
Received May 17, 2021, accepted June 22, 2021, date of publication July 5, 2021, date of current version July 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3094656

Protocols for Transferring Bulk Data Over
Internet: Current Solutions and
Future Challenges
KHAWAR KHURSHID 1, IMDAD ULLAH 2, ZAWAR SHAH3, NAJM HASSAN 4,
AND TARIQ AHAMED AHANGER 2
1School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
2College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
3Faculty of Information Technology, Sydney International School of Technology and Commerce, Sydney, NSW 2000, Australia
4School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia

Corresponding author: Khawar Khurshid (khawar.khurshid@seecs.edu.pk)

ABSTRACT Big Data has gained interests in effectively capturing, storing, analysis and visualisation
from wide range of scientific, economic and business communities and is frequently communicated over
internet for various purposes among government and enterprise sectors sited at different locations. Several
experiments and analyses have shown that currently employed applications and transport protocols in internet
are not suitable for transferring such voluminous data because of not addressing requirements of low-access
latency. This paper presents issues associated with the basic mechanism of legacy protocols in the context
of high speed networks for transferring Big Data e.g. conservative TCP congestion control mechanism may
result in minute utilisation of high bandwidth provisioning networks. We present state-of-art alternatives
proposed in the literature to solve these problems in high speed networks. We compare several underlying
emerging alternatives of TCP, UDP and multi-TCP-streams protocols over a number of comparison criteria
e.g. protocol convergence, responsiveness etc., to handle communication of huge data. We note that these
protocol alternatives have significant importance over fulfilling requirements of emerging data-intensive
applications in high-speed networks. In addition, we discuss open research issues and challenges that can be
explored as a source of motivation towards development and deployment of data-intensive applications in
emerging networking technologies.

INDEX TERMS TCP variants, UDP variants, high speed networks, long delay networks, congestion control,
big data transfer protocols.

I. INTRODUCTION
The evolution of the Internet has made it possible for the
deployment of high speed networks with the increasing use
of data-intensive and high-performance applications, such
as those used in scientific fields e.g. astronomy [1], mete-
orology [2], social computing [3], bioinformatics [4], [5]
and computational biology [6]–[8]. The data from these
resource-intensive applications is referred to as ‘Big Data’
that is typically stored (up to several petabytes i.e. 1015 to
exabytes 1018) at remote geographic sites and is frequently
communicated (up to 100Gbps) [9] by the science commu-
nity for visualising and scientific analysis where it requires

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran Tariq .

predictable and low-latency access to this data. One such
example of storing and communicating this data at remote
geographic sites is among large Cloud data centres consisting
of large volumes of data of various types, such as real time
data, images, and videos captured from different sources etc.

We note that the computer science research community
has made several efforts for transporting such large volume
of data by proposing applications and transport layer proto-
cols. The transport layer protocols can be broadly categorised
into two categories [10] i.e. connection-oriented, reliable
protocols e.g. Transmission Control Protocol (TCP) and con-
nectionless, unreliable protocols e.g. User Datagram Pro-
tocol (UDP). During the design of network applications
for enabling high-data rate communication, the designers/
application developers must satisfy requirements of either

95228 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4897-2592
https://orcid.org/0000-0002-8188-2601
https://orcid.org/0000-0001-6346-7669
https://orcid.org/0000-0002-4525-0738
https://orcid.org/0000-0003-2787-8334


K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

of the two transport protocols. These protocols have been
widely adopted for end-to-end communication of data over
the Internet. We note that UDP is an effective protocol for
communicating data over reliable medium e.g. optical fibre,
nodes connected via wired networks etc., however, being
unreliable protocol it is not sensitive to data loss [11]–[15].
The unreliable nature of UDP protocols in multiple streams
within the wireless mesh network has also been analysed for
transmission failures in [16]. The TCP, on the other hand,
achieves reliable delivery of data segments by flow control,
congestion control, and error control, which ensures that the
data segments are received uncorrupted at the received side.
However, it significantly under-utilises the network band-
width over high-speed connections with long round trip times
(RTT) [17]–[20], when there are multiple TCP streams [21],
or in the presences of DCCP1 protocols during vertical
handover [23] for multimedia applications. In addition, the
performance of web applications that run on TCP over the
passively collected data has also been analysed from an oper-
ational network based on wireless infrastructure [24].

In particular, the ineffectiveness of TCP has made it an
unsuitable transport layer protocol for high-speed connec-
tions with longer RTT networks due to its slow start and basic
congestion controlmechanism. For example, considering the
basic slow start and congestion control mechanisms, TCP
increases its congestion window by one packet and reduces
it by half during a loss event. For example, over 10Gbps
link, 100ms RTT, and 1500-byte packets, TCP would require
83,333/2 RTTs to increase its window from half utilisation
to full utilisation and it would require that there should be
no loss event for approximately 1hr. This suggests that TCP
can achieve theoretical limit of network’s bit error rate of no
more than one loss event per 2.6× 109 packets transfer [17],
[18]. Furthermore, following are few difficulties that lead
to poor TCP performance in large bandwidth-delay product
networks: First, the linear increase in TCP by one packet per
RTT is too slow while multiplicative decrease for each loss
event is too severe. Second, in order to maintain large average
congestion window for good throughput, TCP requires to
experience extremely low loss rates. Third, since the basic
TCP mechanism considers a loss event as a packet loss,
hence it is difficult to avoid congestion window oscillation
since it would always reduce the congestion window to half.
Furthermore, these congestion window oscillations require
an accurate estimation of packet loss probability, which is
missing in the current deployment of basic TCP.

Several works have modified the basic working mecha-
nisms of these transport layer protocols i.e. UDP and TCP,
introducing their different variants for efficient high-speed
data transfer communication. These enhancements for

1Datagram Congestion Control Protocol (DCCP) is a feedback scheme
that gathers context for change in transmission state (e.g. during vertical han-
dover); implemented via explicit handover notifications and exchange of link
parameters using Link Characteristic Information (LCI) option for Mobile
IP [22], and timely negotiates and determines transmission parameters for
reusing transmission between the end nodes during the handover process.

enabling high-speed communication can be grouped into
three categories: The TCP variants, such as, Scalable TCP
[19], Binary Increase Congestion Control (BIC)-TCP [25],
CUBIC [26], High Speed TCP (HSTCP) [18], FAST-TCP [9],
TCP Westwood (TCPW) [27] and eXplicit Control Protocol
(XCP) [28]. The UDP protocols, such as, Reliable Blast
UDP (RB-UDP) [29], UDP based Data Transfer Protocol
(UDT) [14], [30], Performance-Adaptive UDP (PA-UDP)
[31], in addition to, the two application layer protocols that
use UDP as transport layer protocols are Tsunami [32] and
Fast and Secure Protocol (FASP). In addition, there are sev-
eral data transfer application layer protocols that usemultiple
simultaneous TCP streams, such asGridFTP [33], Fast Data
Transfer (FDT) and BaBar Copy (BBCP).

In this article we highlight the background theory and
implementation of each of above enhancements to transport
protocols, in particular, how these protocols improve the flow
control and congestion control mechanisms to enable speedy
transfer of data over high-speed connections with long RTT
networks. We discuss the under-utilisation of the network’s
resources in high-bandwidth delay networks due to the slow
growth of TCP congestion window, slow-start that creates
network congestion and the effect of congestion avoidance
phase and the harsh penalty over loss events. Furthermore,
we present a comprehensive comparison of the performance
of different variants of transports protocols that have been
evaluated in the literature. We believe that this article is
the first that conducts a comprehensive survey of protocols
proposed for bulk data transfer in the light of literature
work demonstrated so far. In addition, this work will provide
detailed discussions and new research directions over emerg-
ing TCP alternatives that try to solve problems associated
with large round trip times due to its slow-startmechanism in
the context of very high speed networks for high performance
networking applications.

We analyse various transport layer protocols for the fol-
lowing performance parameters: the Congestion control i.e.
used to adjust the data transmission rate as a response to
segment loss, RTT unfairness (i.e. identifying multiple flows
with different RTTs that consume unfair bandwidth share);
the Inter-protocol fairness requires that, between two dif-
ferent protocols, one protocol’s flow does not receive larger
share of the network bandwidth than a comparable flow of
another protocol; the Intra-protocol fairness i.e. requires that
two flows of the same protocol equally share the available
network bandwidth, TCP friendliness i.e. requires that a new
protocol equally shares the network than a comparable TCP
flow. We further evaluate these protocols for the following
performance metrics: Throughput i.e. the rate of success-
ful data delivery over a communication channel, End-to-end
delay i.e. the time taken for a packet to be transmitted across
a network from source to destination, Packet loss and Jit-
ter i.e. variations in latency in the variability over time of
packet latency across a network. Furthermore, we compare
various protocols for their capabilities over how are these
protocols are Easy to deploy, Stability i.e. the convergence

VOLUME 9, 2021 95229



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

of a protocol to its equilibrium, Bandwidth scalability i.e.
maximum utilisation of bandwidth of high-speed networks,
Responsiveness i.e. ability to complete tasks within given
time, and Protocol convergence i.e. the ability of a protocol
to gather information about the link state in which it operates.
In addition, we evaluate these protocols for their commercial
usage.

This paper provides the following main contributions:
• To present an outline of research conducted thus
far for various transport layer protocols designed for
high-speed connections with long RTT

• To investigate issues associated with basic mechanism
of TCP specific to its operation in high-speed networks

• To present detailed reviews and classification of various
transport layer protocols used for transferring bulk data
in high speed networks

• To provide detailed comparison of transport layer proto-
cols with their application to data transfer in high speed
networks

• To summarise key findings by various works in litera-
ture using different evaluation criteria for various TCP
and UDP variants and for protocols with multiple TCP
streams

• To discuss open issues in requirements of new variants of
transport layer protocols specific to their application for
multimedia applications and high-speed wireless access
networks

The rest of the paper is organised as follows: Section II
presents various mechanisms necessary for reliable end-
to-end communication. Section III discusses issues related
to fast data transmission using TCP in high-speed networks
i.e. issues associated with slow-start, congestion avoidance
phase and the harsh penalty over loss event. Various solu-
tions to these issues using TCP are discussed in Section IV.
The application layer protocols that use multiple simulta-
neous TCP streams for enabling high data transmission are
discussed in Section V. Section VI presents the reliable
UDP-based data transport protocols that have been pro-
posed as an alternative for enabling reliable data transmission
based on UDP protocols. Section VII presents comprehen-
sive analysis of different variants of TCP, protocols that use
multiple simultaneous TCP streams and UDP-based reliable
protocols in the light of critical investigations by previous
research works. Future research directions are discussed in
Section VIII. Finally conclusion is presented in Section IX.
For simplicity, these sections along with their headings are
also presented in Figure 1.

II. BACKGROUND
TCP is a connection-oriented transport layer protocol that
assures end-to-end reliable communication of data segments
with the help of its various mechanisms. These basic mecha-
nisms include the flow control, congestion control, and error
control that work closely to facilitate reliable delivery of data
segments. TCP is used for non-real delay tolerant applica-
tions, such as file transfer, accessing a website etc. Our focus

FIGURE 1. Paper organisation into sections.

is to review and compare the performance of newer versions
of TCP i.e. TCP Reno that is by far most widely deployed,
in conjunction with the modifications suggested to basic
mechanism of TCP for bulk data transfer in high-bandwidth
networks.

A. FLOW CONTROL
To implement flow control i.e. to ensure smooth data trans-
mission rate by not overwhelming a slow receiver, TCP
uses a sliding window protocol that uses three sliding win-
dows; specifically they are advertised window, congestion
window, and transmission window. These window slides are
adjusted based on mutual coordination between the sender
and receiver for the number of segments sent to the receiver,
e.g. receiver notifies the sender in the advertised window for
the number of segments that receiver can receive in the next
transmission cycle. The advertised window helps receivers
to avoid buffer overflow that the receivers calculate, which
is based on the available buffer size to accept subsequent
data segments. The sender decides the congestion window
i.e. maximum number of data segments that the sender can
send without causing congestion in the network, based on the
feedback from the network. Similarly, transmission window
is the minimum of advertised window and congestion window
in order to respectively avoid receiver buffer overflow and the
network congestion.

B. CONGESTION CONTROL
The TCP congestion control algorithm was proposed in [34]
and standardised in RFC 5681. To implement congestion
control i.e. to adjust the data transmission rate as a response
to segment loss, TCP uses slow-start, congestion avoidance
and fast recovery mechanisms. During the slow-start phase,
TCP-sender sets the initial size of congestion window (i.e.
cwnd) to one maximum segment size (MSS) and expo-
nentially increases this window size upon reception of the
corresponding ACKs i.e. congestion window extends in 1, 2,
4, 8, . . . data segments, also illustrated in Figure 2 (a) [10].

95230 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

FIGURE 2. TCP slow-start (a) and FSM description of TCP congestion control (b) [10].

It undergoes the congestion avoidance phase after the cwnd
reaches the slow-start threshold (i.e. ssthresh) where it
linearly increases the size of the congestion window. Dur-
ing the timeout it restarts the slow-start mechanism where
the TCP-sender sets the ssthresh to half of the current
transmission window size and the congestion window to
1MSS. This mechanism is called the Additive Increase and
Multiplicative Decrease (AIMD) algorithm [34]. Similarly,
it enters the fast recovery mode after every duplicate ACK
is received where the cwnd is increased by 1MSS. Further-
more, TCP enters the congestion avoidance phase when it
receives an ACK for the missing segment or it transits to
slow-start state if a timeout occurs. During these transitions,
TCP sets the cwnd to ssthresh for congestion avoidance
and ssthresh to half of cwnd for slow-start phase. The
description of TCP congestion control algorithm is illus-
trated in detail using FSM (Finite State Machine), shown in
Figure 2 (b) [10].

Figure 3 illustrates comparative analysis of two versions
of TCP’s congestion window i.e. TCP Tahoe and TCP Reno,
in this example, the ssthres is 8MSS. In the beginning of
transmission, both TCP Tahoe and TCP Reno exponentially
increase the congestion window during the slow-start until
they hit the threshold at the forth round of transmission. The
congestion window is linearly increased until three dupli-
cate ACKs are observed by the TCP-sender, during the 8th
transmission round (note that the congestion window at this
stage is 12MSS). At this stage, the ssthresh is set to
half of cwnd i.e. 6MSS. Now, TCP Reno sets the cwnd =
6MSS and grows linearly, alternatively, TCP Tahoe sets the
cwnd = 1MSS and starts growing exponentially until it
reaches the ssthresh, at which point it starts growing
linearly.

FIGURE 3. Evolution of TCP’s congestion window (Tahoe and Reno) [10].

The authors in [35] divide the existing congestion con-
trol algorithms in three groups i.e. loss-based algorithms
(e.g. TCP Reno [36], NewReno [37], High Speed-TCP
[18], Hamilton-TCP [38], Scalable TCP [19], TCP West-
wood (TCPW) [27], [39], TCP Westwood+ (TCPW+) [40],
TCPW-A [41], and LogWestwood+ [42]), delay-based algo-
rithms (such as TIMELY [43] or LoLa [44]), and hybrid
algorithms (e.g. Bottleneck Bandwidth and Round-trip time
(BBR) [45]) and study their interactions. The authors find
various fairness issues among the flows with diverse RTTs
during sharing bottleneck links, more specifically, the delay-
based and hybrid algorithms result in lower performance
when competing for flows compared to loss-based algorithm.
Hence, the selection of delay-based and hybrid will result in
low network performance (i.e. un-fair share of the available
bandwidth, longer delays, and packet loss) when majority
of the flows rely on the selection of loss-based congestion
control algorithm. In addition, the authors notice that the
hybrid algorithms, such as BBR, result in lower queueing
delay with flows of higher RTT.

VOLUME 9, 2021 95231



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

FIGURE 4. Classification of different congestion control algorithms.
Dotted arrows indicate that one was based on the other [35].

Classification of various congestion control algorithms, i.e.
loss-based, delay-based, and hybrid, is shown in Figure 4.
The conservative nature of majority of the loss-based algo-
rithms to loss detection events and packet loss has greatly
improved the TCP-fairness issues e.g. Binary Increase Con-
gestion Control (BIC) [25] TCP Hybla [46]. Such protocols
guarantee fair share of the bottleneck link for flows with
smaller RTTs due to introducing the congestion window size
function; detailed discussion is given in Section IV-B.
Other examples: Random Early Detection (RED) [47] and

Explicit CongestionNotification (ECN) [48] are the two other
types of congestion control mechanisms:

1) RANDOM EARLY DETECTION (RED)
The RED [47] is a gateway-based congestion control mech-
anism that detects congestion at initial stage of data trans-
mission and notifies the TCP sender by computing the
gateway’s average queue size. The congestion notification
is caused by either dropping or marking the arriving seg-
ments at the gateway (router). The router, with certain
probability, sets the mark on the segment or drops it after
router’s average queue exceeds the preset threshold. The
TCP sender in response reduces the transmission rate. This

mechanism works as follows: Let the avg and q respectively
be the router’s average and current queue size, then avg =(
1− wq

)
∗avg+wq∗q, wherewq is the queue weight. The avg

queue size is compared with two queue thresholds i.e. mini-
mum minth and maximum maxth thresholds. A data segment
is marked if the avg queue size is greater than the maximum
threshold; otherwise, no packets are marked. Note that the
data segments are dropped only if the TCP-sender is not
cooperative. This process ensures that the average queue size
does not exceed the maximum threshold. Furthermore, if the
avg queue size is between the minth and maxth thresholds
then each arriving segment is marked with probability pa. The
data segment-marking probability pb is calculated as pb ←(
maxp (avg−minth)

/
(maxth −minth)

)
when the avg varies

between the minth and maxth, where maxp is the maximum
value for pb. The final segment-marking probability pa is
calculated as pa ← pb

/
(1−count · pb), count is the number

of segments arrived since the last segment marking/dropping.
Consequently, if pa = 1 then each newly arriving packets
are dropped. Hence, RED prevents congestion at the gateway
and improves fairness by controlling the average queue size
before the queue overflows. This work is further extended
by a number of researchers [49]–[52] to improve the basic
functionality of RED.

2) EXPLICIT CONGESTION NOTIFICATION (ECN)
The Active Queue Management (AQM) mechanisms, such
as RED [47], detect congestion before the queue overflows at
the router, thus avoiding the global synchronisation problem
and heavy network congestion. However, the only choice
with these queue management systems is to drop the data
segments that might cause higher end-to-end delay and bad
user experience. The ECN [48] presents an alternative by
allowing both the TCP-senders and TCP-receivers of the con-
gested network participate in avoiding network congestion;
requiring changes both at the IP and TCP headers. To enable
ECN, it uses ECN field with two bits in the IP layer header.
The ECN-enabled router can send congestion indication to
the end systems. Similarly, it introduces two flags in the TCP
header that both the TCP-sender and TCP-receiver negotiate
to enable congestion indications via ECN, during the connec-
tion establishment. Hence, the TCP-receiver can also inform
the TCP-sender of the network congestion if it has received
congestion notifications from the intermediate routers.

C. ERROR CONTROL
To implement error control i.e. enabling reliable commu-
nication over unreliable channel, TCP uses acknowledge-
ment mechanism implemented via sequence number to
achieve reliable data delivery. On receiving the ACK segment,
the sender confirms that the previously sent segments have
been successfully received by the receiver. For example,
if segments up to n − 1 have reached the receiver then the
ACKwould indicate the successful arrival of n sequenced data
segments. TCP uses duplicate ACK if an out-of-order segment

95232 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

arrives at the receiver. The out-of-order segment is considered
as segment loss; however, the sender retransmits the same
segment after it receives three duplicate ACKs. In addition,
the sender assumes segment loss if ACK for a particular seg-
ment is not received with the Retransmission Timeout (RTO)
interval. The TCP-sender dynamically calculates the RTO as
the estimated Round Trip Time (RTT).

There are several representative works to implement error
control, such as Fast Transmissions and Fast Recovery [53],
and Selective Acknowledgements [54].

1) FAST RETRANSMISSION AND FAST RECOVERY
This scheme [53] offers a fast retransmission of the lost
segment after the TCP-sender receives three duplicate ACKs
that allows TCP to avoid long timeouts. During the fast
retransmission, it sets the ssthresh to half of the cwnd
and the cwnd is set to ssthresh with additional three
segments. Furthermore, it undergoes fast recovery when an
ACK is received approximately one RTT after the missing
segment is retransmitted. During this phase, it sets the cwnd
to ssthresh instead of setting up the cwnd to one segment.
The TCP-sender then undergoes the congestion avoidance
phase. Note that during the fast retransmission and fast recov-
ery only one segment can be recovered, however, it may
require that RTT expires before retransmission for additional
segment losses in the same window.

2) SELECTIVE ACKNOWLEDGMENT
The Fast Retransmission and Fast Recovery [53] might expe-
rience low performance due to its limitation of recover-
ing multiple segments that are lost in one window, hence,
to overcome this limitation the Selective Acknowledgement
(SACK) [54] has been proposed that recommends the use
of SACK option as an addition to the basic TCP. The use
of SACK option is decided between the TCP-sender and
TCP-receiver during the connection establishment process.
The SACK option contains four or three blocks that specify
the adjacent segments of received data. In multiple segments
loss occurrences in a particular window, the SACK-enabled
TCP sender can evaluate and retransmit the lost segments
with the information provided in SACK blocks.
In the following section, we present various issues specif-

ically associated with the basic mechanism of TCP in
high-speed networks that restrains it to achieve better perfor-
mance in terms of high throughput, low loss rate, and low
end-to-end delay.

III. TCP ISSUES IN HIGH SPEED NETWORKS
The congestion control mechanism of TCP creates severe
problems when transferring huge data in high-speed data
communicating environments. Some of these problems are
discussed below.

A. TCP SLOW START PHASE PROBLEMS
Following are the two problems associated with the TCP
slow-start:

a: INITIAL VALUE OF SLOW START IS TOO SMALL
In the beginning of every connection, TCP utilises slow-start
phase in which the initial congestion window size of 1MSS is
doubled for every ACK received. This small initial value of
congestion window results in TCP to slowly probe for more
throughput and increases time for TCP to utilise the large
bandwidth that is available to it [10]. This works fine for
controlling the congestion in regular networks, however in
high-speed data communicating environments, it slows down
the connection and is inefficient for transferring huge data at
high speed.

b: SLOW START CREATES NETWORK CONGESTION AND
RESULTS IN PACKET LOSS
At the start of a new TCP connection, the sender does not
know the proper congestion window for the path. It starts with
1MSS (as mentioned above) and exponentially increases the
window size. It keeps on doubling the window size until the
congestion window reaches a threshold ssthresh, at which
point TCP converts to a linear increase of the congestion
window (i.e. congestion avoidance phase), or when packet
loss occurs. The performance of Slow Start is sensitive to
the initial value of ssthresh. If ssthresh is too low,
TCP may need a very long time to reach the proper window
size, while a high ssthresh can cause significant packet
losses, resulting in a timeout that results in very low effective
throughput [55]–[57].

B. PROBLEM WITH AIMD PHASE (Congestion
AVOIDANCE PHASE)
The AIMD phase is inefficient to sustain data transfer
between cloud data centres. It is considerably slow in lin-
early increasing the congestion window size compared to the
exponentially increasing SlowStart. This was implemented to
tame the aggressive nature of traditional TCP when conges-
tion occurs [58] however, this slow increase to high window
size is not suitable for fast bulk data transfer in a cloud
computing.

C. PENALTY OF PACKET LOSS IS HARSH
Another issue with TCP is that it reduces congestion win-
dow size by half or resets the congestion window to 1MSS
after detecting a packet loss (depending on the packet loss
event). This reduction is required for congestion control
however, it results in small window size which reduces the
effective throughput and is inefficient for fast bulk data
transfer [58].

We note that these various issues with basic TCP
are among various motivating factors that researchers
have proposed various variants of transport layer proto-
cols. We argue that these issues should be addressed during
the design of protocols used for transporting data-intensive
applications in high-speed networks, in order to achieve
better performance in terms of throughput, end-to-end
delay etc.

VOLUME 9, 2021 95233



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

FIGURE 5. Traditional TCP scaling properties (left) Vs. Scalable TCP scaling properties [19].

IV. SOLUTIONS TO IMPROVE TCP PERFORMANCE IN
HIGH-SPEED NETWORKS
We now classify various solutions proposed in literature
for enhanced communication of voluminous data over
high-speed communicating network i.e. TCP variants, mul-
tiple simultaneous TCP streams and UDP variants. We first
start with various variants enhancements to basic TCP.

A. SCALABLE TCP (STCP)
The STCP is a sender side modification to the conges-
tion avoidance phase of the TCP congestion control mech-
anism [19], [59], [60]. It uses Multiplicative Increase and
Multiplicative Decrease (MIMD) algorithm instead of Addi-
tive Increase and Multiplicative Decrease (AIMD) used by
TCP. The increase in congestion window can be calculated
as cwnd = cwnd + a ∗ cwnd where a = 0.01. Similarly the
decrease in congestion window is given as cwnd = cwnd−b∗
cwnd where b = 0.01. Figure 5 illustrates and compares the
congestion window of a single connection using traditional
TCP and STCP over a link of capacity c [19]. Note that the
recovery time form the packet loss event for STCP connection
is proportional to the connection’s window and RTT, which
allows the STCP to perform better than the traditional TCP in
high speed networks.

During the event of a segment loss, the cwnd is reduced to
half of its previous value instead of reducing it to 1MSS. This
results in higher throughput compared to basic TCP. It has
been shown, using extensive experimentations, that STCP
outperforms the basic TCP during the events of segment
loss. For example, STCP, during the segment loss event,

over a 10Gbps link with 200ms delay and the packet size
of 1500bytes [61] takes only 2.7sec to recover the segment
loss. Alternatively, basic TCP experiences extensive delay
of 4hrs 43min to recover the segment loss and resumes
communication.

In addition, we note that STCP, due to multiplicative
increase, effectively performs with the higher sizes of con-
gestion windows i.e. cwnd of more than 100MSS, since
a = 1/100. Hence, although it has solved the issue of
linearly increasing the congestion window during the con-
gestion avoidance phase of AIMD, it does not solve the
slow start issue associated with basic TCP, as discussed in
Section III-A.

B. BINARY INCREASE CONGESTION CONTROL (BIC)-TCP
TCP, due to its recovery from the congestion events, might
not utilise the full bandwidth of a high-speed network. The
BIC-TCP [25] takes into consideration two properties: TCP
friendliness i.e. avoids taking too much bandwidth from
TCP flows, and bandwidth scalability i.e. maximum utilisa-
tion of bandwidth of high-speed networks. This BIC-TCP
prevents the RTT unfairness by identifying multiple flows
with different RTTs that consume unfair bandwidth share.
It introduces a new congestion control mechanism that con-
sists of two schemes i.e. additive increase and binary search
increase. This mechanism provides RTT fairness, scalability
and TCP-friendliness among multiple TCP flows.

The result of the binary search increase is the true/false
feedback to implement the congestion control, which deter-
mines whether the current sending rate is according to the

95234 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

network capacity. It calculates the minimum window wmin
(i.e. current sending rate) as the window size before any
packet loss occurs, while the maximum window wmax is the
window size during when the packet loss occurs. The target
window wt arg et , after a congestion event, is calculated using
the binary search as the midpoint of wmin and wmax i.e.

wt arg et = (wmin + wmax)
/
2 (1)

The BIC-TCP promises faster convergence and RTT fair-
ness, in the event of network congestion, by combing the
binary search increase with the additive increase strategy.
The combination of these two strategies works in the fol-
lowing conditions: If the distance of wtarget from wmin is
too large then directly setting up the wt arg et to the midpoint
might still have no effect over controlling the congestion
and the network might still experience congestion. Hence,
it introduces another predetermined increment, called the
‘maximum increment’ Smax, and sets the ‘current window’
to Smax. Thus, subsequent to a large window reduction, this
strategy first increases the window linearly and then increases
logarithmically.

It has been reported [62] that BIC-TCP provides good
performance in terms of throughput than the basic TCP. Fur-
thermore, it solves the slow start issue with the high-speed
network by setting up the current window to Smax instead
of 1MSS, as is the standard operation in the basic TCP.

Another study, CUBIC-TCP [26], provides an enhance-
ment to BIC’s window growth function, which is too
aggressive for TCP in the current high speed networking
environment and because of its complexity due to several
different phases of window control. Hence, it makes BIC
window control simpler and enhances its TCP friendliness
and RTT fairness by use of a function evaluated for time
elapsed since the most recent occurrence of a loss event.
It determines the congestion window as:

wcubic = C(t − K )3 + wmax (2)

Here C is a scaling factor, t is time elapsed since the
last loss event, wmax is the window size at t , and K =

3
√
wmaxβ

/
C , here β is a decrease factor applied for window

reduction at t .
Figure 6 shows the window growth function of BIC (upper)

and CUBIC (lower). It can be observed in Figure 6 (lower
part) that the growth function grows fast until it reaches wmax
where it slows down its growth and the increment approaches
almost zero. At this stage, CUBIC starts probing for addi-
tional bandwidth, starts growing window and accelerates its
growth and moves away fromwmax. Alternatively, in Figure 6
(upper part), BIC carries out a binary search over wmin and
wmax and calculates midpoint, which could be too much
within an RTT and would affect other TCP flows.

C. HIGH SPEED TCP (HSTCP)
HSTCP [18] presents optimisation over the basic TCP for
high data rate networks. It maintains two congestion windows

FIGURE 6. The window growth function of BIC and CUBIC [26].

i.e. minimum congestion window Lwin and maximum conges-
tion windows Hwin. It dynamically calculates the new cwnd
during each RTT. When the congestion window is less than
the Lwin then it calculates the response functionW for the new
congestion windows as:

W =
(
p/
plow

)S
∗ Lwin (3)

Here p is the packet drop rate, plow is the drop rate corre-
sponding to Lwin and S is calculated as:

S = (log (Hwin)− log (Lwin))
/(
log

(
phigh

)
− log (plow)

) (4)

We note that the HSTCP (i.e. High Speed TCP) is proposed
for large congestion windows, since the response function
W can only work when the congestion window increases to
certain high value. It has also been evident [18], [63] that
HSTCP works similar to the basic TCP in a high packet loss
networks. Furthermore, it does not utilise the full bandwidth
of high speed networks during its slow start mode.

D. FAST-TCP
FAST-TCP [9] introduces another criterion for reporting the
congestion event i.e. based on queuing delay instead of
packet loss. The congestion control mechanism of FAST
TCP consists of the following four components that work
independently and can be upgraded asynchronously: The
data control component that determines packets in the queue
to be transmitted, the window control that determines the
number of packets to be transmitted, the burstiness control
that determines the time at which these packets are sched-
uled for sending to the receiver and finally, the estimation
component that provides information for carrying out above
decisions. It calculates the number of packets inside the queue
by measuring the difference between the current RTT and the
exponential weighted average RTT.

Experiments [9], [20] have shown that FAST-TCP achieves
higher throughput compared to basic TCP. The limitation,
however, with the FAST-TCP is due to re-routing. Since
FAST-TCP uses an estimated RTT to adjust its window

VOLUME 9, 2021 95235



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TABLE 1. Internet throughput measurements [27].

size, hence during the re-routing, it is very important for a
FAST-TCP connection to be able to have an accurate esti-
mation of the RTT. We note that re-routing may change the
RTT estimation and the new rate may result in decreased
throughput and longer delays. Such issues of re-routing is
also presented in the other delay based TCP variants e.g. TCP
Vegas [64].

E. TCP WESTWOOD (TCPW)
TCPW [27] is an improved version of TCP Reno that is
a sender-side modification of the TCP congestion control
mechanism with improved performance in high loss envi-
ronment. It constantly evaluates the sender TCP bandwidth
consumption by monitoring the ACKs reception rate. It then
uses this estimation in calculating the cwnd and the slow
start threshold in the congestion events i.e. either after the
occurrence of three duplicate ACKs or a timeout, that helps
in determining the data to be delivered to the destination; the
authors call thismechanism the fast recovery. The experimen-
tal evaluations discussed in [27] have shown that TCPW can
effectively coexist with TCP Reno and provides better TCP
fairness and friendliness. Such an example of improved per-
formance of gaining higher throughput of TCPW over TCP
Reno in different geographical regions is shown in Table 1.

F. EXPLICIT CONTROL PROTOCOL (XCP)
XCP [28] is an enhancement to TCP’s basic congestion con-
trol mechanism in the environment of high bandwidth-delay
e.g. fulfilling communication requirements of high band-
width optical links, and large delay satellite links. It out-
performs TCP and further remains fair and stable as the
bandwidth-delay product increases. XCP generalises the
Explicit Congestion Notification proposal (ECN) [65], which
uses one bit congestion indication for informing routers about
the congestion, conversely, the XCP-enabled routers inform
the senders about the degree of congestion at the bottleneck.
The XCP protocol works as follows: The XCP-sender

maintains and sends the cwnd and RTT to the XCP-routers
via congestion header in every packet. The congestion header
maintains information about the current congestion window
Hcwnd , the sender’s current estimated RTT HRTT and feed-
back Hfeedback that takes positive or negative value and is
initialised by the XCP-sender. TheHcwnd andHRTT , are filled
by the senders and are never modified during the commu-
nication, the Hfeedback , on the other hand, can be modified
by the router. The Hfeedback is calculated based on the Hcwnd
and HRTT so that the system converges to achieve fairness.
Hence, the packet will contain the Hfeedback from the bot-
tleneck router along the path, which is then returned to the
XCP-sender. The cwnd is increased or decreased and is

calculated based on the Hfeedback i.e.

cwnd = max
(
cwnd + Hfeedback , s

)
(5)

Here s is the packet size. Furthermore, the XCP-receiver
has the same functionality as TCP-receiver, except that it
attaches the congestion header to the ACK of a received data
packet.

Table 2 summarises various aspects of six different TCP
variants discussed above. In particular, this table highlights
the protocols capabilities of providing TCP friendliness,
intra-protocol fairness and their usage. It also highlights
issues associated with each protocol that may lead to inef-
ficient performance resulting in lower throughput, high end-
to-end delay and severe packet loss.

V. DATA TRANSFER APPLICATION LAYER PROTOCOLS
USING MULTIPLE SIMULTANEOUS TCP STREAMS
Intensive data transferring applications e.g. distributed sci-
entific and engineering applications, require access to and
transfers of large amounts of data (in terabytes or petabytes)
between storage systems that are geographically distributed
for processing, such as analysis, visualisation etc. There are
several application layer protocols proposed, which utilise
multiple simultaneous TCP streams, for overcoming the basic
problem of TCP (i.e. due to slow-start mechanism) with
transferring huge amount of data e.g. GridFTP [33], FDT
[68], BBCP [69] etc. In this section, we discuss the basic
mechanism of these data transfer application layer protocols.

A. GridFTP
GridFTP is an open-source software implementation, which
provides extensions to FTP for a grid computing environ-
ment. GridFTP supports automatic negotiation of TCP buffer
sizes both for large files and large sets of small files. GridFTP
achieves better use of bandwidth by using multiple simul-
taneous TCP streams. It helps to download either pieces
of files simultaneously from multiple sources or even in
separate parallel streams from the same source. It provides
other enhancements in FTP, such as, data striping and TCP
socket buffer optimisation. To enable reliability, the GridFTP
server automatically sends restart markers (checkpoints) to
the client. If the transfer has a fault, the client may restart
the transfer and provide the markers received. The server
will restart the transfer, picking up where it left off based
on the markers [33], [70]. GridFTP has shown to provide
better throughput than FTP [71]. Experiments carried out in
[71] show that GridFTP provides much higher throughput
than FTP. Similarly, results in [72] show higher throughput
is obtained by GridFTP when TCP Cubic is used at the
transport layer. GridFTP uses TCP at the transport layer and
suffers from the problems in TCP mentioned in the section
above. However, it has shown reasonable improvement with
the use of other TCP variants like TCPCubic [72]. Also, UDT
(discussed later), a UDP based protocol is used with GridFTP
to improve the transmission rate [73], [74].

95236 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TABLE 2. Comparison of different TCP variants: STCP, BIC-TCP, CUBIC, HSTCP, FAST, TCPW and XCP for various aspects.

B. FAST DATA TRANSFER (FDT)
FDT is based on an asynchronous, flexible multi-threaded
system and is written in Java programming language. It trans-
fers data in parallel with multiple simultaneous TCP streams.
It has the capability to resume file transfer sessions without
any loss, if needed. The number of streams that can be used
by FDT are 4 by default, however, this number with other
protocols e.g., BBCP (i.e. BaBar Copy) can be modified by
the user. FDT can be used to transfer a list of file continuously
without the network transfer restarting between files [68].
FDT uses TCP and suffers from the basic problems in TCP,
as mentioned in Section III.

C. BaBar COPY (BBCP)
BBCP is a Peer to Peer (P2P) network application that is
capable of high speed data transmission by breaking up
data transfer into multiple simultaneously transferring TCP
streams [69], [75]. BBCP provides the users with the ability to
tune different parameters e.g. congestion window size, num-
ber of streams etc. BBCP uses four TCP streams by default,
which can be increased if needed. BBCP also keeps track of
copy operations so that an operation can be restarted from the
point of failure at a later time. This helps in minimising the
amount of network traffic in the event of a copy failure [69].
BBCP transfers data much faster than single-streaming proto-
cols [69]. However, it suffers from the issues associated with
TCP. It may also be blocked by the firewalls as it is a P2P
application.

We note that the main objective of proposing above pro-
tocols is to provide a reliable and high performance file
transfer consisting of very large files. These protocols are
extensively used in large science projects, such as Large
Hadron Collider,2 for transferring data across geographically
dispersed locations.

2http://home.cern/topics/large-hadron-collider

VI. UDP BASED DATA TRANSFER PROTOCOLS
We now discuss mechanisms of various UDP variants pro-
posed for bulk data transfer along with various other works
that evaluate the performance of these various UDP variants.

A. RELIABLE BLAST UDP (RB-UDP)
The RB-UDP [29] is an aggressive bulk data transfer scheme
that uses both the UDP to transfer bulk data and the TCP
for transferring control information. The motivation behind
this protocol is to keep use of majority of the available
bandwidth over the entire bulk data transfer and is to avoid
extra overhead generated by TCP for acknowledging each
received packets. Hence, the aggregated acknowledgements
are transmitted at the end of a transmission phase. The sender
RB-UDP sends the entire payload at the rate specified by
the receiver RB-UDP using UDP. Furthermore, the sender
RB-UDP sends a DONE message in order to indicate the end
of transmission. Alternatively, the receiver RB-UDP reports
the missing packets by sending an acknowledgment, where
the sender RB-UDP re-sends the missing packets.

The RB-UDP predicts the achievable bandwidth as:

Bachievable = Stotal
/
Ttotal (6)

Here Stotal is the total payload size and Ttotal is the pre-
dicted send time. The Ttotal can be estimated as:

Ttotal =
(
Tprop + TudpSend0

)
+

(Nresend∑
i=1

(
Tprop + TudpSendi

))
+
(
(Nresend + 1) ∗

(
Tack + Tprop

))
(7)

The Tprop is the propagation delay, TudpSendi is the time to
send an ith iteration, Nresend number of times to resend and
Tack is time to acknowledge a blast. Furthermore, it evaluates

VOLUME 9, 2021 95237



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

the best achievable performance to:

Bbest
Bsend

= 1
/
1+ RTT∗Bsend

Stotal
(8)

This shows that the throughput can be maximised by min-
imising the 1+ RTT∗Bsend

Stotal
ratio. Furthermore, the number of

retransmitted packets, given the loss rate L, can be evaluated
as [29]:

Nresend =
⌊
logL

(
Spacket

/
Stotal

)⌋
(9)

Performance analysis of RB-UDP carried out in [15] shows
that it can achieve higher throughput than the basic TCP.
Furthermore, the experimental analysis in [29] shows that
RB-UDP can achieve a high link utilisation of 70% when a
large file is transferred on a 1Gbps link between Chicago,
US and Amsterdam, Netherland. However, we note that
RB-UDP has no congestion control mechanism in order
not to overwhelm the receiver RB-UDP, hence, the receiver
machine has to be powerful enough in order to accept the
bulk data transfer sent by the sender RB-UDP. Furthermore,
it is important that RB-UDP has to effectively calculate the
sending rate so that the sending rate should not be higher
than the available bandwidth of the bottleneck link in the end-
to-end path. Similarly, the sending RB-UDP has to keep all
the sending packets in its memory if it requires to retrans-
mit the missing packets, which consequently requires bigger
memory buffers. The RB-UDP is hence suitable for use in
private or dedicated networks.

B. TSUNAMI UDP PROTOCOL
Tsunami [32] is an application layer protocol that uses UDP
for transferring data blocks while it transfers the control
information via TCP. It is a reliable transfer protocol; how-
ever, it evaluates the transmission rate using inter-packet
delay rather than a sliding window mechanism as a basic
procedure e.g. being performed in the basic TCP. Tsunami
is mainly implemented on both client and server sides. The
client maintains two threads i.e. the network thread that
communicates data and control information with the server,
maintains retransmission queue and places the fetched blocks
from server for storage into a buffer, alternatively, the disk
thread moves the fetched blocks from buffer to the storage
disk. The server maintains only one thread i.e. service thread
that is responsible for fetching data blocks from the disk and
sending those data blocks to the client.

At the start of communication, both the client and server
carry out authentication by evaluating the MD5 checksum
over random data that has already been XORed with a shared
secret. Both the client and server negotiate various parameters
of UDP buffer size, tolerated error rate, sending rate etc.,
before transmitting the actual data packets. A study [76] sug-
gests that, for a data rate of 1000Mbps, Tsunami UDP is toler-
able to the loss rate of up to 7.5%. The client sends the request
for retrieving desired data blocks from the server. Afterwards,
if the desired block is available, the client sends the index
of the desired block, the file transfer rate, error threshold

and scaling factor for inter-packet delay. Similarly, the server
responds with the file size, data block size, total number
of blocks and a timestamp. The client then sends the UDP
port to the server and it starts downloading file form the
server. Tsunami is used by Amazon Web Services (AWS)
that offers reliable, scalable and inexpensive cloud computing
services.

Several studies compare the performance of Tsunami [32]
protocols for efficient data transfer with other transport layer
protocols, such as TCP, Secure Copy Protocol (SCP) etc.
For instance, [77] compares the Tsunami UDP and SCP3 for
transferring bulk data between two Amazon EC2 instances
located in two different regions (i.e. in USA-East and
Singapore). This analysis shows that Tsunami UDP can trans-
fer 50GB of file in 19min, 33sec while SCP takes a total
of 1hr, 50min. Another study [78] investigates that Tsunami
UDP can achieve a throughput of 651Mbps when data trans-
ferring takes place between two AWS EC2 instances located
in Tokyo, Japan and Virginia, USA. Furthermore, [79] con-
cludes that Tsunami UDP is suitable for transferring files
of moderate to large databases e.g. database of sizes 100GB
to 5TB.

C. UDP BASED DATA TRANSFER PROTOCOL (UDT)
UDT [14], [30] is a connection-oriented duplex protocol built
on the top of UDP and is specifically designed for high-speed
wide area optical networks. It has its own reliability and
congestion control mechanism for achieving high bandwidth
utilisation. The UDT architecture is the same on both the
sender and receiver devices i.e. it implements two modules
of UDT-sender and UDT-receiver at both sending
and receiving entities. The data is sent from UDT-sender
to UDT-sender while the control information is passed
between UDT-receiver and UDT-receiver of the two
user devices. It implements a fixed interval timer-based
selective acknowledgment for faster data transfer rather than
acknowledgments for every packet, which results in extra
bandwidth consumptions and transmission delays. These
selectiveACKs are sent if there are new continuously received
data packets. Hence, the control packets consume less band-
width in the faster data transfer and more bandwidth if there
are less number of data packets, in which case, it acts like
basic TCP due to frequently sending ACKs.

Furthermore, it implements the DAIMD (Additive Increase
Multiplicative Decrease (AIMD) with decreasing increases)
as the congestion control algorithm, as described in [14]. It is
called DAIMD because the additive parameter decreases as
the data sending rate is increased. For example, it increases
the data rate x by a factor of α (x), which is a non-increasing
factor and it approaches 0 with the increase of sending data
rate i.e. limx→∞α (x) = 0. This increase is added to the new

3Secure Copy or SCP uses TCP as a transport layer protocol and is used
for securely transferring data files between a local host and a remote host or
between two remote hosts.

95238 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

data rate if the sender receives a positive feedback from the
receiver (e.g. no loss).

UDT has several applications, for instance, it is widely
used in Grid Computing e.g. GridFTP [33] uses UDT for data
transfer [73], [74] that is an extension of the File Transfer
Protocol (FTP) for grid computing. UDT is an open source
and its implementation can be found on SourceForge.4 Lit-
erature works reveal enhanced performance of UDT com-
pared to other protocols e.g. [80] carries out comparative
analysis of UDT and TCP with different link capacities rang-
ing from 100Mbps to 1Gbps in various loss rates and link
delays. For instance, with zero loss rate and 50ms delay,
UDT can maintain bandwidth consumption over 60% and
90% bandwidth for 500Mbps and 1Gbps links, respectively,
while TCP maintains link consumption of less than 10Mbps
for both link capacities of 500Mbps and 1Gbps. Similarly,
experiments in [30] reveal that UDT can reach up to 950Mbps
over 1Gbps link with 110ms delay from Chicago to Ams-
terdam. Other studies [14], [15], [81] show that UDT is
TCP friendly and demonstrate the intra protocol fairness.
However, in high packet loss environment, UDT performs
as poorly as TCP [82], [83]. This is due to the fact that
UDT also uses the congestion window mechanism, as TCP,
for evaluating the transmission rate. Furthermore, we note
that UDT uses packet pair technique for capacity estimation,
however, it may result in underestimation of capacity due to
the cross traffic present in WAN links, which consequently
might result in low throughput.

D. PERFORMANCE-ADAPTIVE UDP (PA-UDP)
PA-UDP [31] is a high-performance protocol for high speed
and high latency networks with reduced configurations
required at the user level. It is an open source and is used by
VMware vCloud Connector 2.5.5 The vCloud Connector is
an enterprise product that allows to connect multiple clouds,
both internal and external, in a single user interface. The
single user interface oversees multiple public and private
clouds and for transferring cloud content from one cloud to
another. The PA-UDP maximises the performance of various
entities of a communication system by taking into account
the CPU latency in accessing data from the disk, the effect of
disk throughput, the receiving application’s buffer, receiver’s
Kernel buffer and the sending application’s data sending rate
since these entities may restrain the overall capacity of the
network.

The PA-UDP sender sends the initial data rate by three-way
handshake. The PA-UDP receiver resets the sending rate by
periodically calculating packet losses, receiving rate, disk
processing rate and buffer size and then sends feedback with
new sending rate to the sender. The sender then adjusts
the sending rate sent by the receiver through change in the
inter-packet delay. In particular, let r (recv) be the receiver

4The C++ library containing the UDTAPI implementation and program-
ming examples can be found here: http://udt.sourceforge.net/software.html.

5complete documentation can be found here: http://pubs.vmware.com/
hybridcloud-25/index.jsp.

data rate in bits/sec at which it can receive packets without
any packet loss and r (disk) be the rate at which data is read
from the disk, then PA-DUP tries to keep the ratio of the two
rates α = r(recv)

r(disk) constant. Hence, the disk’s and the network’s
activity remains constant and the sender does not overwhelm
a slow receiver.

The experimental analysis given in [15], [84] shows that
PA-UDP achieves high throughput and high channel utilisa-
tion by taking into account the system hardware i.e. buffer
size, disk processing rate, for transferring bulk data. However,
we note that PA-UPD handles only one client at a particular
time instance while it puts all the rest data transferring nodes
into Silent mode in a wait queue. Hence, PA-UDP is
suitable for a private network where individual users can
achieve higher data rates. Furthermore, PA-UDP is vulnerable
to high packet losses since it uses the packet loss to calculate
the sending rate, as is done by TCP, which may result in
reduced throughput. It is also evident [85] that TCP achieves
less throughput in the presence of PA-DUP, however, it can
achieve good intra-protocol fairness [15], [85].

E. FAST AND SECURE PROTOCOL (FASP)
FASP is an application layer protocol acquired by Aspera,6,7.
It uses UDP at the transport layer and provides reliable trans-
port for applications that do not require ‘byte stream in-order’
delivery. FASP, unlike TCP, utilises an adaptive rate control
that uses packet delay i.e. RTT, as a congestion signal. The
packet delay for congestion control enables FASP to decouple
reliability and congestion control and it retransmits lost pack-
ets without impacting the transmission rate. It introduces a
separate sending queue for transmitting the incoming packets.
FASP sends probe packets into the network to obtain measure
of queuing delay along the path. FASP reduces its transmis-
sion rate, proportional to the difference between targeted and
current queuing delay, on detecting higher queuing delay.
Similarly, it increases the transmission rate, proportional to
the targeted queuing delay, when queuing delay is reduced
that indicates less congestion [86]. Using queuing delay as
congestion indicator can cause issues with rerouting of path
(explained above). However, Aspera claims their algorithm
estimates RTT accurately. Moreover, FASP provides an auto-
matic checksum and bandwidth dialling capabilities in order
to ensure reliable completion of data transfer with minimal
interruptions. More details on their algorithm are not publicly
available, however, Aspera states that this algorithm follows
Van Jacobson theory explained in [34].

There are several works that utilises FASP for bulk data
transfer. For example, the results in [86] show that FASP takes
approximately 10sec to complete transferring the file of 1GB,
irrespective of the network configuration, which shows that
FASP can transport data very quickly. Another study [87]
analyses that, using Aspera Enterprise Client and Aspera

6http://asperasoft.com/
7The Aspera FASP utility is publically available at http://downloads.

asperasoft.com/downloads

VOLUME 9, 2021 95239



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TABLE 3. Comparison of different TCP variants RB-UDP, Tsunami, PA-UDP, UDT, and FASP for various aspects.

Enterprise Server, FASP can achieve a speed of 10Mpbs over
a 100Mbps network link while transferring a file of 10GB,
when adding 300ms of latency to the network. Furthermore,
the ConnectomeDB8 [88] uses Aspera FASP to enable high
speed downloads for distributing human medical data to the
public over a web-based user interface. We note that, since
Aspera claims that FASP achieves TCP fairness, FASP needs
further analysis for its TCP friendliness as there is no litera-
ture available.

Table 3 summarises various aspects of five different UDP
variants. In particular, we summarise the potentials of these
protocols for solving various issues in relation to detecting
the network congestion, how these protocols achieves smooth
data rate and whether these protocols provide the TCP friend-
liness and intra-protocol fairness. In addition, we discuss the
commercial viability of these protocols.

VII. COMPARISON OF DIFFERENT PROTOCOLS
We have discussed basic mechanism of various transport
layer protocols designed for high speed networks, specif-
ically, for TCP variants i.e. Section IV, application layer
protocols using multiple simultaneous TCP streams in
Section V and various UDP based data transfer protocols
i.e. Section VI. We now discuss the performance of these
protocols investigated in several research works.

A. COMPARISON OF TCP VARIANTS
Recall that a variety of TCP variants [9], [18], [19], [25]–[28],
[38], [89]–[91], among several others have been discussed
in Section IV, address the under utilisation of network’s
resources in high-bandwidth delay networks due to the slow
growth of TCP congestion window. Majority of these proto-
cols manage to achieve TCP friendliness i.e. coexistence of
TCP flows with other communicating flows, and fairness i.e.
bandwidth sharing with other competing flows or flows with

8ConnectomeDB is a database for housing and disseminating data about
human brain structure, function, and connectivity, along with associated
behavioral and demographic data [88].

different RTTs, by modifying the congestion window growth
of TCP.

An example evaluation of TCP friendliness is presented
in [26] for long and short RTT networks in terms of through-
put ratio for different link speeds (in Mbps). In this particular
scenario [26], the authors set the RTT to 10ms and 100ms
with bottleneck bandwidth ranging from 20Mbps to 1Gbps,
these results are shown in Figure 7 (a) and (b) respectively for
short and longRTT networks. It can be observed, Figure 7 (a),
that as the bottleneck bandwidth increases, from 20Mbps to
1Gbps, the CUBIC and HTCP9 [38] consistently performs
better for TCP friendliness and both effectively coexist with
the basic TCP flows. Alternatively, the TCP throughput ratio
for BIC, HSTCP and STCP consistently decreases with the
increase of bottleneck bandwidth, indicating unfair use of
bandwidth with respect to TCP. Similarly, Figure 7 (b) for
long RTT (e.g. 100ms in this example) network, all the
TCP variants over 20Mbps show reasonable TCP friend-
liness. However, as the bottleneck bandwidth is increased
from 20Mbps to 1Gbps, all the tested TCP variants perform
less TCP friendliness and takes majority of the bandwidth.
Among various TCP variants, CUBIC shows better TCP
friendliness, followed by HTCP and HSTCP.

This study [26] further investigates the stability of these
TCP variants. Stability is defined in different terms in the
literature e.g. the smoothness in transmission rate variations
(less oscillations) [26] or a protocol that converges to equi-
librium (defined by the Control theory). The stability of TCP
variants is evaluated for four high-speed TCP flows over long
(220ms) and short (20ms) RTT network links of 10Gbps con-
nected via the bottleneck bandwidth link of 2.5Gbps. In order
to evaluate the stability of various protocols, the authors
vary the buffer of the bottleneck router from 200% to 20%
of the bottleneck link. Figure 8 (a) – (e) show the results
from simulations with 20% of the bottleneck buffer (results

9HTCP is another implementation of TCP for Long Fat Networks (LFN)
i.e. it provides an optimised congestion control algorithm for high speed
networks with high latency. It was created by researchers at the Hamilton
Institute in Ireland. http://www.hamilton.ie/.

95240 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

FIGURE 7. TCP-friendly ratio in Short-RTT (a) Long-RTT (b) Networks [26].

FIGURE 8. Throughput of various protocols in stability test with 20% (a) – (e) buffer [26].

for 200% are not shown, although it shows same behavior
as with 20% of the bottleneck buffer). It can be observed
that the throughput achieved with STCP and HTCP highly
fluctuate and hence cannot maintain communication stability.
Conversely, CUBIC, BIC-TCP and HSTCP perform better
with good stability than the former two TCP variants.
Furthermore, there are several other works where

researchers evaluate the performance of various TCP vari-
ants (specifically those discussed in Section IV e.g. STCP,
BIC-TCP, HSTCP etc.) via analytical evaluation, using sim-
ulations and via experimentations, from different perspective.
For example, the authors in [92] perform a comparative

analysis of FAST TCP with TCP Reno, HSTCP, STCP,
and BIC-TCP for throughput, intra-protocol fairness, stabil-
ity, and responsiveness. The authors determine that FAST
TCP outperforms the other tested protocols for the three
evaluation criteria i.e. fairness, stability and responsiveness,
while it achieves second best overall throughput after the
BIC-TCP. In addition, authors investigate that HSTCP and
STCP achieves higher throughput and improved responsive-
ness compared to the TCP Reno. The STCP attains worse
intra-protocol fairness than TCP Reno, while BIC-TCP
and HSTCP accomplish similar intra-protocol fairness to
Reno. Similarly, [93] carries out a comparative analysis TCP

VOLUME 9, 2021 95241



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

FIGURE 9. Throughput of the protocols [98].

Westwood, TCP Reno, and TCP SACK (Selective ACK) for
multi-path routes and finds that TCP Westwood is robust to
packet reordering introduced by the network. They realise
that TCPWestwood is capable of obtaining better aggregated
throughput than Reno and SACK when the network layer
uses multiple paths, however, the authors do not discuss
their performance in the presence of bottleneck [94]. Another
study [95] shows that XCP converges more slowly and unnec-
essarily prolongs the flows due to increasing the window size
of new flows and reducing the window sizes of the existing
flows.

B. COMPARISON OF PROTOCOLS OF MULTIPLE
TCP STREAMS
Several works have evaluate the performance of these various
protocols that utilise multiple TCP connections i.e. GridFTP
[33], FDT [68], BBCP [69]. The authors in [96] evaluate
the GridFTP for throughput, fairness and CPU usage in
comparison with GridCopy [97] and UDT [14] protocols
for bulk data transfer. This analysis is carried out in a wide
area campus network and is restricted to 2Gbps bandwidth
connectivity. They investigate that GridFTP can achieve close
to 95% throughput compared to GridCopy 82% and UDT
94.4%, similarly, they respectively achieve protocol fairness
of 92.3%, 92% and 93.4%. However, GridFTP’s throughput
reduces with small file transfers and when it uses less than
4 connections for data transfer, in which case, it creates
excessive control overhead. Another work [74] evaluates the
performance of GridFTP over TCP andGridFTP over UDT in
terms of throughput on four different geographical locations.
They suggest UDT as an alternative protocol to GridFTP due
to high throughput achieved on the entire set of testbeds [74].
There are numerous studies that investigate comparative

analyses of FDT with other multiple TCP sessions enabled
protocols, such as GridFTP. The authors in [98] present com-
parative analysis of GridFTP and FDT for long fat networks
and evaluate their effectiveness in terms of throughput for var-
ious RTTs and the level of congestion induced by concurrent
TCP or UDP flows. They also compare two well-known UDP
variants for high-speed data transfer protocols i.e. UDT and
Tsunami. This comparative analysis for throughputwith vari-
ous protocols is shown in Figure 9 with an increasing order of

RTT in Figure 9 (a), number of TCP flows in Figure 9 (b) and
background traffic rate i.e. Figure 9 (c); various parametric
settings are also presented. It can be observed in Figure 9 (a)
that FDT outperforms all the other protocols for less than
100ms RTT with the throughput of 2.34Gbps. However, its
throughput rapidly decreases compared to GridFTPwith TCP
for greater than 100ms RTT. GridFTP with TCP performs
better for greater than 100ms RTT. Overall, GridFTP and
FDT with TCP outperform GridFTP with UDP or Tsunami
in this setting. Furthermore, it can be observed in Figure 9 (b)
that TCP-based protocols become unreliable with multiple
TCP flows, e.g. FDT becomes inoperative due to induced
congestion. In addition, throughput of GridFTP with TCP
decrease quickly as compared to GridFTP with UDT while
introducing multiple TCP flows during communication. Sim-
ilarly, as shown in Figure 9 (c), throughput of GridFTP with
TCP and FDT decreases with the increase of congestion
induced by UDP background traffic. Alternatively, through-
put of GridFTP with UDT and Tsunami is less affected by
the UDP background traffic. Similar study [72] also evalu-
ates the performance of GridFTP, FDT and UDT in terms
of goodput and fairness in the presence of multiple traffic
flows over a real network deployed in different geographi-
cal locations. Some other works e.g. [99] uses BaBar Copy
Program BBCP10 [69] to transfer hundreds of Tbytes of cos-
mological data between different geographic locations aswell
as to efficiently copy data between local systems.

C. COMPARISON OF UDP BASED PROTOCOLS
The motivation behind various modifications suggested to
UDP is to achieve high performance for transferring bulk
amount of data (usually in Tbytes or higher in size) around
the globe e.g. across different countries or continents. This
data is usually transferred over high-speed links of 10Gbps
or more to researchers for storage and research and analysis.
Such an example is the cosmological data generated by Dark
Sky Simulations project [99] to make accessible model of the
evolution of large-scale Universe and to transfer this data to
research laboratories at different locations, such as, LANL,11

10BBCP is an excellent representative of peer-to-peer computing used to
securely copy data from one location to another location.

11http://www.lanl.gov/

95242 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TABLE 4. TCP-friendliness of four protocols over 1Gbps with 160ms
RTT [15].

SLAC,12 LHC,13 SKA14 etc. It is critical to summarise and to
accomplish comparative analyses of findings for humungous
amount of data transferredwith these protocols that have been
carried out in the literature thus far for the benefit of the
researchers.

Several works evaluate the performance of these protocols
in the presence of other traffic e.g. TCP traffic, for various
performance metrics, such as effect of RTT, loss rate, fair-
ness over throughput, CPU utilization, inter/intra-protocol
fairness etc. The authors in [15] evaluate the effect of
data file size, RTT and loss rate over throughput and
inter/intra-protocol fairness of different UDP variants of
RB-UDP, Tsunami, UDT, and PA-UDP. They find that
increasing the transmitting file size (e.g. from 100MB to
4GB in this experiment) has direct impact over the achieved
throughput, where PA-UDP achieves overall highest through-
put of up to 916Mbps followed by RB-UDP and Tsunami.
The UDT, due to complex congestion control mechanism,
achieves the least throughput. The throughput of RB-UDP
declines with the files size of 2GB and higher due to the
cache limitation of the end systems. They also find the same
observations with varying RTTs (i.e. from 2ms to 320ms) and
packet loss ratio (from 0% to 1%); they noted that, among all,
the PA-UDP outperforms over others.

Further analysis [15] shows the intra-protocol fairness of
two and four parallel flows, each UDP/STCP flow transfers a
file of 3GB over 1Gbps link with 160ms RTT and 0.01% loss
ratio. They examine that all the four UDP variants have sim-
ilar intra-protocol fairness, except for PA-UDP in the exis-
tence of four parallel flows where it shows less intra-protocol
fairness compared to two parallel flows. They further evaluate
the performance of these UDP variants in the presence of TCP
flows to simulate real-world networking scenario since the
backhaul communication links share the bandwidth among
different transport protocols. In particular, to evaluate the
inter-protocol fairness, they use one UDP-based flow from
each of the four UDP variants and one STCP flow while
transferring 3GB files over 1Gbps link with 30ms and 60ms
RTT along with 0.01% loss ratio. The inter-protocol fairness
together with the achieved throughput are shown in Table 4.
They determine that all the tested UDP variants provide good
TCP friendliness where the TCP flows achieve reasonable
throughput of up to 91Mbps over two different communica-
tion links.

12https://www6.slac.stanford.edu/
13http://home.cern/topics/large-hadron-collider
14http://www.ska.gov.au/

Another study [100] examines the throughput and packet
loss of PA-UDP and Tsunami over a Gigabit Ethernet
switch on a Local Area Network (LAN) with the buffer
size of 750MB, while files ranging from 100MB to 5GB
are being transferred using the two protocols. The authors
find that PA-UDP results in better throughput and virtually
zero packet loss compared to Tsunami, e.g. PA-UDP results
in the throughput of 934Mbps and zero packet loss for the
file transfer of 1GB, while Tsunami only achieves 295Mbps
throughput and 41.5% packet loss, which in addition, results
in timeout for a file transfer of 3GB and 5GB. The authors
in [100] conclude that the Tsunami protocol cannot be set
with optimal settings since its performance is not predictable
and is not suitable for congested networks [31]. Similarly,
another study [101] evaluates the performance of UDT,
RB-UDP, Tsunami along with the basic UDP in terms of
packet delay, jitter, packet loss and throughput. The authors
observe that the basic UDP, UDT and Tsunami experience
higher packet delay and jitter compared to RB-UDP. Further-
more, UDT experiences higher packet loss compared to other
UDP variants, with RB-UPD experiencing the least packet
loss while higher throughput than the other UDP variants.
Hence, the aggressive bulk data transfer RB-UDP protocol
has been designed for extremely high bandwidth networks
and for achieving high Quality-of-Service (QoS) [102].

There are several other works [87], [88], [103], [104]
that utilise FASP for downloading massive files of several
gigabytes, such as medical imaging data of several thousand
objects collected over several years. An example of data
transfer between the universities in US and UK, the FASP
achieves a rate of 70–85Mbps while basic File Transfer Pro-
tocol (FTP) can only obtain a transfer speed of 4–12Mbps
[103]. Hence, downloading a typical file of 10GB between
these two locations would take less than 15min over FASP
compared to almost 3hrs over FTP. The authors in [104]
examine that FASP manages to transfer at the rate of 6Gbps
over a 10Gbps of link bandwidth when using an MTU
of 1500byes. They further evaluate the FASP’s utilisation
during the handover between a lower bandwidth and higher
delay networks. The analysis [104] shows that the packet
loss rate highly fluctuates and increases with the increase of
available bandwidth of 100, 400, and 1000Mbps. However,
they do not provide any firm justifications for this behaviour
of FASP, additionally; they do not provide analysis of FASP
along with other transport protocols during the handover
process for communicating data among heterogenous access
networks.

Table 5 presents summary of key findings from literature
using different evaluation criteria for various TCP and UDP
variants and protocols with multiple TCP streams.

VIII. FUTURE RESEARCH DIRECTIONS
We note that various multimedia real-time applications utilise
connectionless transport protocols, such as UDP and its vari-
ants, across the internet community. We further, to the best of
our knowledge, note that researchers have evaluated the

VOLUME 9, 2021 95243



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TA
B

LE
5.

Su
m

m
ar

y
of

ke
y

fi
nd

in
gs

by
va

ri
ou

s
w

or
ks

in
lit

er
at

ur
e

us
in

g
di

ff
er

en
t

ev
al

ua
ti

on
cr

ite
ri

a
fo

r
va

ri
ou

s
TC

P
an

d
U

D
P

va
ri

an
ts

an
d

fo
r

pr
ot

oc
ol

s
w

it
h

m
ul

ti
pl

e
TC

P
st

re
am

s.

95244 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

TA
B

LE
5.

(C
on

tin
ue

d.
)S

um
m

ar
y

of
ke

y
fi

nd
in

gs
by

va
ri

ou
s

w
or

ks
in

lit
er

at
ur

e
us

in
g

di
ff

er
en

t
ev

al
ua

ti
on

cr
ite

ri
a

fo
r

va
ri

ou
s

TC
P

an
d

U
D

P
va

ri
an

ts
an

d
fo

r
pr

ot
oc

ol
s

w
it

h
m

ul
ti

pl
e

TC
P

st
re

am
s.

VOLUME 9, 2021 95245



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

performance of different UDP variants for static data file
transfers. However, it requires investigating the performance
of real-time multimedia applications, such as VoIP, live
video/voice streaming etc., for maintaining the QoS of
these applications for various performance metrics such
as packet loss, jitter, end-to-end delay etc. Additionally,
the inter-protocol fairness of FASP also needs to be inves-
tigated with other transport layer protocols since it makes use
of majority of the capacity of a communication link. Further-
more, the TCP friendliness of FASP needs to be studied.
Recall that the transport layer protocols have significant

role in determining the end-to-end performance in a network;
it is difficult to achieve high throughput despite of high band-
width provisioning networks e.g. available bandwidth of 5G
mmWave15 in 5G networks. Hence, it is important to see the
effect of various parameters within transport layer protocol
variants over the newly introduced features and capabilities
of 5G networks e.g. Network slicing. In particular: 1.) The
use of MTU (Maximum Transmission Unit) instead of MSS
(Maximum Segment Size) and optimising their values for
5G mmWave is challenging; since the TCP with default
MTU size has been proved to be under utilising the high
bandwidth of 5G mmWave networks. (2.) The initial conges-
tion window of TCP with slow start seems not suitable for
5G and beyond networks; it is due to the reason that data
sending rate in 5G networks is tremendously high whereas
the small cwnd starting can take longer to efficiently utilise
the available 5G network’s bandwidth. (3.) The exponential
backoff retransmission timeout may have severe effects over
the performance of TCP for 5G and beyond networks, since
when the long failure occurs, the probability of triggering
timeouts are high that may have negative effect other the
performance of 5G networks. (4.) The TCP loss detection
works fine for wired networks, however, the blockage issues
in 5G networks can lower the their performance that demands
for mechanism for improving the loss detection mechanisms.

The smart devices i.e. smartphones, tablets, notebooks, are
used for a variety of purposes and it is evident [105] that they
would exceed the world’s population and the average mobile
cellular connection speed will reach 43.9Mbps by 2023; 5G
connection speed will reach 575Mbps by 2023. Moreover,
majority of mobile applications and information sharing is
via video on demand. Hence, it is vital to evaluate various
transport layer protocols for user experience while accessing
high bandwidth demanding applications. One of the possible
directions is to evaluate the extra processing that occurs in
the user device’s processor for accessing these applications
via various UDP variants. Similarly, it also needs to evaluate
the effect over battery power required to transfer data with
different transport layer protocols, since some transport pro-
tocols (e.g. basic TCP vs. basic UDP) add more overheads
compared to others e.g. extra computation, communication

15Detailed discussion over 5G mmWave network procedures and
parameters for reliable end-to-end communication can be found in
https://upcommons.upc.edu/bitstream/handle/2117/331626/09205403.pdf

overhead. In addition, the extra communication overhead will
also affect users with fixed 5G/6G data plan.

IX. CONCLUSION
In this survey, a review of several innovative transport layer
protocols replacing the legacy transport protocols along with
their comparison in terms of several operational perfor-
mance metrics of throughput, packet loss, inter/intra protocol
fairness etc. and non-operational criteria e.g. deployment,
is presented. Additionally, we classify these protocols into
three categories of reliable, unreliable and protocols that
use multiple protocol’s streams. We demonstrate the work-
ing mechanism of these protocols and further investigate
their performance for transporting huge volumes of data in
high-speed and low-latency networks that have been carried
out in recent research literature. In summary, recent research
works on innovative transport protocols and their comparative
investigations have significant importance over fulfilling the
requirements of emerging data-intensive applications in the
presence of high-speed networks. We summarise and analyse
them together into single article and we truly believe this
research to be a source of motivation towards development
and deployment of data-intensive applications in high-speed
networks.

REFERENCES
[1] J. Lei and L. Kong, ‘‘Fundamentals of big data in radio astronomy,’’ in

Big Data in Astronomy. Amsterdam, The Netherlands: Elsevier, 2020,
pp. 29–58.

[2] P. Pavarangkoon, K. T. Murata, K. Yamamoto, K. Muranaga, A. Higuchi,
T. Mizuhara, Y. Kagebayashi, C. Charnsripinyo, N. Nupairoj, T. Ikeda,
J. Tanaka, and K. Fukazawa, ‘‘Development of international mirroring
system for real-time Web of meteorological satellite data,’’ Earth Sci.
Informat., vol. 13, pp. 1461–1476, Aug. 2020.

[3] P. Chamoso, A. González-Briones, A. Rivas, F. D. L. Prieta, and
J. M. Corchado, ‘‘Social computing in currency exchange,’’ Knowl. Inf.
Syst., vol. 61, no. 2, pp. 733–753, Nov. 2019.

[4] J. S. Allwood, N. Fierer, R. R. Dunn, M. Breen, B. J. Reich, E. B. Laber,
J. Clifton, N. S. Grantham, and S. A. Faith, ‘‘Use of standardized bioin-
formatics for the analysis of fungal DNA signatures applied to sample
provenance,’’ Forensic Sci. Int., vol. 310, May 2020, Art. no. 110250.

[5] A. D. Baxevanis, G. D. Bader, and D. S. Wishart, Bioinformatics.
Hoboken, NJ, USA: Wiley, 2020.

[6] R. Blossey, Computational Biology: A Statistical Mechanics Perspective.
Boca Raton, FL, USA: CRC Press, 2019.

[7] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, ‘‘Folding@home
and Genome@home: Using distributed computing to tackle previously
intractable problems in computational biology,’’ 2009, arXiv:0901.0866.
[Online]. Available: http://arxiv.org/abs/0901.0866

[8] L. Breitwieser, A. Hesam, J. D. Montigny, V. Vavourakis, A. Iosif,
J. Jennings, M. Kaiser, M. Manca, A. D. Meglio, Z. Al-Ars, and
F. Rademakers, ‘‘BioDynaMo: An agent-based simulation platform for
scalable computational biology research,’’ bioRxiv, 2020.

[9] C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doyle, H. Newman,
S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell, O. Martin,
andW.-C. Feng, ‘‘FAST TCP: From theory to experiments,’’ IEEE Netw.,
vol. 19, no. 1, pp. 4–11, Jan. 2005.

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. London, U.K.: Pearson, 2005.

[11] I. Ullah, Z. Shah, and A. Baig, ‘‘S-TFRC: An efficient rate control
scheme for multimedia handovers,’’ Comput. Sci. Inf. Syst., vol. 13, no. 1,
pp. 45–69, 2016.

[12] Z. Shah, A. Suleman, I. Ullah, and A. Baig, ‘‘Effect of transmis-
sion opportunity and frame aggregation on VoIP capacity over IEEE
802.11n WLANs,’’ in Proc. 8th Int. Conf. Signal Process. Commun. Syst.
(ICSPCS), Dec. 2014, pp. 1–7.

95246 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

[13] P. A. Dana, Z. Esmaeilbeig, andM.-R. Sadeghi, ‘‘Reliability enhancement
and packet loss recovery of any steganographic method in voice over IP,’’
Wireless Netw., vol. 26, pp. 5817–5823, Mar. 2020.

[14] Y. Gu and R. L. Grossman, ‘‘UDT: UDP-based data transfer for high-
speedwide area networks,’’Comput. Netw., vol. 51, no. 7, pp. 1777–1799,
May 2007.

[15] Z. Yue, Y. Ren, and J. Li, ‘‘Performance evaluation of UDP-based high-
speed transport protocols,’’ in Proc. IEEE 2nd Int. Conf. Softw. Eng.
Service Sci. (ICSESS), Jul. 2011, pp. 69–73.

[16] I. Ullah, K. Sattar, Z. U. Qamar, W. Sami, and A. Ali, ‘‘Transmissions
failures and load-balanced routing metric for wireless mesh networks,’’
in Proc. 8th Int. Conf. High-Capacity Opt. Netw. Emerg. Technol.,
Dec. 2011, pp. 159–163.

[17] S. Floyd, S. Ratnasamy, and S. Shenker, ‘‘Modifying TCP’s congestion
control for high speeds,’’ Tech. Rep., May 2002.

[18] S. Floyd et al., ‘‘Highspeed TCP for large congestion windows,’’
Tech. Rep., 2003.

[19] T. Kelly, ‘‘Scalable TCP: Improving performance in highspeed wide area
networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 2,
pp. 83–91, Apr. 2003.

[20] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe,
R. L. A. Cottrell, J. C. Doyle, H. Newman, F. Paganini, S. Ravot, and
S. Singh, ‘‘FAST kernel: Background theory and experimental results,’’
in Proc. 1st Int. Workshop Protocols Fast Long-Distance Netw., 2003,
pp. 3–4.

[21] I. Ullah, Z. Shah, M. Owais, and A. Baig, ‘‘VoIP and tracking capacity
over WiFi networks,’’ in Proc. IEEE 73rd Veh. Technol. Conf. (VTC
Spring), May 2011, pp. 1–5.

[22] J. Korhonen, S. Park, J. Zhang, C. Hwang, and P. Sarolahti. (2006). Link
Characteristic Information for IP Mobility Problem Statement. [Online].
Available: https://draft-korhonenmobopts-link-characteristics-ps-01.
txt

[23] Z. Shah, A. Baig, H. Samir, and I. Ullah, ‘‘State aware enhancement in
DCCP for multimedia handovers,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2012, pp. 3328–3333.

[24] S. Ullah, I. Ullah, H. K. Qureshi, R. Haw, S. Jang, and C. S. Hong,
‘‘Passive packet loss detection in Wi-Fi networks and its effect on HTTP
traffic characteristics,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), Feb. 2014,
pp. 428–432.

[25] L. Xu, K. Harfoush, and I. Rhee, ‘‘Binary increase congestion con-
trol (BIC) for fast long-distance networks,’’ in Proc. 33rd Annu. Joint
Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 4, Mar. 2004,
pp. 2514–2524.

[26] S. Ha, I. Rhee, and L. Xu, ‘‘CUBIC: A new TCP-friendly high-speed TCP
variant,’’ ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[27] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, ‘‘TCP
westwood: End-to-end congestion control for wired/wireless networks,’’
Wireless Netw., vol. 8, no. 5, pp. 467–479, Sep. 2002.

[28] D. Katabi, M. Handley, and C. Rohrs, ‘‘Congestion control for high
bandwidth-delay product networks,’’ ACM SIGCOMM Comput. Com-
mun. Rev., vol. 32, no. 4, pp. 89–102, Oct. 2002.

[29] E. He, J. Leigh, O. Yu, and T. A. Defanti, ‘‘Reliable blast UDP: Pre-
dictable high performance bulk data transfer,’’ in Proc. IEEE Int. Conf.
Cluster Comput., Sep. 2002, pp. 317–324.

[30] Y. Gu and R. L. Grossman, ‘‘UDT: An application level transport protocol
for grid computing,’’ in Proc. 2nd Int. Workshop Protocols Fast Long-
Distance Netw., 2003, pp. 1–3.

[31] B. Eckart, X. He, and Q.Wu, ‘‘Performance adaptive UDP for high-speed
bulk data transfer over dedicated links,’’ in Proc. IEEE Int. Symp. Parallel
Distrib. Process. (IPDPS), Apr. 2008, pp. 1–10.

[32] M. R. Meiss, ‘‘Tsunami: A high-speed rate-controlled protocol for file
transfer,’’ Indiana Univ., Bloomington, IN, USA, Tech. Rep., 2004.

[33] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and
S. Tuecke, ‘‘GridFTP: Protocol extensions to FTP for the grid,’’ Global
Grid ForumGFD-RP, vol. 20, pp. 1–21, 2003.

[34] V. Jacobson, ‘‘Congestion avoidance and control,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 18, no. 4, pp. 314–329, 1988.

[35] B. Turkovic, F. A. Kuipers, and S. Uhlig, ‘‘Fifty shades of con-
gestion control: A performance and interactions evaluation,’’ 2019,
arXiv:1903.03852. [Online]. Available: http://arxiv.org/abs/1903.03852

[36] J. Postel, Transmission Control Protocol Specification,
document RFC 793, ARPANET Working Group, 1981.

[37] M. Allman et al., ‘‘TCP congestion control,’’ Tech. Rep., 1999.

[38] D. Leith and R. Shorten, ‘‘H-TCP: TCP for high-speed and long-distance
networks,’’ in Proc. PFLDnet, 2004, pp. 1–16.

[39] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, ‘‘TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,’’ in Proc. 7th Annu. Int. Conf. Mobile Comput. Netw., 2001,
pp. 287–297.

[40] L. A. Grieco and S. Mascolo, ‘‘Performance evaluation and comparison
of Westwood+, New Reno, and Vegas TCP congestion control,’’ ACM
SIGCOMMComput. Commun. Rev., vol. 34, no. 2, pp. 25–38, Apr. 2004.

[41] K. Yamada, R. Wang, M. Y. Sanadidi, and M. Gerla, ‘‘TCP Westwood
with agile probing: Dealing with dynamic, large, leaky pipes,’’ in Proc.
IEEE Int. Conf. Commun., vol. 2, Jun. 2004, pp. 1070–1074.

[42] D. Kliazovich, F. Granelli, and D. Miorandi, ‘‘Logarithmic window
increase for TCP Westwood+ for improvement in high speed, long
distance networks,’’ Comput. Netw., vol. 52, no. 12, pp. 2395–2410,
Aug. 2008.

[43] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, ‘‘TIMELY: RTT-based
congestion control for the datacenter,’’ ACM SIGCOMM Comput. Com-
mun. Rev., vol. 45, no. 4, pp. 537–550, 2015.

[44] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, ‘‘TCP LoLa: Con-
gestion control for low latencies and high throughput,’’ in Proc. IEEE
42nd Conf. Local Comput. Netw. (LCN), Oct. 2017, pp. 215–218.

[45] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’ Queue, vol. 14, no. 5,
pp. 20–53, Oct. 2016.

[46] C. Caini and R. Firrincieli, ‘‘TCP hybla: A TCP enhancement for het-
erogeneous networks,’’ Int. J. Satell. Commun. Netw., vol. 22, no. 5,
pp. 547–566, Sep. 2004.

[47] S. Floyd and V. Jacobson, ‘‘Random early detection gateways for con-
gestion avoidance,’’ IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[48] K. Ramakrishnan et al., ‘‘The addition of explicit congestion notification
(ECN) to IP,’’ Tech. Rep., 2001.

[49] S. Floyd and K. Fall. (1997). Router Mechanisms to Support End-to-
End Congestion Control. [Online]. Available: http://www.nrg.ee.lbl.gov/
floyd/end2end-paper.html

[50] D. Lin and R. Morris, ‘‘Dynamics of random early detection,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 27, no. 4, pp. 127–137, Oct. 1997.

[51] T. J. Ott, T. V. Lakshman, and L. H. Wong, ‘‘SRED: Stabilized RED,’’
in Proc. IEEE 18th Annu. Joint Conf. IEEE Comput. Commun. Soc.
(INFOCOM), vol. 3, Mar. 1999, pp. 1346–1355.

[52] R. Pan, B. Prabhakar, andK. Psounis, ‘‘CHOKe—A stateless active queue
management scheme for approximating fair bandwidth allocation,’’ in
Proc. 19th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM),
vol. 2, Mar. 2000, pp. 942–951.

[53] W. R. Stevens, ‘‘TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms,’’ Tech. Rep., 1997.

[54] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, ‘‘TCP selective
acknowledgment options,’’ Tech. Rep., 1996.

[55] R.-S. Cheng, H.-T. Lin, W.-S. Hwang, and C.-K. Shieh, ‘‘Improving the
ramping up behavior of TCP slow start,’’ in Proc. 19th Int. Conf. Adv. Inf.
Netw. Appl. (AINA), vol. 1, 2005, pp. 807–812.

[56] H. Wang, H. Xin, D. S. Reeves, and K. G. Shin, ‘‘A simple refinement of
slow-start of TCP congestion control,’’ in Proc. 5th IEEE Symp. Comput.
Commun. (ISCC), Jul. 2000, pp. 98–105.

[57] N. Hu and P. Steenkiste, ‘‘Improving TCP startup performance using
active measurements: Algorithm and evaluation,’’ in Proc. 11th IEEE Int.
Conf. Netw. Protocols, Nov. 2003, pp. 107–118.

[58] B. Moraru, F. Copaciu, G. Lazar, and V. Dobrota, ‘‘Practical analysis of
TCP implementations: Tahoe, Reno, Newreno,’’ in Proc. RoEduNet Int.
Conf., vol. 1, 2003, pp. 125–138.

[59] F. Baccelli, G. Carofiglio, and M. Piancino, ‘‘Stochastic analysis of
scalable TCP,’’ in Proc. IEEE INFOCOM, Apr. 2009, pp. 19–27.

[60] G. Huston, ‘‘Gigabit TCP,’’ Internet Protocol J., 2006.
[61] H. Jamal andK. Sultan, ‘‘Performance analysis of TCP congestion control

algorithms,’’ Int. J. Comput. Commun., vol. 2, no. 1, pp. 18–24, 2008.
[62] M. Nirmala and R. V. Pujeri, ‘‘Performance of TCP Vegas, Bic and Reno

congestion control algorithms on iridium satellite constellations,’’ Int. J.
Comput. Netw. Inf. Secur., vol. 4, no. 12, p. 40, 2012.

[63] D. Lopez-Pacheco and C. Pham, ‘‘Performance comparison of TCP,
HSTCP and XCP in high-speed, highly variable-bandwidth environ-
ments,’’ in Proc. IEEE 3rd Int. Conf. Netw. Protocols (ICNP), Berlin,
Germany, Oct. 2004.

VOLUME 9, 2021 95247



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

[64] R. J. La, J. Walrand, and V. Anantharam, Issues in TCP vegas. Princeton,
NJ, USA: Citeseer, 1999.

[65] K. Ramakrishnan and S. Floyd, A Proposal to Add Explicit Congestion
Notification (ECN) to IP, RFC 2481, Jan. 1999.

[66] (2016). Akamai Acquires Fastsoft. [Online]. Available: https://www.
akamai.com/us/en/about/news/press/2012-press/akamai-acquires-
fastsoft.jsp

[67] (2016). Implementation of XCP in NS. [Online]. Available: http://
www.isi.edu/nsnam/ns/doc/node238.html

[68] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre,
A. Muraru, A. Costan, M. Dediu, and C. Stratan, ‘‘MonALISA: An
agent based, dynamic service system to monitor, control and opti-
mize distributed systems,’’ Comput. Phys. Commun., vol. 180, no. 12,
pp. 2472–2498, Dec. 2009.

[69] A. Hanushevsky, A. Trunov, and L. Cottrell, ‘‘Peer to peer computing for
secure high performance data copying,’’ Tech. Rep., SLAC-PUB-8908,
2001.

[70] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, ‘‘The globus
striped GridFTP framework and server,’’ in Proc. ACM/IEEE Conf.
Supercomput. Washington, DC, USA: IEEE Computer Society, 2005,
p. 54.

[71] R. Esposito, P. Mastroserio, G. Tortone, and F. Taurino, ‘‘Standard FTP
and GridFTP protocols for international data transfer in Pamela satel-
lite space experiment,’’ 2003, arXiv preprint hep-ex/0305084. [Online].
Available: https://arxiv.org/abs/hep-ex/0305084

[72] S.-Y. Yu, N. Brownlee, and A. Mahanti, ‘‘Characterizing performance
and fairness of big data transfer protocols on long-haul networks,’’
in Proc. IEEE 40th Conf. Local Comput. Netw. (LCN), Oct. 2015,
pp. 213–216.

[73] (2016). Research Data Management Simplified. [Online]. Available:
https://www.globus.org/

[74] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster, ‘‘UDT as an alterna-
tive transport protocol for GridFTP,’’ in Proc. 7th Int. Workshop Protocols
Future, Large-ScaleDiverse Netw. Transports (PFLDNeT), Tokyo, Japan:
Citeseer, 2009.

[75] (2016). SLAC: National Acecellration Laboratory. [Online]. Available:
https://www6.slac.stanford.edu/

[76] Faster Bulk Transfer Starring: UDP. (2016). [Online]. Available:
http://www.csm.ornl.gov/~dunigan/net100/udp/UDP_Tsunami.html

[77] (2016). Cloud, Big Data and Mobile. [Online]. Available: http://
harish11g.blogspot.com.au/

[78] (2016). Moving Big Data Into the Cloud With Tsunami UDP.
[Online]. Available: https://blogs.aws.amazon.com/bigdata/post/
Tx33R88KHCWEOHT/Moving-Big-Data-into-the-Cloud-with-
Tsunami-UDP

[79] A. S. Sait. (Dec. 2014). Strategies forMigrating Oracle Database to AWS.
[Online]. Available: https://d0.awsstatic.com/whitepapers/strategies-for-
migrating-oracle-database-to-aws.pdf

[80] S. Shin, K. Dhondge, and B.-Y. Choi, ‘‘Understanding the perfor-
mance of TCP and UDP-based data transfer protocols using EMULAB,’’
Tech. Rep., 2012.

[81] Y. Gu, X. Hong, and R. L. Grossman, ‘‘Experiences in design and imple-
mentation of a high performance transport protocol,’’ in Proc. ACM/IEEE
Conf. Supercomput. Washington, DC, USA: IEEE Computer Society,
Nov. 2004, p. 22.

[82] (2016). White Paper, Ultra High-Speed Transport Technology. [Online].
Available: http://asperasoft.com/resources/white-papers/ultra-high-
speed-transport-technology/

[83] Y. Ren, H. Tang, J. Li, and H. Qian, ‘‘Performance comparison of
UDP-based protocols over fast long distance network,’’ Tech. Rep., 2009.

[84] C. Xie, ‘‘A dynamic performance-based flow control method for high-
speed data transfer,’’ Tech. Rep.

[85] W. Wang, M. Tang, Y. Ren, and J. Li, ‘‘Characterization and evalua-
tion of end-system performance aware transport schemes for fast long-
distance optical networks,’’ Inf. Technol. J., vol. 9, no. 4, pp. 766–773,
May 2010.

[86] Z. Conghua and C. Meiling, ‘‘Analysis of fast and secure protocol based
on continuous-time Markov chain,’’ China Commun., vol. 10, no. 8,
pp. 137–149, Aug. 2013.

[87] S. L. Pakula and R. O. Ernst, ‘‘Method and system of transmitting
data over a network using a communication protocol,’’ U.S. Patent
20 150 304 459, Oct. 22, 2015.

[88] M. R. Hodge, W. Horton, T. Brown, R. Herrick, T. Olsen, M. E. Hileman,
M. McKay, K. A. Archie, E. Cler, M. P. Harms, G. C. Burgess,
M. F. Glasser, J. S. Elam, S. W. Curtiss, D. M. Barch, R. Oostenveld,
L. J. Larson-Prior, K. Ugurbil, D. C. Van Essen, and D. S. Marcus,
‘‘ConnectomeDB—Sharing human brain connectivity data,’’ NeuroIm-
age, vol. 124, pp. 1102–1107, Jan. 2016.

[89] T. Hatano, M. Fukuhara, H. Shigeno, and K.-I. Okada, ‘‘TCP-friendly
SQRT TCP for high speed networks,’’ in Proc. APSITT, 2003,
pp. 455–460.

[90] Y. Gu, X. Hong, M. Mazzucco, and R. Grossman, ‘‘SABUL: A high
performance data transfer protocol,’’ IEEE Commun. Lett., 2003.

[91] M. Alizadeh, A. Greenberg, D. A.Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, ‘‘Data center TCP (DCTCP),’’ ACM
SIGCOMMComput. Commun. Rev., vol. 40, no. 4, pp. 63–74, Aug. 2010.

[92] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, ‘‘FAST TCP: Motivation,
architecture, algorithms, performance,’’ IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[93] M. Gerla, S. Lee, and G. Pau, ‘‘TCP Westwood simulation studies in
multiple-path cases,’’ in Proc. SPECTS, 2002, pp. 1–7.

[94] J. Iyengar, ‘‘Concurrent multipath transfer using SCTP multihoming,’’ in
Proc. Multihoming Commun. SCTP, Stream Control Transmiss. Protocol,
2012, p. 99.

[95] N. Dukkipati and N. McKeown, ‘‘Why flow-completion time is the right
metric for congestion control,’’ACMSIGCOMMComput. Commun. Rev.,
vol. 36, no. 1, pp. 59–62, Jan. 2006.

[96] J. Suresh, A. Srinivasan, and A. Damodaram, ‘‘Performance analysis of
various high speed data transfer protocols for streaming data in long fat
networks,’’ in Proc. Int. Conf. Recent Trends Inf., Telecommun. Comput.
(ITC), Mar. 2010, pp. 234–237.

[97] R. Kettimuthu, W. Allcock, L. Liming, J.-P. Navarro, and I. Foster,
‘‘GridCopy: Moving data fast on the grid,’’ in Proc. IEEE Int. Parallel
Distrib. Process. Symp., Mar. 2007, p. 363.

[98] S.-Y. Yu, N. Brownlee, and A. Mahanti, ‘‘Comparative performance
analysis of high-speed transfer protocols for big data,’’ in Proc. 38th
Annu. IEEE Conf. Local Comput. Netw., Oct. 2013, pp. 292–295.

[99] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E. Holz,
and P. M. Sutter, ‘‘Dark sky simulations: Early data release,’’ 2014,
arXiv:1407.2600. [Online]. Available: http://arxiv.org/abs/1407.2600

[100] Y. Zhu, A. Bassi, P. Massonet, and D. Talia, ‘‘Mechanisms for high
volume data transfer in grids,’’ Inst. Knowl. Data Manage., CoreGRID,
Netw. Excellence, Tech. Rep., 2007.

[101] R. K. Ahir, ‘‘Improving a performance of MPEG video streams with
different UDP variants,’’ Int. J. Adv. Res. Comput. Commun. Eng., vol. 2,
no. 12, pp. 1–4, 2013.

[102] E. Sundararajan, A. Harwood, and K. Ramamohanarao, ‘‘Lossy bulk
synchronous parallel processing model for very large scale grids,’’ 2006,
arXiv:cs/0611091. [Online]. Available: https://arxiv.org/abs/cs/0611091

[103] D. S. Marcus et al., ‘‘Human connectome project informatics: Quality
control, database services, and data visualization,’’ NeuroImage, vol. 80,
pp. 202–219, Oct. 2013.

[104] P. Hagernäs, ‘‘5G user satisfaction enabled by FASP: Evaluating the
performance of Aspera’s FASP,’’ Tech. Rep., 2015.

[105] (2014). Cisco Annual Internet Report (2018–2023) White Paper.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-
741490.html

KHAWAR KHURSHID received the Ph.D. degree
fromMichigan State University (MSU). He is cur-
rently an Associate Professor with the National
University of Sciences and Technology (NUST),
Pakistan. He is the Director of the Center of Excel-
lence in FPGA and ASIC Research (CEFAR),
focusing on solutions development on PSoCs and
embedded hardware. He specializes in signal pro-
cessing and communications, image processing,
embedded design, pattern recognition, and com-

puter vision. His research interests include signal encoding, image enhance-
ment, segmentation and registration, and wearable bio-sensor modules.

95248 VOLUME 9, 2021



K. Khurshid et al.: Protocols for Transferring Bulk Data Over Internet

IMDAD ULLAH received the Ph.D. degree in
computer science and engineering from the Uni-
versity of New South Wales (UNSW), Sydney,
Australia. He has served as a Researcher at
UNSW, a Research Scholar at National ICT
Australia (NICTA), Data61 CSIRO Australia,
NUST, Islamabad, Pakistan, and SEEMOO TU
Darmstadt, Germany, and a Research Collabo-
rator at the SLAC National Accelerator Labora-
tory, Stanford University, USA. He is currently an

Assistant Professor with the College of Computer Engineering and Sciences,
PSAU, Saudi Arabia. He has research and development experience in privacy
preserving systems, including private advertising and crypto-based billing
systems. His primary research interests include privacy enhancing tech-
nologies, the Internet of Things, blockchain, network modeling and design,
network measurements, and trusted networking.

ZAWAR SHAH received the Ph.D. degree in elec-
trical engineering from the University of New
SouthWales (UNSW), Sydney, Australia, in 2009.
He has held various academic leadership positions,
including an Associate Professor in IT and the
Head of the Computer Networks Group, Victorian
Institute of Technology (VIT), Australia, and the
National University of Sciences and Technology
(NUST), Pakistan, respectively. He is currently
working as a Senior Lecturer with the Sydney

International School of Technology and Commerce. He has supervised many
postgraduate research students, published many research articles in leading
journals, and published many research papers in conferences. His research
interests include security issues in software-defined networking (SDN),
security issues in cloud computing, and network architectures and protocols.

NAJM HASSAN received the bachelor’s degree in
computer science from theUniversity of Peshawar,
in 2002, the master’s degree in information tech-
nology from Gomal University, in 2006, the M.S.
degree in networking from the National University
of Sciences and Technology (NUST), Islamabad,
Pakistan, in 2009, and the Ph.D. degree in com-
puter science and engineering from the School
of Computer Science and Engineering (CSE),
UNSW, Australia, in 2018. He has over ten years

diverse experience in IT industry, teach, and research with a demonstrated
history of working in higher education industry. His research interests
include nanoscale communication in THz band, specializing in designing
efficient communication protocols for events, and nodes detection in wireless
nanoscale sensor networks.

TARIQ AHAMED AHANGER is currently an
Associate Professor with the Department of Infor-
mation Systems, College of Computer Engineer-
ing and Sciences, Prince Sattam Bin Abdulaziz
University. He has authored over 40 refereed
articles. His interests include the Internet of
Things, cybersecurity, and artificial intelligence.

VOLUME 9, 2021 95249


