We proposed an efficient and unsupervised approach to
detect masses in mammogram images that segments the
breast region and finds the candidate regions of interest
(ROIs).

o A distance measure is proposed to merge the clusters
in hierarchical clustering which also helps in reducing
the FPs.

o Generalization of the proposed algorithm is tested by
experimenting with cross-validation across two different
datasets.

The organization of the paper is as follows. Section I
presents the introduction and significance of the work.
Section II discusses previous and related work. Section III
briefly describes the proposed method for pre-processing.
Section IV analyses the results and finally, Section V con-
cludes the article.

Il. RELATED WORK

To develop computer-aided breast cancer detection tools,
researchers have used several approaches. A Particle Swarm
Optimized Wavelet Neural Network (PSOWNN) based clas-
sification approach for detection of masses in digital mam-
mograms is proposed in [23]. Their method is based on
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extracting Laws Texture Energy Measures from the mam-
mograms and classifies the suspicious regions by PSOWNN.
However, their method does not have any noise removal algo-
rithm and also, they do not propose any automatic method
of ROI detection. In [41], [44], authors used Latent Dirichlet
Allocation (LDA) to mine the feature set of mammogram
images. They presented the modified Morphological Com-
ponent Analysis method to identify the mass region and
then extracted morphological features. Finally, LDA is used
to classify the masses. Simple Morphological approaches
are very sensitive to noise. They also did not present any
pre-processing for the collection of ROIs.

In [36], authors proposed the modified Fuzzy c-means
clustering to cluster the masses, extracted morphological,
textual, and spatial features form those masses, and classified
the features using SVM (Support Vector Machine). Their
method lacks noise removal and intelligent ROI segmenta-
tion. To aid segmentation and detection of masses in mam-
mograms, a set of tools is presented in [31]. In this work,
de-noising is applied after the top-hat morphological opera-
tor. Furthermore, image gray-level was enhanced by wavelet
transform and a Wiener filter. And finally, the segmentation
method was employed using multiple thresholding, wavelet
transform, and genetic algorithm. They used a manual process
to reduce the false positives generated by genetic algorithm.
However, the authors did not do the automatic classification
of the ROIs. A method for mass detection based on a saliency
map is proposed in [2]. After the creation of the saliency
map, a threshold is used to obtain the ROI. Several features
were extracted and classified by SVM. A good threshold
selection in the algorithm is significant as it will affect
the overall accuracy; a low threshold will result in lots of
FPs, while a higher threshold will miss the low contrast or
occluded masses. Automated detection of malignant masses
in screening mammography has been discussed in [34]. They
developed a technique that used the presence of concentric
layers which surround a focal area in the breast region, that
has suspicious morphological characteristics and low relative
incidence. The segmentation process in both of the earlier
described algorithms is focused on the bright or salient parts
of the image, which is always misled by the blood vessels
resulting in the whole breast parenchyma as an ROI. Work
in [28] is based on applying a one-dimensional recursive
median filter to the different number of angles to each pixel.
However, detection is failed when the structure of the mass
and normal glandular look similar. So, the algorithm can only
be detected if there is asymmetry between the left and right
breasts.

The method proposed by [29] is based on the ISO-intensity
analysis of groups to segment the skeptical masses. Adaptive
flow orientation features are extracted from the ribbon around
the masses to reduce the false positives. The procedure is
tested on 56 images from the mini-MIAS database and false
positives are then removed using features based on flow
orientation in adaptive ribbons of pixels across the margins
of masses. The algorithm achieved an 81% sensitivity rate
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with 2.2 false positives per image. Furthermore, based on
gray-level co-occurrence matrices (GCM) and using features
on a logistic regression method, the classification of masses
was performed as benign or malignant using five texture
features. An accuracy of 0.79 is achieved as a result of clas-
sification by their algorithm, with 19 benign and 13 malig-
nant lesions. The authors used the hard thresholds to get
the contours of objects in the image. The contour is very
sensitive to noise that result in the increase of false positives
and poor segmentation results. The algorithm will fail to
detect the mass if the boundary is ill-defined or even the
mammogram is denser. Work in [43] used Morphological
operation and scaled Reyni entropy to detect the masses in
mammograms. To detect the mass, the mammogram is first
pre-processed, then enhancement and mass segmentation is
applied, and lastly, the mass detection is performed. The orig-
inal mammogram is first filtered out from any artifacts using
a median filter where thresholding is applied to obtain several
binary objects. Then separation of objects is applied through
Morphological erosion and the size of the object is computed
based on the area of the objects, and only the larger objects
kept. In the end, through Morphological dilation, border
smoothing is performed to get an artifact-free mammogram.
Before mass detection, mass segmentation is performed using
Reynie’s entropy. The mass detection system provides better
results for all types of mammograms, with 93.2% and 93.9%
TPF at the rate of 1.48 and 0.74 FP/Is for MIAS and DDSM
datasets.

A wavelet-based breast lesions diagnosis is proposed
in [14]. To detect the masses and reduce the false positive
rate, multi-resolution features are extracted using a wavelet
transform which serves as input to a binary tree classifier.
The algorithm achieved 91.9% true positive detection accu-
racy. ROIs were manually cropped in the proposed system
that is based on wavelet and curvelet coefficients, which
are very high in numbers. Selecting the best coefficients
is an optimization problem and also it is very sensitive to
noise. A method that combines several artificial intelligence
techniques with the discrete wavelet transform (DWT) is
proposed in [47]. ROI’s are determined through dimensional
analysis using a multi-resolution Markov random field algo-
rithm, the segmentation is performed that leads to the appli-
cation of tree type classification strategy. When tested with
Mini-MIAS data-set, the algorithm achieved a sensitivity
of 97.3% with 3.9 false positives per image. Their proposed
method works well with well-defined masses, but ill-defined
masses are difficult to be classified by this method.

Recently, researchers are focusing on use of deep learning
based approaches with a special focus on manually seg-
mented regions of interest (ROIs) to detect mammogram
masses [1], [11], [38], [45]. The medical domain requires
high-performance algorithms and these algorithms require
a bulk of data, which is a challenging task in medical
imaging. Training such models in a low-data regime highly
increase the risk of over-fitting. Although few-shot learn-
ing or domain adaptation has provided some good results
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in image classification, still they need a lot of research to
be applied in the medical domain. A convolutional neural
network for the mass classification is proposed in [45]. Their
method requires bulk data to converge the network parame-
ters. Moreover, localization of mass regions is not possible in
their network.

The mentioned methods are effective in the detection of
suspicious regions. However, several parameters need to be
optimized. Also, when masses are occluded by dense tissues
or when the density of a mass is similar to that of the sur-
rounding normal dense tissues, the methods may not detect
the exact positions of masses as they can only control the
growth using intensity criteria (threshold).

lIl. METHODOLOGY

Female breast parenchyma is a multiplex biological struc-
ture and is composed of glandular, fatty, and lymphatic tis-
sues (lymphovascular structures). Mammography imprints
the texture information of breast tissue in the image. Although
the composition components of mammograms are complex,
still the lesions in a mammogram are recognized as higher
intensity and texture. Figure 1 shows the process of a typical
analysis system.

Image Input

Artifacts removal, Texture, Machine learning,

Contrast enhancement, Shape, Statistical,
' Segmentation, Statistical, Kernel based,

and etc. and etc. and etc.
Image Standardization -

Classification

Pre-processing - Feature Extraction ‘

ROIs Generation

FIGURE 1. General phases of detection algorithm. The overall process is
divided into four phases as input, pre-processing, feature extraction, and
classification. Most of the diagnosis algorithms follow a similar
procedure.

We propose an efficient and unsupervised approach to
identify the suspicious regions in mammogram images.
The proposed algorithm isolates the spatially interconnected
structures in the image, which are concentrated around salient
intensities. As a result, it is possible to extract high-level
information to analyze further, to characterize the physi-
cal properties of mass regions, and to prepare a shortlist
of skeptical ROIs. Figure 2 shows our proposed algorithm.
Further explanation of the algorithm is explained in the
following subsections. Subsections A and B represent the
pre-processing of the algorithm.

A. IMAGE STANDARDIZATION

Data from different sources should be converted to one for-
mat. Proposed algorithm was tested on two data-sets: Digital
Database for Screening Mammography (DDSM) [18], [19]
and Mammographic Image Analysis Society Database (mini-
MIAS) [35]. MIAS data-set is in Portable Gray Map (PGM)
format while DDSM data-set contains images in LJPEG for-
mat. We converted the DDSM data-set TO 16-bit Portable
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(a) Input (b) ROI Generation

Image Dataset

(c) Feature Extraction (d Pattern
Classification

ROIs Dataset

Preprocessing

FIGURE 2. Overview of the proposed algorithm. The architecture is
divided into four steps. The salient features map is generated in the first
step which involves the pectoral muscle removal also. In the second step,
hierarchical clustering is used where a proposed distance measure is
used to merge the clusters which too helps in the removal of FPs. In the
third step different features sets are extracted (FP removal and mass
classification). The last step uses the extracted features to train an SVM
classifier for FP identification and mass classification.

FIGURE 3. Original image from MIAS data-set.

Network Graphics (PNG) format by a wrapper program
developed by us.!

B. ROI DETECTION PHASE
One of the main tasks is to get mass-candidate regions. The
following subsections describe the way to get those regions.

1) SMOOTHING

It is assumed that malignant masses typically distort the
surrounding tissues. So, the segmentation process can
over-segment the image and it can’t get those masses in a sin-
gle entity. To overcome this problem, prior smoothing of the
image is necessary. In the present work, the Gaussian pyramid
is used to uniformly highlight the salient regions. Sampling to
many levels results in over smoothing the image which con-
verts the image regions as blobs. However, some researchers
[32] have performed mass detection on reduced resolutions
of 800m. Regions of mass are hyper-dense. We need to get the
full mass area to extract meaningful features from the ROI.
Abrupt changes in the intensity of the objects present in the
image affect the segmentation process. Peaks in the image
objects are smoothed by the above described pre-processing.

2) HIERARCHICAL CLUSTERING WITH GLCM (GRAY LEVEL
CO-OCCURRENCE MATRIX) DATA

Before segmentation of the image, its contrast was enhanced
by CLAHE (Contrast Limited Adaptive Histogram Equal-

IUtilities at http://microserf.org.uk/academic/Software.html were used to
write a wrapper program.
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ization). Further, we calculate the gray-level co-occurrence
matrix from image. GLCM is created with distance one and
4 directions [0 1; —1 1; —1 0; —1 —1] (0°, 45°, 90°, 135°).
Other angles were not computed due to redundancy of the
data. GLCM data from all directions are summed up and nor-
malized. Figure 4 depicts the explanation of co-occurrence
matrix.

Intensities in mass exhibit the glowing effect (intensities
are propagated from the center of the masses). Hierarchical
clustering can cluster image data according to propagated
intensities while having a family structure of concentric
objects. At each hierarchical level, a measure of dissimilarity
is defined to differentiate clusters, and objects are merged as
one if their dissimilarity is less than or equal to the acceptable
dissimilarity measure.

Many researchers have proposed methods for multilevel
thresholding by discriminant analysis [4], [30], and [33].
They thresholded the image by the cluster analysis irrespec-
tive of the physical location of the cluster. This idea works
better if the image is multi-modal and we divide it into two
clusters (background and foreground). However, it does not
give fine results on low-level x-rays images which are mostly
uni-modal. In this case, multi-thresholding does not give
compact objects for ROI. We incorporated the discriminant
analysis [4] with GLCM data to get compact objects. The
proposed method clusters the image intensities in a hierar-
chy, according to their co-occurrence and similarity measure.
Several thresholds are found by cutting the dendrogram at
the desired level. Initially, each gray-level is designated to a
different cluster i.e. g gray-levels in the image will generate
g number of clusters and each cluster has its threshold T;.
The family hierarchy of the clustering process can be viewed
as a dendrogram. The estimated thresholds for the image to
segment can be obtained by cutting the branch in the dendro-
gram. The clustering algorithm is defined in algorithm 1.

a: DISTANCE METRIC

The distance measure between two clusters in the proposed
algorithm is defined as the ratio between the measure of
observed dispersement and the expected dispersement. it is
calculated as:

— =2
(1 = CPu )Py — P )*[ Xy — Xy
dist(qi,q.) — qidqj q qj [ q (1_/] (1
[j O.2
4qiqj

where ¢ is the total number of clusters, P, is the probability
density function of image histogram and it can be calculated
as equation 2. CP; ; represents the normalized co-occurrence
frequency of the cluster pair being merged. It is defined in
equation 3. X is the mean value of the cluster and defined in
equation 5. o2 is the variance of both clusters which are being
merged. It is defined in equation 7.

Ty

> k) @)

[=T4—1+1

P, =
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FIGURE 4. Process of co-occurrence matrix. The image shows the procedure to calculate the GLCM
matrix. A random image with its pixel values is shown in the image and GLCM co-occurrence matrix is
calculated in four directions/angles ((0°, 45°, 90°, 135°)) with a distance 1 (only the immediate
neighbour is considered). Finally, all angle matrices are summed up as all direction matrix.

Example angle matrices and all direction matrix is shown in image where the first row and column are
pixel values and other values are the number of co-occurrences.

Algorithm 1 Clustering Algorithm
Result: Return n thresholds
Given: A set of gray-levels {x1, x2, ...
A distance function dist(c1,c2);
m number of threshold levels;
for i=1to g do
ci = {xi};
ti = {xi};
end
C={ct,...cq}s
T={t1,..... 1}
for k=1 to g-m do
- make adjacent cluster pairs;
- ( Cmin1» Cmin2) = minimum dist(c;, ¢;) for all ¢;, ¢;
in C;
- IeMoVve Cyin1 and ¢, from C;
- Temove i1 and ¢, from T;
- add {cumin1, Cmin2 } to C;
- add {tmin1, Cmin2} 0 T;

.,.X:q};

end

where [ represents the gray-level in image (value: [0 255])

q
such that > P; = 1.

i=1
Tyi
T, > CM;,
s=Tg;—1+1
CPij= Y ’ 3)
Tyi = Ty,
t:qu,l-H

where CM; ; is the co-occurrence probability of gray-level s
and .
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Mean is also called as the expectation of the cluster and can
be represented as:

q
w=E(g)=)_LiPU;)

)
i=1
so we calculated the mean as:
TR

Xg=5 > 1) ®)

q,_

I=Ty, +1
Variance of the distribution is defined as:
q

o? =" (li— w?*Pl) (6)

i=1

This formulates the variance into the following equation.

T, 2
) —
Ogiqy = 2 : [l - CXqiq/'] h(l) )
[=T4—1+1

where CX is defined as average mean of the cluster pair. It is
calculated as the weighted average between the cluster means
of the pair being merged:

PgiXgi + PyiX g
g = " p L p.

Pyi + Py

We imposed a restriction that only the adjacent clusters
are allowed to merge. The similarity measurement is adapted
by [30]. Pair having the minimum distance value is the best
candidate to merge.

The saliency of a region is measured by the nesting depth
of hierarchical clustering which identifies nested objects. One
statistical parameter LevelParameter is introduced that rep-
resents the levels in hierarchical clustering. LevelParameter

®)
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(a) Detected ROIs (Objects)

(b) Merged ROIs (Objects)

FIGURE 5. The figure shows the intermediate results of detected regions and their merging process in

hierarchical clustering.

value of 5 is used in the study. Figure 5 shows the number of
objects found in mammogram by segmentation process.

3) GROUPING AND ELIMINATION

Segmentation process described in the previous section
results in a large number of segmented objects. We devised
an algorithm to reduce the number of objects and extract
only the relevant data for analysis. The first step in this
process is grouping and elimination. As previously described,
masses exhibit the glowing effect, therefore, we first find
the dense-core portions and then go to the next threshold
level to find objects which encircle the previously detected
object. The idea of prestige in link analysis is used along
with the hierarchical clustering nodal relation. Every possible
region is given a prestige score of 1. When these regions are
encircled by other immediate lower densities, they forward
their prestige score to the parent. Sum of Euclidean distance
between the higher density objects and lower density objects.
Lower density objects should cover at least 80% of higher
density objects. Algorithm 2 describes the process of merge
score. This process is repeated for all the segmented regions
atevery selected hierarchical level. As Hierarchical clustering

Algorithm 2 Merge Score

Result: Merge Score
Given;
Labels = {Ly, Lo,.....
fori=1rndo
currentLabel = {L;};
Objects = Object by current current label;
numObjects = number of Objects by current label;
for j = 1 to numObjects do

| mergeScorel[i][j] = 1:;
end
dist = distanceL.2 (Objects[i], Objects[i-1] );
if dist < 0.2 then

| mergeScorel[i][j] + = mergeScore [i-1][j] ;
end

5Ll’l};

end
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also gives a parent-child relationship of clusters, we can use
this relationship to avoid unacceptable merging of objects.
Objects having at least 3 prestige score from each level is
up-sampled to full resolution image. Result of merging pro-
cess is shown in Figure 5, where 5a represents the detected
ROIs and 5b shows the merged objects.

C. FEATURES FOR FALSE POSITIVE (FP) ANALYSIS

The following set of features are extracted to classify objects
into true mass and breast tissue (false positive). These features
are well-established statistical features and are finalized by
radiologists too after analyzing the prominent patterns of
masses on mammograms.

1) REGION CONTRAST

Generally, mass is imprinted on the mammogram as a dense
object as compared to its surroundings, having at least a uni-
form density. We used this property for classification between
true mass and breast tissue. Region Contrast is computed
as a difference between mean intensities of foreground and
background in ROI. The foreground area is the selected mass
or object while the background represents the background
area surrounding this object. Regions that results in negative
values of region contrast are rejected for further processing.

2) MEAN GRADIENT

Gradient monitors the directional change in intensity. Gradi-
ent magnitude describes the velocity of change in the image.
We calculated the mean gradient of the boundary pixels which
strengthens the compactness of the region (described later).

3) ENTROPY

The concept of entropy is in information theory which states
the probabilistic behavior of the information sources. This
statistical measure is a measure of randomness that is used
to characterize the texture of the image.

4) STANDARD DEVIATION

It is a popular term in statistics that give a measure of the
spread of data. This represents the measure, that how close
the points are in the given region of the image.
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TABLE 1. Mammographic image analysis society (MIAS) data-set.

Benign Malignant
Dense | Fatty-Glandular | Glandular | Dense | Fatty-Glandular | Glandular
8 12 10 2 6 5

5) COMPACTNESS
The value of compactness gives the ratio of contour which
encloses an area. it is defined as:

4% pixA
- —
where A is the Area of object enclosed by perimeter P.
Usually, benign masses have a higher value of compactness,
because it defines that a small perimeter is enclosing a bigger

area. We have used this feature in benign vs. malignant
classification too.

®

compactness = 1

D. CLASSIFICATION MODEL

SVM (Support Vector Machine) is used to classify the
masses. We selected SVM because it gives good results for
binary classification. The basic idea behind SVM is to sep-
arate the input data by the optimal method. As our data is
not linearly separable, we used Gaussian RBF (Radial basis
function) kernel. Sigma and C are two important factors for
the RBF kernel. Optimal values for RBF were grid-searched
between 103 to 10°. Harmonic Mean (HM) is calculated to
compare the C and sigma pairs. Harmonic Mean is defined
as:

2 % sens x spec
HM = ——

(10)
sens + spec

where sens is sensitivity and spec represents the specificity of
the system. We adopted a repeated 10-fold cross-validation
technique to train, test, and validate the data. The results
in Table 3 are given as mean results by repeating the folds
10 times.

IV. RESULTS AND DISCUSSION

A. IMAGE DATABASE

This study was carried out on images from two databases.
We selected 56 images from the mini-MIAS database [35].
It includes 13 normal, 13 malignant, and 30 benign cases.
The dataset includes all types of masses from both classes
(benign and malignant). Table 1 shows the overview of the
number of cases used in experiments from MIAS-data-set.
We also selected 76 cases from DDSM database [18], [19].
Table 2 shows the summary of DDSM database.

B. DETECTION OF ROIs

Our proposed pre-processing technique detected almost all
masses in the dataset. Through careful examination of ROIs,
we found that our algorithm missed two cases in the MIAS
database. One from Malignant and the other from Benign
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TABLE 2. Digital database for screening mammography (DDSM) dataset
information.

Property | Description Case Count
1 12
6ensity 2 2
_ 3 32
- 4 2
Fine Linear Branch 2
- Irregular 16
- Irregular Architecture 8
Shape Lobulated 6
- Oval 2
- Pleomorphic 5
- Round 2
Circumscribed 4
- Circumscribed ill Defined 1
- ill Defined 7
- ill Defined Spiculated 1
Margin | Microlobulated 1
- Clustered 7
- Obscured ill defined 2
- Obscured ill defined spiculated 3
- Spiculated 15

case (mdb179 and mdb191), Dense-glandular and Fatty Glan-
dular. The contrast in these two images was very high and
distributed, making it difficult to detect isolated regions. All
other masses were successfully detected. This results in the
detection accuracy of 95.3%. The detection accuracy on the
DDSM dataset was 97.3%. We missed 2 cases. Detected
ROIs were carefully compared with the given ground truth
data. To quantify the ROI detection, we employed the Jaccard
similarity measure between the ground truth and the detection
using the proposed method. We consider it a correct detection
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FIGURE 6. Breast tissue vs. mass classification results (ROC plots).

if the intersection region between the two ROIs is bigger
than 90%.

C. NORMAL AND MASS DIFFERENTIATION

Our algorithm detected all the malignant masses except
one (mdb0186) on the MIAS dataset. Our detection rate
for benign masses is however not so prominent. Out
of 30 tested cases, it missed 6 cases. Three of these missed
masses were Fatty (mdb069, mdb080, and mdb195), two
were Dense-glandular (mdb193 and mdb290), and one was
Fatty-glandular (mdb190). The total accuracy of the system
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(d) ROC of training on DDSM and Test on MIAS

was 83.43%. Figure 8 shows the example ROI which is
classified as mass.

We further investigated the missed cases and found the
following observations. In the first missed case (mdb069),
the margin and boundary with the wide transition zone,
if we compare with opposite side breast, the lesion could be
detectable, and in clinical practice, we describe it as archi-
tectural distortion. In the case of mdb080, the tumor lesion
is a subtle ill margined, non-mass-like parenchymal asym-
metric pattern. In the case of mdb195, the malignant lesion
is almost isodensed to the normal breast fatty parenchyma.
So, the detection is not feasible. In mdb186 we found that
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TABLE 3. Average specificity and sensitivity of mass vs. normal classification by proposed method.

Training Dataset | Testing Dataset Sensitivity (%) | Std. Dev | Specificity (%) | Std. Dev.
MIAS MIAS 83.06 0.17 87.25 0.25
DDSM DDSM 83.79 0.14 76.63 0.28
MIAS + DDSM | MIAS + DDSM 82.50 0.01 74.83 0.60
MIAS DDSM 87.80 0.09 64.88 0.11
DDSM MIAS 74.39 0.03 84.67 0.05
Avg. Sensitivity and Specificity (%)
W Sensitivity Specificity
100
90 —
80 ~ — B
70
60
50
40
30
20
10
0
MIAS DDSM MIAS + DDSM MIAS2DDSM DDSM2MIAS

FIGURE 7. Average sensitivity and specificity (%) plot with standard deviation.

the mass has poor contrast as well as it lacks the dense
region. It§ contrast with respect to the surrounding was very
poor. In benign cases, where the algorithm was unable to
classify masses, we observed that in three fatty and one fatty
glandular cases (mdb069, mdb080, mdb190, and mdb195)
the masses were not clear. They do not have a central core
region and their contrast with respect to their surrounding
was poor too. We are confident that if we add some good
contrast enhancement techniques, our algorithm performance
will be improved by classifying the above-described cases as
well. The remaining two dense-glandular cases (mdb193 and
mdb290) do not follow the assumption we made in this paper
(they do not have a glowing effect), so features values were
not good in these cases to classify them. To successfully
detect masses in these cases, it may require additional meth-
ods or include more features. In the present work, we did
not reject any region because of its size, this results in
generating a large number of false positives. Although our
classification phase reduces the number of FPs; we aim to
reduce the number of FPs by the improved algorithm in
future work. We also believe that automatic breast density
assessment before applying our method will improve the
performance [24].

We validated the results by plotting the receiver operating
characteristic (ROC) curve, which illustrates the performance
of the binary classifier system as its discrimination threshold
is varied. Figure 6 shows the ROC curve of classification
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between normal and mass data, which is obtained by varying
the threshold on the probabilities by the classifier (SVM).
AUC refers to the Area Under Curve. Table 3 shows the clas-
sification results in terms of specificity, sensitivity, and their
standard deviation which can also be seen in Figure 7. In the
medical domain, sensitivity alone is not enough, the algo-
rithm should also yield good specificity results. As previously
described, we used harmonic mean (equation 10) to get the
best pair of specificity and sensitivity.

Algorithm missed 2 cases from malignant category and
6 from the benign category of DDSM data-set. The maximum
sensitivity and specificity pair, we achieved is 91.32% and
85.05% respectively. Average sensitivity and specificity are
76.19% and 87.05% respectively.

We also tested our algorithm for its generality by training
it on one data-set and testing on the other. The algorithm
was trained on MIAS data-set, tested on DDSM and vice
versa. Algorithm results in table 3 confirm our claim that the
proposed algorithm is not bounded to some limited type of
masses or abnormalities. It covers a wide spectrum of masses.
The distribution of the data-set is uneven, which degrades the
performance of the learning algorithm.

Investigation of the missed cases confirms the reasons
described earlier. Case0004 from DDSM shows poor contrast
around the mass, making it difficult to be detected. Case0005,
case0006, and case008 do not follow the assumption we made
in the paper. More features may be required to detect those
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masses. We also calculated the number of false positives per
image which was 4.67 FP/Image. This number is calculated
only on Normal Images to give a fair view of the system.

D. COMPARISON WITH EXISTING ALGORITHMS

Table 4 compares the related mass detection techniques.
In [15], the mammograms are enhanced and detected based
on the improved MCL with the MCA model. The outer
contours of masses detected by the model are extended to
a rectangular region. Then the rectangular masses are set as
the ROIms to perform spatial LDA analysis. These ROIs with
different sizes are then grouped into two sets. [26] used the
bilateral similarity analysis to reduce the FPs. They tested
their method on a set of 332 mammograms, which shows a
34% FP reduction in comparison to, single-view CAD, with
a detection sensitivity of 85%. A dual-stage adaptive thresh-
olding (DuSAT) [3] has been successfully applied to selected
mass regions in mammograms. For removal of background,
Thresholding is applied in [21]. [20] have proposed inten-
sity and gradient-based method with Abnormality detection
classifier (ADC) for the classification of normal and abnor-
mal mammograms. Feature weights are determined using

TABLE 4. Result comparison with state-of-the-art methods.

Method Training | Testing Sensitivity
(%)
Gao et al. [15] Mias mias 80
ddsm ddsm 90
Varela et al. [42] ddsm ddsm 80
Jayasree et al. [8] mias mias 80
ddsm ddsm 80
Dominguez and Nandi [12] | mias mias 80
Kozegar et al. [22] mias mias 90
Campanini et al. [6] ddsm ddsm 86
Martins et al. [10] ddsm ddsm 76.8
Liu and Feng [27] ddsm ddsm 90
Tai et al. [39] ddsm ddsm 75
Li et al. [26] mias mias 85
Anitha et al. [3] ddsm ddsm 92.5
mias mias 93.5
Kashyap et al. [21] ddsm ddsm 91.76
mias mias 94.63
Jen et al. [20] mias mias 88
ddsm ddsm 86

FIGURE 8. Figure shows the shape of detected mass ROI.
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Principal Component Analysis (PCA) and have obtained a
sensitivity of 86%. [34] stated their results of mass detection
phase where they achieved 84.4% detection accuracy. Their
algorithm is based on image enhancement where Gaussian
Markov Random Field (MRF) is used for mass segmenta-
tion. However, they did not classify the ROIs into mass and
non-mass regions. [23] also reported their detection accu-
racy as 94.44%. They presented a particle swarm optimiza-
tion (PSO) based detection technique.

Work presented by [9], [14], [17], and [40] can be consider
as the baseline in recent work in this domain. [9] implemented
a fully automated system by extracting local binary pattern
LBP features. They used SVM for classification. A feature
selection technique is also proposed. [9] reported their perfor-
mance in terms of sensitivity and reported 75.86% for over-
all CAD performance on the MIAS database. [16] reported
their results on already selected 305 ROIs and achieved a
sensitivity of 76.53%. They extracted features from Grey-
level. They extracted features from Grey-level co-occurrence
matrices (GLCM) and then classify features into mass and
non-mass regions. [14] proposed the technique of curvelet
transformation, feature selection, and then classification by
SVM. They manually cropped the ROIs and then applied their
algorithm. Their reported accuracy is higher than 90%, but
their algorithm is not fully automated, they lack a mass detec-
tion phase. All methods were tested on a separate dataset,
cross-validation between the datasets was never performed.

V. CONCLUSION

This paper proposes a new mass detection algorithm in mam-
mogram images. The proposed method is fully automated.
It finds the candidate regions by segmenting the salient
regions in a mammogram and then extract features to dif-
ferentiate between the breast tissue and mass. Promising
results are obtained in mass identification and normal vs.
mass tissue classification. Classification results confirm that
the segmentation process extracts enough information to find
masses and localize them in a mammogram. Experiments
were performed on mini-MIAS and DDSM databases to show
the usefulness and generalization of the proposed algorithm.
Correlating the full image set (CC and MLO) is considered
as future work that can also help to identify the architectural
distorted mammograms.
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