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ABSTRACT Mobile sinks (MSs) are capable of collecting data along specified paths in wireless sensor
networks (WSNs). They are deployed as a popular alternative for data loggers, to which all nodes have to
send sensory data. If MSs’ paths (or cycles) are not well determined, it might take a relatively long time
for the MSs to make a round trip. Recent research works have proposed methods to determine rendezvous
points (RPs) that the MSs must pass by to collect data, with the aim of reducing the data-collection time.
Determination of the number of RPs is important, and it is challenging to make ensure that there are sufficient
RPs widely located throughout a sensor network, forming a circle along which the MSs can spend limited
time traveling. This research presents a method for designing paths and pinpointing RPs for MSs to collect
data, as well as determining the next hop to relay data for each sensor node. Instead of reducing the MSs’
travel time, the focus of this research is to preserve the energy of all sensor nodes in WSNs. Our method
determines the maximum number of RPs such that the MSs can run through each RP’s communication
range (within a time constraint) without depleting their own energy. The method comprises three main steps.
First, we calculate the number of RPs and design the MS path. Second, the exact data-collection points
are determined. The last step is to specify the path along which sensory data are relayed to the MS. In our
experiments, we simulate two WSNs of different sizes. The results show that our method outperforms the
others by 70%-80% in terms of the sensor node uptime, power consumption, MS traveling time and the
number of RPs.

INDEX TERMS Data gathering, fuzzy logic system, mobile sink, path planning, rendezvous point, wireless
sensor network.

I. INTRODUCTION
One important characteristic of a wireless sensor net-
work (WSN) is the continuous communication among a
large set of sensor nodes (SNs) that are responsible for
collecting various data according to their function, such
as detecting objects and motion and sensing temperature,
humidity, and flicker [1]–[5]. The data are then relayed via
the WSN until they reach the base station (i.e., the sink
node) [6], which is responsible for storing data for further
usage [3]. WSNs are often large, as they are composed of
a large number of sensor-node devices for deployment in
large areas, e.g., forests for wildfire detection [7], [8], nature
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monitoring [9]–[11], and deep sea exploration [12], [13].
WSNs are also suitable for use in hard-to-reach areas, where
wiring for data transmission can be costly and troublesome.
Generally, SNs send sensory data to the sink node via another
SNwithin their transmission range. Hotspot problems are one
of the most common problems inWSNs. The SNs close to the
sink node tend to lose power rapidly when relaying data. As a
large number of distant SNs may exist, the relaying SNs close
to the sink node will run out of power before the others [14],
[15], causing the entire system to fail.

Mobile sinks (MSs) are often deployed to address the
abovementioned problem. MSs travel close to the SNs to
collect sensory data [16]–[21] so that the data does not have
to be relayed by SNs along paths to the sink node, thereby
reducing the SNs transmission power consumption. However,
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the travel times of the MSs often exceed the delay limits
(DLs) [22]. A method for planning MS travel paths is there-
fore important as it helps determining the rendezvous points
(RPs) [23], [24], each of which is an SN selected to be in
charge of collecting data from other SNs within its range and
relaying the aggregated data to theMSs as they arrive. Instead
of spending considerable time visiting all SNs, the MSs only
need to pass by the RPs to gather the aggregated sensory
data from the associated SNs [23], [25]. The RPs must be
pinpointed to cover the whole coverage area to reduce the
power consumption. Nevertheless, an excessive number of
RPs might cause the MS round-trip times to exceed the DLs.

When selecting RPs, we must consider the number, life-
time (remaining power), and the locations of RPs. For
example, if a selected RP has low power, instability in data
reception may occur. In the case where the selected RP is too
far from the other SNs, the other SNs will waste more power
on data transmission. As the MSs can communicate with
any SN if it is within the SN’s communication range, [26]
proposed the idea of storing data at RPs located at the bound-
ary of the SNs’ communication range to reduce the MS’s
traveling distances.

However, storing data at such locations might require the
SNs to spend more power on transmitting data long distances.
To plan relay routes, previous research adopted the minimum
spanning tree (MST) method [27], which could greatly sim-
plify the system at the expense of substantial energy spent on
relaying data via multiple hops [28]. Other previous works
designed RPs to be close to SNs. Such approaches yield low
performance in cases when SNs are far from the RPs.

Our proposed method adopts a fuzzy logic system (FLS),
which involves the usage of appropriate weights, to assist
decision-making processes. When selecting RPs, FLS assists
in determining each SN’s weight based on its remaining
energy and location. The weight reflects the suitability (also
the likelihood) of the SN being selected as an RP. When
calculating the data-collection distances, FLS is used to help
determine the distance from each SN the MS must reach to
start collecting the data. The MS should closely approach
low-powered RPs before collecting data.

On the other hand, an MS can collect data immediately
once it reaches the boundary of the RPs’ communication
range if the RPs still have a high level of remaining power.
When selecting routes, the FLS is responsible for helping
each SN decide which node it should send data to among the
closest RP and the other SNs.

This research proposes a route planning method that
focuses on efficiently planning a route for MSs under the DL
constraint while attempting to reduce the energy consumption
of all SNs in WSNs. Our method has three phases. The first
phase involves determining the number of RPs and planning
the paths for theMS. In this phase, we apply FLS to rank each
SN’s potential to be an RP. We then determine the minimal
number of RPs that the MS will spend time visiting before
returning to the sink node such that the DL is not violated.
Subsequently, we increase the number of RPs by choosing

more potential SNs within the MS’s communication range
while they are traveling along the path.

In the second phase, we determine areas for the MS to
collect data. As the MS can communicate with an RP if they
are in each other’s communication range, ourmethod does not
require the MS to reach an RP before it starts collecting data.
By calculating weights based on each RP’s energy and the
number of SNs within its communication range, we leverage
FLS to determine the distance from each RP for the MS to
collect data. In the last phase, in consideration of each RP’s
communication range and remaining power, the number of
SNs within the range, and the distance from the SNs to itself,
FLS is adopted to determine how SNs (not selected as RPs)
send data to the MS (i.e., whether to send the data via the RP
or via a neighboring SN.)

The structure of this paper is as follows: Section II
describes relevant literature regarding path designs for theMS
to collect data; theMS has to reach each RP and can visit only
the area within the RPs’ communication range. Section III
defines our network models and energy model for conducting
experiments and performance evaluation. Section IV presents
a path design method consisting of the three main phases
mentioned above. Section V presents the running time anal-
ysis and comparison with previous work. The system sim-
ulation settings and the efficiency of our proposed method
are shown in Section VI. We discuss our design choices, our
method’s limitations, and future work in Section VII. The
analysis and discussion of the experimental results are pre-
sented in Section VI, and the conclusions of the experimental
results are presented in Section VII. Finally, Section VIII
concludes our work.

II. RELATED WORKS
This section provides a review of the literature related to path
design for MSs by determining data-collection locations and
adopting FLS in WSN.

In 2010, Almi’ani et al. [22] discussed the use of MSs
to collect data in WSNs to avoid relaying data via multihop
paths, thereby reducing the energy consumption of the relay-
ing SNs. The authors proposed a cluster-based algorithm that
uses binary search to determine the RP count. An algorithm
for solving traveling salesman problems (TSPs) [29] was also
used to determine the sequence of nodes in the path along
which the MSs travel to collect data. However, cluster-based
algorithms are not deterministic when they select RPs: they
might occasionally choose improperly positioned SNs to
be RPs.

In 2013, Salarian et al. [30] introduced a weighted ren-
dezvous planning (WRP) algorithm to address the problem.
The algorithm selected SNs as RPs based on weights deter-
mined by the proposed heuristic process, resulting in the
distribution of RPs throughout the area. A shortest-path-tree
algorithm (SPT) [23], [31] was adopted to determine the
optimal RP for relaying the data of each SN. An algorithm
for solving the TSP was used to calculate a cycle for the
MS to collect the data from all RPs in order. Although this
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RP-selection method is efficient, SPT routing may result in
excessive data transmission/receipt at specific nodes.

In 2016, Cheng and Yu [32] presented a method to reduce
the path lengths given by TSP by allowing the MS to collect
data once it reaches the SN’s communication range. The
authors suggested data collection in the area where the MSs
could collect data from multiple RPs (where RPs’ commu-
nication ranges overlap). The method involved determining
the number of RPs whose communication ranges overlap and
selecting data-collection locations in the overlapping areas.
However, RPs might have to transmit data to an MS located
farther away, thereby consuming more energy. This method
yielded deterministic paths based solely on the RPs’ loca-
tions, which could lead to inefficient paths.

In Nayak and Devulapalli [33], the base station is able
to move to collect sensory data. FLS is applied to assign
each SN’s weight value, based on battery power, mobility
and centrality. The weights are used to cluster SNs and select
super cluster heads, aiming to efficiently distribute the load
among the SNs, thereby increasing the network lifetime.
Nevertheless, the proposed method did not address the path
design problem for data collection.

In 2017, Kaswan et al. [34] introduced methods called
reduced k-means (RkM) and delay bound reduced k-means
(DBRkM) for route planning. The work focused on clustering
RPs based on weights and reducing the number of nodes
within the RPs’ communication ranges to obtain a wider
distribution of RPs. A TSP algorithm was also adopted to
arrange data-collection locations for the MS to travel along
in order. However, MSs were not fully utilized, as the work
focused solely on SN management. Cheng et al. [35] pre-
sented a data-collection path planning method that depended
on area partitioning and the density of SNs in each area that
could increase the efficiency in terms of energy consumption.
However, the work did not address the case where data might
have to be relayed via multihop paths.

In 2018, Alsaafin et al. [26] presented three path-planning
methods: reduced energy path (REP), reduced delay path
(RDP), and delay bound path (DBP). REP was the most
energy efficient; RDP yielded paths along which the MS
took the least amount of time to travel; and DBP planned
traveling paths for the MS that satisfied the DL constraint
by choosing data-collection locations located between paths
obtained from REP and RDP. This research allowed data
collection once the MS traveled inside the RPs’ commu-
nication range, thereby reducing the travel path distances.
Wen et al. [36] proposed a non-TSP-based routing method
called path construction to determine round-trip routes for the
MS. The method first created a convex-polygon path formed
by all the outer RPs and then adjusted the path by including
all the remaining inner RPs.

Amgoth and Annavarapu [37] proposed a method based on
the technique called ant colony optimization (ACO) for path
design. The method also relies on a directed spanning tree
representing the network relay of sensor data. For efficient
path design, pheromones are used as weights for selecting

RPs. The method gradually selects one RP at a time until the
whole path requires the MS to travel along more than the
DL. However, the method depends on the tree and selects
the next RP only from the neighbors of the current RP, and
it also requires the MS to reach the node before gathering
the data. Thus, in scenarios where the DL is limited, the path
might cover only the nodes lying on certain connected branch
of the trees. In contrast, in our technique, we consider the
whole WSN topology and are able to select RPs that are
distributed across the network. In scenarios where the DL is
large, the ACO-based method does not consider increasing
the network lifetime.

Our proposed method increases RPs as long as the path
does not exceed the DL so that the path could be longer
and closer to SNs, thus saving more network lifetime.
Sert et al. [38] addressed the problem of data gathering in
WSNs, and proposed a method called the two-tier distributed
fuzzy logic-based protocol (TTDFP). The authors suggested
the use of FLS, relative node connectivity, distance to the
sink, and remaining energy for clustering and selecting the
clusters’ heads. Fuzzy rule parameters were adaptive (instead
of being fixed) to avoid inefficient trial and error methods and
any human bias. The FLS was also applied to routing based
on the average link remaining energy and relative distances.
However, the work required head nodes to relay sensory data
to the base station. Once the head nodes are selected, their
energy might be depleted rapidly, thus reducing the network
lifetime.

In addition, Qadori et al. [39] proposed an MS-based data
collection method called fuzzy-based mobile agent migration
(FuMAM). The FLS-based method arranged the order of
SNs, fromwhich theMS has to travel to collect data by taking
into account the remaining energy, the distance to the source
node, and the number of neighbors. However, based solely
on FLS (and not on TSP), it is possible that the designed path
was not the shortest path that passes through all SNs. The
work also did not select any SNs as RPs.

In 2019, Wang and Chen [24] introduced a technique for
planning paths along which the MS could travel and collect
data with the limitation of buffers. The technique, called
EARTH, created a tree formed by all SNs and selected RPs
based on the hop counts, tree height, and the amount of relay
data. The method examined the suitability of SNs before
promoting them as RPs. The author also attempted to reduce
the amount of data required for transmission per RP. This
research demonstrated a technique in which RP selections
were revalidated by considering nearby SNs. As the focus of
this work was on managing data traffic, the travel paths for
MSs were significantly longer than others.

In 2020, Donta et al. [40] presented a method called
hierarchical agglomerative clustering-based data collec-
tion (HACDC) to address the path design problem
in 3-dimensional WSNs. The work is based on hierarchical
agglomerative clustering to determine SN groups and on
dendrogram statistical methods to determine RPs. The virtual
RPs are determined to increase the efficiency and reduce the
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RPs’ load before designing the paths based on the method
called MS tour planning. However, once the method specifies
the RPs and the paths, it does not perform path fine-tuning and
does not address the DL constraint.

In this paper, our research work selects RPs by leveraging
a FLS to determine weights, in contrast to other studies
that calculate weights based on equations. The FLS allows
multiple membership functions (MFs). Each variable value
is transformed by the MFs into multiple membership levels,
which are used as inputs in the FLS’s rules, thereby providing
more flexible value interpretations. We take into account SN
energy in the path determining process, while previous works
consider the quantity of neighboring SNs and distances.

While previous works (except [32]) are based only on
the TSP algorithm to determine the traveling path for the
MS, we propose a method to reduce the path obtained via
TSP to determine data-collection locations (within the RPs’
communication ranges), allowingmore RPs on the path under
the same delay-time constraint and reducing the amount of
data transmitted by each RP. When selecting the relaying RP
for each SN, previous studies choose the RP closest to the
SN and depend on MST for determining the relaying paths,
while our work is based on each RP’s weight (not just the
distance). Thus, the loads can be distributed among all RPs
with remaining energy, increasing the overall RP longevity.

III. SYSTEM MODELS
We provide a brief description of network and energy models
in this section.

A. NETWORK MODELS
To simulate WSNs to study the performance of MSs’ data
collection, we define variables and model networks based on
relevant research [26], [30], [34]. Each network consists of
a single sink node that acts as a base station that receives
data from a MS. SNs, with sufficient energy at appropriate
locations are chosen to be RPs. The unselected SNs (non-RP
SNs) send their data to specific RPs, which then relay the data
to the MS. After the algorithm plans an RP route, the MS
travels a round trip along the route to collect data from all
the SNs.

In contrast to SNs with always-on power sources, all the
SNs are sensitive to energy loss (while the MS is sensitive
to travel time). Our method also allows an RP to transmit
data once it reaches the MSs’ communication range without
reaching the RPs’ exact locations. Certain non-RP SNs are
also responsible for receiving data from nearby SNs far from
any RPs before forwarding the data to the specific next hop
(whether it is an RP or another non-RP SN).

Note that Table 1 presents all the notations used in this
paper.

Figure 1 shows the network model, which consists of a
sink node (shown as the black square) and SNs (shown as
the circles). The black circles represent SNs selected as RPs,
and the white circles represent the SNs not chosen as RPs

FIGURE 1. Data gathering in a WSN using a MS.

TABLE 1. Notations and their definitions.

(i.e., non-RP SNs). Our model also makes the following
assumptions [22], [26], [30], [34]:
• All SNs have the same initial energy level and operate
under a limited power constraint.

• Every SN is always able to send data to the sink node via
hop-by-hop transmission.

• After node deployment, all nodes are immobile and
know their own exact coordinates and the location of
the sink node (e.g., from GPS or various localization
methods).

• The MS must travel to collect the information from
every RP.

• The MS wastes no time collecting data from RPs.
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• The MS has enough energy to travel a round trip to
collect the data. The battery can be either swappable or a
fast-charge battery based on current battery technology.

• If the MS travels to collect data within an RP’s commu-
nication range but does not truly reach the RP, the data
transmission requires more power (due to the longer
distance), as in the case when SNs send data to their
associated RP.

B. ENERGY MODELS
The most popular fundamental means of modeling WSNs is
to focus on SNs’ power consumption. According to [41], [42],
the power consumption depends on the amount of transmitted
data (k) and the distance (d) between the sender and the
receiver.

Et (k, d) = (Eelec × k)+
(
Eamp × k × d2

)
(1)

Et (k) = Eelec × k (2)

Equations (1) and (2) are used to calculate the power
consumed by an SN while transmitting and receiving data,
respectively. As presented in Table 7, Eelec and Eamp are set
to 50 nJ/bit, and 10 pJ/bit/m2, respectively, according to [34].

FIGURE 2. Modules in FLPP.

IV. FUZZY LOGIC-BASED PATH PLANNING (FLPP) FOR
DATA GATHERING MSs IN WSNs
Figure 2 shows an overview of the proposed system,
which consists of three modules described in the sub-
sections RP-selection module, Collection-spot module, and
Data-forwarding module.
1) RP-selection module. This module determines the

appropriate number of RPs. Our proposed method starts
from considering all SNs according to their weight. SNs
with higher weight values are considered first. We also
consider the number of RPs along two paths: the one
close to all SNs (called TxEPath, to preserve SNs’
energy when transmitting data) and the other (called
STPath, which is the shortest path for the MSs to collect
data at the exact locations of all RPs). Both paths require
the MS to travel without exceeding the DL.

2) Collection-spot module. This module pinpoints spots
(within the RPs’ communication ranges) for the MS
to collect data. It considers the TxEPath and STPath
to determine a shorter MS traveling path. The FLS
weights help in determining how close to the RPs the
data-collection locations should be.

3) Data-forwardingmodule.Thismodule specifies which
neighboring node of each SN should be designated the
next hop to relay the SN’s data. The designated node can
be chosen from 1) the RPs within the SN’s communica-
tion range and 2) other non-RP SNs that are also within
the SN’s communication range and already have their
own designated node. We use FLS to select a designated
node based on its remaining power, the number of SNs
having the node as their designated node, and its distance
from the SN.

The results from the FLPP modules can be improved by
redesigning the paths (as discussed in detail in Section IV-
C.2). In Section VI, we compare previous works with our
proposed method without path redesign (i.e., the paths are
determined only once). After the comparisons, we present the
experimental results of our enhanced FLPP.

A. RP-SELECTION MODULE
This module adjusts the MS traveling path so that the MS
takes a shorter or equal amount of time.

1) RANKING SNS (FOR DETERMINING CANDIDATE RPS)
This step ranks SNs in terms of their ability to be RPs.
FLS is adopted to determine each SN’s weight based on the
following characteristics.

• Remaining energy (RE).The SNs that are effective RPs
are the ones with high remaining power levels to support
data transmission.

• Number of nodes in the transmission Range
(NNR).Effective RPs are in an area of dense SNs and
could have a large number of associated SNs, thereby
reducing the overall number of data relays. However,
an excessive number of associated SNs could overload
the RPs: a suitable area is not overcrowded nor too
sparse.

• Average energy consumption (AEC). AEC is the aver-
age energy consumed by each node per the MS’s travel-
ing trip. If an RP consumes a relatively large amount of
power, the RP will run out of power before other SNs.
Thus, rotation of SNs as RPs, (based on their AEC) is
necessary.

• Distance from the SN to the centroid of all SNs in
its communication range (DSN,C ). SNs closer to their
associated centroid (thus being closer to the SNs within
their communication range) should be chosen as RPs.
All the associated SNs would consume a similar amount
of power when transmitting data and thus run out of
energy almost simultaneously.

After the weights are determined, we rank the SNs as
illustrated in Figure 3. Figure 3(a) shows the weight of each
node. Figures 3(b-e) and 3(f-h) show the node ranking in
the first and second iteration, respectively. In Figure 3(b),
SN5 is the first node to be considered as an RP as its weight
is highest. SN6 is in SN5’s communication range and is not
ranked nor selected until the next iteration. (To differentiate
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FIGURE 3. Example of RP ranking.

nodes ranked in the current and the next iteration, the former’s
communication range is represented by a solid circle while
the latter’s is represented by a dash circle.) The process
continues ranking the nextmaximal-weight SN and excluding
the nodes in its radius (for the next iteration) until no SNs
are available for ranking, as shown in Figure 3(e). Then,
the process is repeated for the second iteration, as shown
in Figure 3 (f-h).

To rank the potential of SNs to be RPs, Algo-
rithm 1 requires the weight of each SN, which is obtained
via FLS.

Lines 1-5 initialize the input variables. listSNs is the vari-
able used to store the lists of SNs. listRE stores the remaining
energy of all SNs. listAEC stores the average energy con-
sumed by each node per the MS’s traveling trip (average over
all previous trips); it initially has a value of 0. list_of_ListNinR
is a variable that stores a list of SNswithin the communication
range of each SN. listDSN ,C is used to store the distance
from each SN to its centroid. listCRP stores the sequence
of SNs to be considered as RPs obtained by considering the
FLS-based weights according to lines 7-9. In lines 10-11,
the highest-weight SN is determined. The list of SNs within
range of the highest-weighted SN are stored in listNinR
(line 11). The SN is removed from listSNs (line 13) once

Algorithm 1 Select Candidate RPs
INPUT: SNs

OUTPUT: Candidate RPs (listCRP)

1: listSNs = SNs

2: listRE = the energies of each SN

3: listAEC= the list of the average energy consumption of each SN (per

the MS’s traveling trip)

4: list_of_ListNinR = the list of the lists of nodes within the communi-

cation range of each SN

5: listDSN ,C = the distances from each SN to the centroid point of the

nodes within its area

6: FOR i = 1 to size(SNs)

7: W1 = CALL:FLS(listRE, list_of_ListNinR)

8: W2 = CALL:FLS(listAEC, list DSN ,C )

9: W3 = CALL:FLS(W1, W2)

10: max_i = max_index(W3)

11: listNinR = list_of_ListNinR[max_i]

12: ADD listSNs[max_i] in listCRP

13: DELETE listSNs[max_i]

14: DELETE list_of_ListNinR [max_i]

15: FOR EACH node in listNinR

16: tmp_index = listSNs.index(node)

17: DELETE list_of_ListNinR [tmp_index]

18: DELETE listSNs [tmp_index]

19: END FOR

20: IF (listSNs == Ø & i < size(SNs))

21: listSNs = SNs without nodes in listCRP

22: list_of_ListNinR = the list of the lists of the

nodes in the range of each SN in listSNs

23: END IF

24: END FOR

it is inserted into listCRP (line 12). In lines 15-19, the SNs
in listNinR are removed from list_of_ListNinR and listSNs.
Lines 19-22 reinitialize list_of_ListNinR and listSNs for the
SNs that have not been ranked.

Lines 7-9 show the weight calculation based on the dual
FLS method. This method takes into account two factors at
a time (i.e., considering listRE with listNinR, and listAEC
with listDSN ,C ), producing twoweightsW1 andW2. The final
weight (W3) is determined by considering W1 and W2. The
determination of the weights starts with normalizing the RE
and NNR values into the range [0,1] and using these values to
construct the MFs.

In this paper, we choose triangular MFs, as shown
in Figure 4, as they can represent values whose degrees of
membership (membership levels) are different. We adjust the
MF model based on the results of preliminary experiments
and then define the conditions of the ally fuzzy rules. The
number of rules depends on the number of inputs and the
input MF stage. For example, theW1 weighting requires two
inputs: RE and NNR. Each input consists of three MF stages
(low: L, medium: M, and high: H). Thus, there are 9 pos-
sible fuzzy rules (32), which output 5 MF stages (i.e., very
low: VL, low: L, medium: M, high: H and very high: VH),
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FIGURE 4. MFs of RE , NNR and W 1.

TABLE 2. Fuzzy rules to determine W1.

as shown in Table 2. According to the rules, if an SN has more
remaining energy (RE), it is assigned a greater W1 value,
while the SN’s NNR should be at a moderate level.
The proposed fuzzy inference engine (based on an aggre-

gation method called intersection operation) is used to obtain
W1 as an output. Figure 5 shows an example of using the
fuzzy inference engine according to the 9 rules in Table 2.
We assume RE and NNR are 0.8 and 0.6, respectively. In each
rule, the membership degrees of RE and NNR are compared:
the smaller one is used as the output’s membership degree.
The outputs of all rules are then aggregated, and defuzzified
by determining the center of gravity (CoG) of the aggregated
output, yielding the output MF in the first stage of FLS (W1).

In short, the output is obtained by taking the normalized
RE and NNR values, which are then transformed by MFs into
membership degrees. The degrees are then used for inference
bymeans of each fuzzy rule. The inferred results are weighted
and finally aggregated. In other words, the output (W1) is the
sum of all membership degrees obtained by applying the MF
to the normalized RE and NNR values (according to all the
rules) based on the aggregation method.

After obtaining W1, we determine W2 by applying FLS
to the values of AEC and DSN ,C . This step is similar to
the previous one. The MF for AEC and DSN ,C is shown
in Figure 4(a), while that forW2 is shown in Figure 4(b). Note
that if AEC (average consumed power) and DSN ,C (distance
between the SN and its centroid) are large, then the SN’s
potential to be an RP decreases. Table 3 shows all 9 fuzzy
rules, whose outputs are aggregated later to determineW2.

To calculate theW3 of each SN, bothW1 andW2 are used
by FLS according to the fuzzy rules in Table 4. The MF for
W1 and W2 is shown in Figure 4(a), while that for W3 is
shown in Figure 4(b). The SNs with the largestW3 are stored

FIGURE 5. Example of fuzzy inference.

TABLE 3. Fuzzy rules to determine W2.

in CRP. The SN and the other SNs within its communication
range are excluded from the weight calculation in the current
iteration to avoid selecting RPs that are close to each other.
Then, the SN with the second highestW3 is determined. The
process is repeated until there are no more SNs to consider.
At the end of each iteration, if the number of SNs in the CRP
is still not equal to the number of all SNs, the process starts
the next iteration by reconsidering the SNs (excluded in the
current iteration but not yet in the CRP) to be selected as RPs.

2) TSP TO REDUCE PATH LENGTH BASED ON RADIUS (RBR)
After the CRP is obtained, we focus on determining the
appropriate number of RPs (avgRP) to be deployed on the
path the MS travels to collect sensor data. However, there
are two other outcomes to address: TxEPath (the path that
conserves the RPs’ transmission energy) and STPath (the path
that conserves the MS’s energy).
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FIGURE 6. Path reduction when RPs’ communication ranges overlap (from TSP to RBR (part 1)).

TABLE 4. Fuzzy rules to determine W3.

The TSP to RBR procedure has two phases. Phase I (TSP):
Determine TxEPath based on TSP [29] to provide cycles vis-
iting all given RPs. Phase II (RBR): Determine STPath, which
is the path obtained by applying our distance-shortening pro-
cess, called RBR (reduce path length based on radius), to the
TxEPath.RBR attempts to reduce theMS’s traveling distance
by redirecting the MS path through the area where the RP’s
communication ranges overlap because the MS only has to
reach the RPs’ communication ranges, not the RPs’ locations,
to collect data. This phase is described in detail below.

1) Path reduction when RPs’ communication ranges
overlap. This step starts by determining the overlap-
ping areas through which the TxEPath passes. We then
rank the areas based on their number of overlapping
communication ranges (Noverlap(i) is the number of
overlapping ranges of the ith area, for 1 ≤ i ≤ m, where
m is the number of overlapping areas). The area with
the largest Noverlap is the first to be considered for path
reduction.
Note that to determine Noverlap(i), we count only
the overlapping communication ranges of the RPs in
the traveling sequence along TxEPath. For example,
let the traveling sequence of RPs along TxEPath be
RP1, RP2, RP3, and RP4. Although the communication
ranges of RP1, RP2, and RP4 overlap, we count only
the ranges in the sequence (i.e., those of R1 and R2);
thus,Noverlap(1)= 2. Data collection in the areas where
RPs’ communication ranges overlap allows the MSs to
collect data from multiple RPs at the same location.

A data-collection location is selected from the inter-
sections of the circumferences of the RPs’ overlapping
communication ranges.
Specifically, the intersections that minimize the MS
traveling path are chosen. As shown in Figure 6, the MS
initially starts at the rectangular point. Let (RPi, RPj, . . . ,
RPk ) be the area where RPi, RPj, . . . , and RPk overlap.
There are 4 overlapping areas: (RP1, RP2, and RP3),
(RP5, RP6, and RP7), (RP7 and RP8), and (RP8 and
RP9), and Noverlap(1), Noverlap(2), Noverlap(3), and
Noverlap(4) are 3, 3, 2, 2, respectively. (RP1, RP2, and
RP3) and (RP5, RP6, and RP7) are chosen first as their
numbers of overlapping ranges are the greatest. Next,
(RP8 and RP9) is chosen.
Note that RP7 is in both (RP5, RP6, and RP7) and
(RP7 and RP8); therefore, (RP7 and RP8) is not chosen
because (RP5, RP6, and RP7) is already selected. The
intersections of the first area are c1, c2, and c3; the sec-
ond area has intersections at c4, c5, and c6. The intersec-
tions of (RP8, RP9) are c7 and c8. As shown in Figure 6,
c1, c4, and c7 reduce the path distance the most.

2) Path reduction based on shortcuts. In this step,
we consider reducing the path length when the MS has
to travel to collect data from the remaining RPs whose
communication range does not overlap with others.
Instead of visiting the exact RPs’ locations to collect
their data, the MS collects data when it is within the
RPs’ communication range; see Figure 6 as an example.
The MS does not have to travel from c1 to RP4 and from
RP4 to c4 because it just needs to reach the boundary of
RP4’s communication range to collect RP4’s data.
To reduce the path length based on shortcuts to col-
lect data from RPn, we first consider the dashed line
from RPn−1 to RPn+1. If the line passes through RPn’s
communication range, the line is included in the MS
traveling path. (The data-collection location lies on the
straight line from RPn−1 to RPn+1 and closest to RPn,
shown as a cross in Figure 7a.) Otherwise, the new
data-collection location is the intersection between the
boundary and the line parallel to the direct line from
RPn−1 to RPn+1, as shown in Figure 7b.
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FIGURE 7. Path reduction based on shortcuts.

The two steps in RBR are represented by reduce() in line
7 of Algorithm 3 and Equation (5). Algorithm 2 and 3 illus-
trate the detailed processes for determining TxEPath and
STPath, respectively.

The greater the number of RPs on the TxEPath is, the less
energy the SNs consume during data transmission. Algo-
rithm 2 determines the upper bound of the number of RPs.
The binary-search algorithm is used to determine the max-
imum number of RPs (on the TxEPath) possible while the
round-trip traveling time is still less than DL.
Algorithm 2 differs from Algorithm 3 in that the former

applies TSP to determine circles (which are the MS traveling
paths) to specify the visitation sequence of the RPs, while the
latter is based on RBR to yield paths with reduced length.
Algorithm 3 also provides the maximum number of SNs
possible under the DL constraint.

After TxEPath and STPath (with the highest number of
RPs possible) are obtained such that the round-trip MS’s
traveling time does not exceed DL, avgRP can be obtained
according to Equation (3). The average value is the number
of RPs, which can be increased or decreased to adjust the MS
traveling path. TxEPath is determined using avgRP accord-
ing to Equation (4). STPath is obtained by applying RBR
to TxEPath, as shown in Equation (5). For our preliminary
results, the number of RPs, equal to the average ofmaxRP_Tx
and maxRP_ST, yields best results. The number of RPs close
to maxRP_ST is insufficient: RPs waste energy transmitting
data to the MS via longer distances. The number of RPs close
to maxRP_Tx is excessive, as it results in premature death of
the RPs receiving data from the large number of SNs.

avgRP = round
(
maxRP_Tx + maxRP_ST

2

)
(3)

TxEPath = TSP
(
sink_Node,RP1,RP2, . . . ,RPavgRP

)
(4)

STPath = reduce (TxEPath) (5)

3) SELECTION OF ADDITIONAL RPS
This is the last step of Module 1 designed to help in
adding additional RPs selected from SNs within the MS’s

Algorithm 2 Find TxEPath, maxRP_Tx While Ensuring the
Path’S Distance Is Less than DL

INPUT: CRP // the list of RP nodes sorted (in descending order)

according to the FLS weights

OUTPUT: TxEPath, maxRP_Tx // TxEPath: the path for conserving

sensors’ transmission energy maxRP_Tx: max number of RPs on the

TxEPath whose length is less than DL

1: low = 0

2: high = size(CRP)

3: mid = (low + high)/2

4: ADD Sink_Node, RP1, RP2, . . . , RPmid to TxEPath

5: WHILE (low < high)

6: IF (Dist(TSP(TxEPath)) ≤ DL)

7: low = mid

8: mid = (low + high)/2

9: CLEAR TxEPath

10: ADD Sink_Node, RP1, RP2, . . . , RPmid to

TxEPath

11: ELSE IF

12: high = mid

13: mid = (low + high)/2

14: CLEAR TxEPath

15: ADD Sink_Node, RP1, RP2, . . . , RPmid to

TxEPath

16: END IF

17: ENDWHILE

18: IF (Dist(TSP(TxEPath)) > DL)

19: CLEAR TxEPath

20: ADD Sink_Node and RP closest to the sink node to

TxEPath

21: END IF

22: maxRP_Tx = size(TxEPath) - 1

communication range while it travels along the path to collect
data. As shown in Figure 2, this process starts after FinPath
(i.e., Final RP Path) is obtained from Module 2, as described
Section in IV-B. The selection of an SN as an RP is based on
two conditions:
• FinPath passes by the SN (i.e., the MS is within the SN’s
communication range while it travels along the path).
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Algorithm 3 Find STPath, maxRP_STWhen the Path’S Dis-
tance Is Less than DL

INPUT: CRP, TxEPath

OUTPUT: STPath, maxRP_ST // STPath: the path for decreasing the

MS’s traveling time maxRP_ST: max number of RPs on the STPath

whose length is less than DL

1: low = size(TxEPath)

2: high = size(CRP)

3: mid = (low + high)/2

4: ADD Sink_Node, RP1, RP2, . . . , RPmid to STPath

5: WHILE (low ≤ high)

6: STPpath = TSP(STPpath)

7: reduced = reduce(STPpath) // length of STPpath is reduced

based on radius according to 4.1.2

8: IF (dist(reduced) ≤ DL)

9: low = mid

10: mid = (low + high)/2

11: CLEAR STPath

12: ADD Sink_Node, RP1, RP2, . . . , RPmid to

STPath

13: ELSE IF

14: high = mid

15: mid = (low + high)/2

16: CLEAR STPath

17: ADD Sink_Node, RP1, RP2, . . . , RPmid to

STPath

18: END IF

19: ENDWHILE

20: IF (dist(reduced) > DL)

21: CLEAR STPath

22: ADD Sink_Node and RP closest to the sink node to

STPath

23: END IF

24: maxRP_ST = size(STPath) - 1

• The distance from the SN to FinPath must be less than
that from the SN to its closest RP.

Figure 8 shows an example of including more RPs after
FinPath has been obtained. FinPath is shown as the dashed
line. The distances from the candidate SNs (SN5 and SN6 in
the figure) to their closest RP are the lengths of the bold lines.
The shortest distances from the candidate SNs to FinPath
(within its communication range) are equal to the thin lines’
lengths. SN1, SN2, SN4, and SN7 are not candidates for RPs
as they are farther from FinPath than their closest RP. SN3
has no FinPath in its communication range. As being closer
to the FinPath than their closest RPs, SN5 and SN6 are chosen
as additional RPs.

B. COLLECTION-SPOT MODULE (REDUCE PATH LENGTH
FROM STPATH TO TxEPATH)
After the previous module, we obtain STPath (reduced
by means of the proposed RBR method). In this section,
we attempt to form FinPath based on the locations where the
MS collects data from each RP. The locations are determined

FIGURE 8. Considering additional RPs.

based on the RP’s SN density and remaining energy with
the aim of balancing the load among RPs with different SN
densities.

If RPs are heavily loaded, the MS should approach closer
to the RPs before collecting their data so that the RPs’ energy
lasts longer. In contrast, if the RPs’ load is light, we can
adjust the MS traveling path (i.e., the RPs transmit data at
longer distances) to reduce the MS traveling time. The data-
collecting positions depend on the weights, each of which
is based on each the RP’s energy trend. The weight values
are calculated from a fuzzy system and are converted into
percentages for adjusting STPath towards TxEPath and finally
attaining FinPath (which is still under the DL constraint),
as shown in Figure 9.

To determine the RPs’ energy-trend weights (W4), FLS is
used in a similar way as when determining the RP-candidate
weights, as previously described in the Section RP-selection
module. Two factors are considered: RP’s remaining energy
(RE) and the number of nodes in the transmission range
(NNR), based on Algorithm 4. The MF of RE and NNR is
depicted in Figure 4(a), while that of W4 is shown in Figure
4(b). The FLS rules are shown in Table 5.

Lines 1-2 in Algorithm 4 initialize the variables. W4 in
Line 3 represents the energy-trend weight obtained from
FLS based on the values of RE and NNR. Line 5 shows
ratioRP, which is the greatest possible distance percentage
the data-collection locations can be adjusted away from each
RP’s position (in each iteration). Lines 6-14 show how Fin-
Path is determined by gradually adjusting each RP’s data-
collection location in TxEPath towards the one in STPath until
the new path has a round-trip traveling time less than DL,
as illustrated in Figure 9.

C. DATA-FORWARDING MODULE
1) SELECT RP CANDIDATES
After RPs are obtained, this step determines the designated
nodes for each SN. The designated nodes can be selected from
either RPs or SNs, which are in charge of relaying sensor data
further to an RP. To choose a designated node for each SN,
we consider not only the distance between the SN and RPs but
also its remaining energy. The selection starts by considering
the designated node for the SN closest to one of the RPs.
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TABLE 5. Fuzzy rules to determine W4.

Algorithm 4 Determine Final RP Path
INPUT: STPath, TxEPath

OUTPUT: FinPath

1: RE = list of remaining energy of all RPs

2: NNR = list of the numbers of SNs in communication range of each

RP

3: W4=CALL:FLS(RE, NNR) // list of energy-trend weights of all RPs

4: FinPath = TxEPath

5: ratioRP = W4/max(W4)

6: FOR i = 0.1; i ≤ 100; i+ = 0.1

7: IF(Distance(FinPath) ≤ DL)

8: BREAK

9: END IF

10: FOR EACH RP in TxEPath

11: Move data-collection location from the RP’s original

location in TxEPath toward STPath by ratioRP

12: ADD the new location to FinPath

13: END FOR

14: END FOR

Then, the process assigns one designated node to the SN that
is second closest to one of the RPs. The process continues on
until all SNs have a designated node.

To determine a designated node appropriate for relaying
data for SNi, we consider all candidate nodes (SNj) within the
SNi’s communication range. Note that a candidate SNj can be
either one of the RPs or another SN that is a designated node
already assigned to other SNs. In addition, it is necessary to
consider the remaining energy of all nodes lying in the jth

candidate path from SNi via SNj to the corresponding RP
(RPj), denoted as candidatePathi,j.

The node closest to SNi is not always the SNi’s designated
node. As shown in Figure 10, FLS is adopted to determine the
weights of all candidate nodes in (SNj) based on the following
factors:

• The average energy of all the nodes in candidatePathi,j
(AvgEi,j). (If AvgEi,j is already low, assigning SNj to SNi
might cause the energy of the nodes in the jth path to be
depleted faster.)

• The distance from SNi to RPj via the candidate node SNj
(Dist2RPi,j).

• The number of nodes lying in candidatePathi,j (NNGi,j).

TABLE 6. Fuzzy rules to determine W5.

Table 6 shows all 27 new rules, each of which yields aW5
value as output based on 7membership levels: very low (VL),
low (L), little low (LL), medium (M), little high (LH), high
(H), and very high (VH).

Figure 11 shows an example of selecting designated nodes.
A designated node is selected for SN1 first since it is closest
to one of the RPs. Figure 11(a) shows the weights of the
candidate nodes (RP1 and RP2 with the arrow dashed line)
obtained from the FLS. Figure 11(b) shows that the desig-
nated node of SN1 is RP1 (shown with the arrow solid line)
since its weight is higher than that of RP2. Figure 11(c) shows
the designated-node selection for SN3 (SN3 is the second
closest SN to one of the RPs). SN′3s candidate nodes are
SN1 and RP2. Although SN1 is closer to SN3, the path from
SN3 to RP2 is shorter than that to RP1 via SN1: SN′1s weight
is therefore less than that of RP2. Figure 11(e) shows the
designated-node selection for SN2, where SN2 can choose to
send data via 3 candidate paths: the direct path from SN2
to RP1, candidatPath3,1 to RP1 via SN1, and candidatPath3,2
to RP2 via SN3. Because the weight of SN1 is the highest, it is
assigned as the designated node for SN2.

2) ENERGY-AWARE DYNAMIC PATHS
Each node’s remaining energymust bemonitored as its power
might run out prematurely. We propose a metric (TDP) by
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FIGURE 9. STPath is adjusted toward TxEPath to attain a new route, FinPath.

FIGURE 10. MFs of AvgEi,j, Dist2RPi,j, NNGi,j, and W 5.

comparing 1) the average remaining energy (i.e., the dif-
ference between the initial energy (Einit ) and the average
expended energy (AEC)) with 2) the least remaining energy
(min(RE)) among all nodes in the network, according to
Equation (6).

Based on our experiments, path redesign (rerouting) should
be performed when TDP is greater than a threshold, indi-
cating that the gap between the average remaining energy
and min(RE) might be excessive. If the threshold is less than
threshold, path redesign would be triggered more often, but
there might be very little or no change in the new path. If the
threshold is set more, the resulting path may significantly
change from the original. However, the larger the threshold
is, the greater the number of nodes that run out of power
prematurely. Therefore, TDP is calculated after each round
of MS data collection. If TDP is less than threshold, the MS
travels along the same path in the next round; otherwise,
the MS roams along a newly designed path.

TDP =
(
Einit − AEC − min(RE)

Einit

)
× 100 (6)

V. RUNNING TIME ANALYSIS & SPACE COMPLEXITY
In this section, we provide the running time analysis and
space complexity of our proposed method consisting of 3
major modules: RP selection, data-collection-location deter-
mination, and designated-node selection.

A. CALCULATING THE NUMBER OF RPs AND DESIGNING
THE MS TRAVELING PATH
Given that there are N SNs deployed throughout a WSN
area, the process of selecting SNs as RPs consumes the
most running time, O(3N+2N2) = O(N 2), consisting of
the running times of the following subprocesses: obtaining

FIGURE 11. Example of selecting designated nodes to relay data for SNi .

each SN’s energy (O(N )) and each SN’s already consumed
energy, determining nodes in each SN’s communication
range (O(N 2)), calculating the distances from the mean posi-
tion center to SN (O(N )), and the FLS calculation for ranking
RPs in each traveling round (O(N 2) [43].

For theMS traveling path design, TSP and RBR are used to
determine the number of RPs (M ) forming a path that the MS
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would travel through without exceeding the DL. Specifically,
the computation time for the TSP is equal to O(M3). The
binary search technique reduces the computation time for
determining the TSP path to O(log M ). For the RBR process,
the computational time for an RP to determine its neighboring
RPs is O(M2). In total, TSP and RBR require O(M3log M+
(M2
+ M3)log M ) = O(M3log M ). As illustrated in the

section on selecting additional RPs, O(N ) is required in the
worst case.

B. DETERMINING THE MS’S DATA-COLLECTION
LOCATIONS
To adjust the MS traveling path so that the MS does not
exceed theDL, the running time is O(M ) at the maximum due
to the usage of FLS (O(M )) and the 100 iterations (O(100)).

C. DETERMINING THE NODE TO WHICH EACH SN SENDS
DATA
The worst-case running time (in the scenario that all SNs
are located within each other’s communication range) for
choosing an RP to which each non-RP SN sends data is
O(N 2). In practice, the running time could be O(N×(N-1))
if there is only one RP to which all the rest send data. For all
the processes, our method requires O(N 2

+M3logM ) running
time, while CB and WRP require O(N 2log N ) and O(N 3),
respectively. A comparative analysis of the running time is
presented in Section VII.

D. SPACE COMPLEXITY
In regard to Algorithm 1, 10 lists and 4 integer variables
require 40N+ 16 bytes. Algorithm 2 involves 2 lists and
6 integer variables, demanding an additional 8N+ 24 bytes.
Algorithm 3 works similar to Algorithm 2 but requires one
more list, so 12N+ 24 bytes are needed. In Algorithm 4,
data are stored in 6 lists and 3 integer variables (i.e., 24N+
12 bytes). In total, the space complexity of our method is
84N+ 76 bytes (O(N )). However, all the algorithms run
consecutively (from Algorithm 1 to 4) and the unused spaces
should be returned. Therefore, our method requires only
40N+ 16 bytes at most.

VI. EXPERIMENTAL RESULTS
In this section, we provide the experimental settings and
results.

A. EXPERIMENTAL SETTINGS
We evaluate the performance of our proposed system via sim-
ulations using MATLAB R2018b. The proposed algorithm
is evaluated in three different network scenarios (i.e., areas
of 220 m × 220 m [34], 500 m × 500 m [26] and 1000 m ×
1000 m), where SNs are deployed (randomly with a uniform
distribution) to demonstrate the efficiency of our proposed
algorithm and determine whether it is flexible for both small
and large areas. The sink node is always at (0,0) in the lower
left position, as in [26]. All SNs have the same initial power
(2 J) [34] and have 128 bytes of packet data to send [26].

TABLE 7. Simulation parameters.

FIGURE 12. Average energy consumption.

We also assume that the MS travels at 2 m/s [34], TDP thresh-
old is 5 and has no energy constraint but is subject to the DL,
i.e., 275 [34], 1200 [26] and 2400 seconds when the area size
is 220 m × 220 m, 500 m × 500 m and 1000 m × 1000 m,
respectively.

We compare FLPP and FLPP_RPP with another algo-
rithm called delay bound reduced K-means (DBRkM) [34],
which selects RPs based on K-means and determines the
MS traveling path based on a weight function. In addition,
we also compare WRP [30] and CB [22] (operating under
the DL constraint) with these three methods. All comparison
results are shown in graphs (together with the corresponding
95% confidence intervals) regarding the following aspects:
1) average energy consumption of all data-collection rounds,
2) network lifetime, i.e., the duration between the time the
system starts and the time the first SN’s energy is depleted,
3) theMS’s average traveling distance for data collection, and
4) the number of RPs. In addition, in each evaluation, there
are 20 trials on average. Finally, we average the remaining
results.

B. PERFORMANCE EVALUATION OF FLPP AND FLPP_RPP
IN A 220 M × 220 M AREA
We evaluated the performance of FLPP and FLPP_RPP for a
small area in terms of the following three aspects.

1) AVERAGE ENERGY CONSUMPTION
Figure 12 shows the average power consumption versus
the number of SNs. FLPP and FLPP_RPP always consume
less power than DBRkM, WRP, and CB do because of
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FIGURE 13. Network lifetime.

FIGURE 14. Round-trip distance (m) of the MS.

the different numbers of RPs. (FLPP spends 14%, 54%
and 64% less energy than DBRkM, WRP and CB, respec-
tively. FLPP_RPP outperforms FLPP by 0.6%.) CB ran-
domly selects RPs, resulting in RPs at unsuitable locations.
WRP uses weights to select RPs, so it outperforms CB.
DBRkM yields higher performance than WRP because of
its enhanced RP-selection method. FLPP and FLPP_RPP
initially attempt to select as many RPs as possible, thereby
increasing the likelihood that nodes transmit data directly
to the MS without passing data through the RP. Shown
as the I shape on the top of each bar, the 95% confi-
dence intervals of the average energy consumptions of FLPP,
FLPP_RPP, CB, WRP, and DBRkM are [0.00018, 0.00019],
[0.00018, 0.00019], [0.00058, 0.00063], [0.00052, 0.0006],
and [0.00027, 0.0003], respectively.

2) NETWORK LIFETIME
Figure 13 shows a performance evaluation of the network life-
time (i.e., duration from the network start time until the first
node runs out of energy) as the number of SNs increases. The
network lifetimes of FLPP and FLPP_RPP are significantly
longer than those of DBRkM, WRP, and CB because they
allow more RPs to be deployed. (FLPP allows nodes to live
58%, 53% and 60% longer than DBRkM, WRP and CB do,
respectively. In this aspect, FLPP_RPP outperforms FLPP by
10%.) As a result, the number of multihop transmissions in
the network is smaller, lowering the overall RP energy con-
sumption. (Note that RPs often run out of energy before the
SNs do.) The communication protocol, including signaling
distribution for path redesign, is not within the scope of this

FIGURE 15. Number of RPs.

FIGURE 16. Average energy consumption.

work: we did not include the energy consumed to control
signaling transmission in the experiments.

3) AVERAGE TRAVELING TIME OF THE MS
Figure 14 shows the length of the MS traveling paths as the
number of SNs increases: no paths are longer than the 550 m
limit (MS speed× DL= 2× 250= 550). FLPP, FLPP_RPP
and WRP utilize the DL better than the others, as more time
is required by the MS to traverse the paths yielded by FLPP,
FLPP_RPP and WRP. This is because FLPP and FLPP_RPP
use the proposed function (i.e., reducing path length from
STPath to TxEPath) to design routes, while WRP iteratively
verifies that all nodes are suitable for being RPs and that the
path distance does not exceed the limit.

4) THE NUMBER OF RPS
Figure 15 shows the number of RPs versus the number of
SNs. FLPP and FLPP_RPP always deploy more RPs than
DBRkM, WRP, and CB because FLPP and FLPP_RPP allow
the MS to collect the data within the RPs’ communication
ranges. Consequently, the MS has more remaining energy to
collect data from more RPs under the same DL limitation.
(FLPP deploys larger numbers of RPs by 2.8%, 85%, 94%
and 96% than those of FLPP_RPP, WRP, CB and DBRkM,
respectively).

C. PERFORMANCE EVALUATION OF FLPP AND FLPP_RPP
IN A 500 M × 500 M AREA
We evaluated the performance of FLPP and FLPP_RPP in a
large area in three aspects, as follows.
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FIGURE 17. Network lifetime.

FIGURE 18. Round-trip distance (m) of the MS.

1) AVERAGE ENERGY CONSUMPTION
Figure 16 shows the average power consumption as the num-
ber of SN increases. Similar to the results in the experiments
with a small area, FLPP and FLPP_RPP always consume
less power than DBRkM, WRP, and CB do due to the larger
DL, which contributes to the lower energy consumption in
all traveling rounds. FLPP consumes 17%, 26% and 53%
less energy than DBRkM, WRP and CB, respectively, and
FLPP_RPP outperforms FLPP by 3%.

2) NETWORK LIFETIME
Figure 17 illustrates the network lifetime as the number of
SNs increase. FLPP and FLPP_RPP have a longer overall net-
work life than DBRkM, WRP, and CB do due to the increase
in the number of RPs and the larger DL. The network based
on FLPP lives 48%, 36% and 52% longer than those based
on DBRkM, WRP and CB, respectively, and the network
lifetime of FLPP_RPP is 13% longer than that of FLPP.

3) AVERAGE TRAVELING TIME OF THE MS
Figure 18 illustrates the path lengths the MS travels to collect
data versus the number of SNs. FLPP, FLPP_RPP and WRP
have higher utilization of the DL than CB and DBRkM do
(i.e., the paths obtained from FLPP, FLPP_RPP andWRP are
longer but do not exceed the DL).

4) THE NUMBER OF RPS
Figure 19 shows the number of RPs versus the number of
SNs. FLPP and FLPP_RPP always deploy more RPs than
DBRkM, WRP, and CB because FLPP and FLPP_RPP allow

FIGURE 19. Number of RPs.

FIGURE 20. Average energy consumption.

FIGURE 21. Network lifetime.

the MS to collect the data within the RPs’ communication
ranges. Consequently, the MS has more remaining energy to
collect data from more RPs under the same DL limitation.
(FLPP deploys 0.2%, 70%, 82% and 86% larger numbers
of RPs than those of FLPP_RPP, WRP, CB and DBRkM,
respectively).

D. PERFORMANCE EVALUATION OF FLPP AND FLPP_RPP
IN A 1000 M × 1000 M AREA
We evaluated the performance of FLPP and FLPP_RPP in a
very large area in three aspects, as follows.

1) AVERAGE ENERGY CONSUMPTION
Figure 20 shows the average power consumption as the num-
ber of SN increases. Similar to the results in the experiments
with the small area, FLPP and FLPP_RPP always consume
less power than DBRkM, WRP, and CB due to the larger
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FIGURE 22. Round-trip distance (m) of the MS.

FIGURE 23. Number of RPs.

DL, which contributes to the lower energy consumption in
all traveling rounds. FLPP consumes 34%, 50% and 65%
less energy than DBRkM, WRP and CB, respectively, and
FLPP_RPP outperforms FLPP by 1%.

2) NETWORK LIFETIME
Figure 21 illustrates the network lifetime as the number of
SNs increase. FLPP and FLPP_RPP have a longer overall
network life than DBRkM, WRP, and CB due to the increase
in the number of RPs and the larger DL. The network based
on FLPP lives 47%, 19% and 32% longer than those based on
DBRkM,WRP and CB, respectively. The network lifetime of
FLPP_RPP is 7% longer than that of FLPP.

3) AVERAGE TRAVELING TIME OF THE MS
Figure 22 illustrates the path lengths that the MS travels to
collect data versus the number of SNs. FLPP, FLPP_RPP and
WRP have higher utilization of the DL than CB and DBRkM
do (i.e., the paths obtained from FLPP, FLPP_RPP and WRP
are longer but do not exceed the DL).

4) THE NUMBER OF RPS
Figure 23 shows the number of RPs versus the number of
SNs. FLPP and FLPP_RPP always deploy more RPs than
DBRkM, WRP, and CB because FLPP and FLPP_RPP allow
the MS to collect the data within the RPs’ communication
ranges. Consequently, the MS has more remaining energy to
collect data from more RPs under the same DL limitation.
(FLPP deploys 0.7%, 87%, 89% and 92% larger numbers

of RPs than those of FLPP_RPP, WRP, CB and DBRkM,
respectively).

VII. DISCUSSION
A. SIGNALING AND TASK ASSIGNMENT
The communication regarding task assignment for SNs
(whether they are selected as RPs, assigned as designated
nodes for other SNs, or which nodes they should send data to)
is out of scope of this paper. In practice, once the WSN starts,
the sink node is in charge of task assignment and path design.
Control signals might be distributed by the sink node in the
form of broadcasting, multicasting, or gossiping protocol.

After the MS completes each traveling round, it updates
all the information of the sink node, including each SN’s
remaining energy (making battery recharge or replacement
possible). The sink node may assign SNs new tasks and
design a new path for the MS to travel to collect data while
distributing the control signals. In particular, the MS trans-
mits signals to each RP, which then distribute the signals
further to their associated SNs.

In our proposed method, we also rotate SNs to be RPs
to prolong the WSN’s lifetime. However, the path redesign
and SNs new task assignment should not be conducted every
time the MS returns because they might impose more com-
putational time and waste more energy for control signaling.
For example, path rerouting can be conducted periodically
(e.g., after theMS completes n rounds). In our work, based on
Equation (6), we monitor the difference between the average
energy and the minimum energy of all the SNs: the path is
not changed until the difference is greater than a specified
threshold.

In general, research works that require the MS to collect
data are based on the centralized concept. All processes in
our proposed method are executed by the centralized sink
node (i.e., the base station), which has an unlimited power
supply. The base station is required only when theMS returns
from data gathering and needs to transfer the sensor data to
the base station. The distributed route computation demands
more computational energy from SNs, reducing the network
lifetime and increasing expenses on SNs’ battery replace-
ments (especially if the SNs are deployed at the locations that
are very hard to access).

Furthermore, the centralized and distributed methods can
be complementary to each other. In cases where the MS is
down, these events are detected by the base station, and SNs
close to the base station could be triggered to perform dis-
tributed routings, as introduced by the other works [44]–[47].

B. UPON ENERGY DEPLETION
According to the experimental results, RPs generally run
out of energy faster than SNs do. The RPs consume energy
according to Equation (2). Specifically, the greater the num-
ber of SNs associated with an RP, the shorter the RP’s
longevity. We can address this issue by various means, such
as supplying larger batteries to RPs or increasing the number
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of RPs to help balance the load. However, the former method
requires static RP locations and has a higher cost. For the sec-
ond method, a greater number of RPs results in a longer MS
traveling time, which is limited by the DL constraint. Con-
sequently, we proposed a method to reduce the path length
(called RBR) such that the number of RPs can be increased
while the path still satisfies the DL constraint.
The energy of RPs, designated nodes, or relay nodes might

be depleted before the MS returns to the sink node to have
a new path redesigned. In such cases, the data of the SNs
associated with the RPs or the designated nodes are lost; the
maximum duration of the loss is equal toDL. The data can be
collected again once the path is rerouted by the sink node.

C. DESIGN OF THE FLS
SNs are selected as RPs according to their weight, based on
NNR, AEC, RE, andDSN ,C .NNR andDSN ,C indicate whether
the SN is located in the high-density area or in the center of
other related SNs. RE and AEC help in rotating SNs (with
remaining energy) to be RPs. The distance between a pair
of RPs appears useful for distributing RPs across the WSN.
However, when the distance is included in FLS, it makes
our preliminary results worse, as it does not favor RPs in
high-density areas.

To determine a designated node for each SN, a promising
approach is to select the RP closest to the SN as the designated
node. However, such selection might overload certain RPs
(and shorten the RPs’ lifetime), as they are surrounded by
dense SNs. In addition, MST is a potential alternative for
selecting designated nodes. MST can determine the shortest
path for sensor-data transmission; however, the SNs close to
RPsmight have to forward considerable loads from other SNs
to the RPs, causing premature energy exhaustion. Instead of
considering only distance, we rely on FLS to calculate each
candidate’s weights. The weights are determined by taking
into account each candidate’s remaining energy, the number
of SNs associated with the candidate, and the distance from
the nodes to their RP. As a result, the load is distributed more
widely among all candidates, reducing the energy consump-
tion of both designated nodes and SNs.

Our fuzzy rules designed in this paper are nonadaptive.
They are suitable for uniformly distributed node placements.
In the situationwhere nodes are distributed extremely nonuni-
formly, the rules may not be efficient enough to obtain
weights for selecting appropriate RPs. In the future, we plan
to address such issues and design adaptive and more flexible
fuzzy rules, by focusing on both node density and distances.

D. RUNNING TIME ANALYSIS
Let N and M be the numbers of SNs and RPs, respectively.
According to Section V, the runtime of the overall method
is O(N 2

+ M3log M ), while those of CB and WRP are
O(N 2log N ) and O(N 3), respectively. Our proposed method
outperforms CB andWRP in terms of running time in the case
where N is much larger than M. Specifically, our method is
efficient if 1) the density of SNs is high, i.e., one RP is the

designated node of many SNs, and 2) the DL is low, causing
the number of RPs (M) to be small. Although our method
requires more running time in the situation of low density
and highDL, the simulation results show that it takes less than
10minutes to execute the whole process, which is satisfactory
for applications that are not time sensitive.

E. MULTIPLE MSs
In this paper, we assume, without loss of generosity, that the
MS has enough power to travel a round trip under the DL
constraint. However, in realWSNs, theremight be some cases
where the MS power storage is limited; in these scenarios
the administrator can decrease the DL value and our method
can adjust the path accordingly. In the future, we plan to
study the MS’s energy consumption model by determining
the correlation between the MS’s energy capacity and the
round-trip distance (i.e., DL) to estimate the DL value based
on the MS’s energy capacity. In addition, if the capacity is
relatively small so that the algorithm cannot find a single
cyclic path that covers the whole area, we plan to study how to
design multiple cyclic paths so that the MS can travel along
them and return to the base station to recharge or swap the
battery before traveling on the other paths to cover the whole
area.

Furthermore, it is possible to deploy multiple MSs to col-
lect data in a shorter time period. In addition, addition MSs
allow more RPs under the same DL constraint, resulting in a
lower load at each RP and a longer WSN lifetime. As future
work, we will address how to coordinate multiple MSs and
how to have the MSs efficiently recharge the SNs energy.

VIII. CONCLUSION
This research presents a novel route-planning method.
We attempt to determine efficient cycles for MSs under delay
limitations while reducing the energy consumption of SNs.
Themethod consists of 3 phases. The first step is to determine
the number of RPs and create a cyclic path. In the second
step, data-collection locations are specified so that the MSs
can travel within the RPs’ communication ranges and collect
data effectively. Last, paths for relaying sensory data from
SNs are calculated, allowing each SN to choose its best RP
while efficiently reducing the overall energy consumption
of RPs. The experiments showed that FLPP_RPP and FLPP
outperform DBRkM, WRP and CB.

In the small-area experiments, FLPP consumes 14%, 54%
and 64% less energy, on average, than DBRkM,WRP and CB
do, respectively. Compared with FLPP, FLPP_RPP consumes
0.6% less energy on average. In terms of the network lifetime,
the energy of the networks based on FLPP lasts 58%, 53%
and 60% longer than that of DBRkM, WRP and CB, while
FLPP_RPP outperforms FLPP by 10%. In the larger-area
experiments, FLPP uses 17%, 26%, 53% and 3% less energy,
on average, than DBRkM, WRP, CB and FLPP_RPP do,
respectively. The average lifetime of the FLPP-based network
is 48%, 36% and 52% longer than that of DBRkM, WRP and
CB, respectively, and FLPP_RPP outperforms FLPP by 13%.
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In the very large area experiments, on average, FLPP uses
34%, 50%, 65% and 1% less energy than do DBRkM, WRP,
CB and FLPP_RPP, respectively. The average lifetime of
the FLPP-based network is 47%, 19% and 32% longer than
that of DBRkM, WRP and CB, respectively. Furthermore,
FLPP_RPP outperforms FLPP by 17%.

Our proposed scheme is centralized in that the sink node
is in charge of grouping SNs and choosing a relaying path
for each SN. Although just one MS is deployed in the WSN,
the proposed algorithm could be adapted to support multiple
MSs. Future research, could focus on how to use MSs to
charge SNs to increase the system up time.
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