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ABSTRACT In this paper, we propose a deep reinforcement learning (DRL) based predictive control
scheme for reducing the energy consumption and energy cost of pumping systems in wastewater treatment
plants (WWTP), in which the pumps are operated in a binary mode, using on/off signals. As global energy
consumption increases, the efficient operation of energy-intensive facilities has also become important.
A WWTP in Busan, Republic of Korea is used as the target of this study. This WWTP is a large energy-
consuming facility, and the pumping station accounts for a significant portion of the energy consumption
of the WWTP. The framework of the proposed scheme consists of a deep neural network (DNN) model
for forecasting wastewater inflow and a DRL agent for controlling the on/off signals of the pumping
system, where proximal policy optimization (PPO) and deep Q-neural network (DQN) are employed as
the DRL agents. To implement smart control with DRL, a reward function is designed to consider the energy
consumption amount and electricity price information. In particular, new features and penalty factors for
pump switching, which are essential for preventing pump wear, are also considered. The performance of
our designed DRL agents is compared with those of WWTP experts and conventional approaches such
as scheduling method and model predictive control (MPC), in which integer linear programming (ILP)
optimization is employed. Results show that the designed agents outperform the other approaches in terms
of compliance with operating rules and reducing energy costs.

INDEX TERMS Predictive control, deep neural network, reinforcement learning, pumping system,
cost-effective energy efficiency.

I. INTRODUCTION
As energy demand increases around the world, there have
been many efforts to reduce energy consumption and costs,
along with efforts to mitigate carbon dioxide emissions from
energy production and the consequent impacts of climate
change. In particular, the industrial use of energy accounts
for about half of global energy consumption, according to the
International Energy Agency [1], and many energy-intensive
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industrial facilities are being researched to increase energy
efficiency through smart control. In the case of the water
industry, water demand is expected to double by 2035 [2];
therefore, large amounts of additional energy are expected
to be consumed for water supply and wastewater treatment,
unless the energy efficiency of plants is increased. Wastew-
ater treatment plants (WWTP) have been found to have
considerable potential for reducing energy consumption and
costs [3]–[5], and several strategies for the energy-efficient
operation of WWTPs are being introduced [6]. The main
energy-intensive tasks in a WWTP include pumping and
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aeration processes. In this paper, the pumping process is
targeted, and we investigate the control scheme of the energy-
intensive pumping station of a WWTP, which consumes a
huge amount of energy through the process as it delivers and
purifies the wastewater generated by common households
and industries.

Many researchers have proposed methods for reducing
energy consumption, cost, or both in the pumping system,
including WWTPs and water supply system. These were
entirely focused on scheduling the operation of pumps con-
sidering long-term flexibility [7]. To efficiently schedule
the operation of pumps, the proper combination of pumps
should be chosen for each time interval. This requires not
only reducing energy consumption and but also observing
the operating rules. Baran et al. proposed a pump schedule
optimization method based on multi-objective evolutionary
algorithms for water supply systems with four objectives
to be minimized [8]. Energy cost, maintenance cost, max-
imum peak power and variation in a reservoir level were
considered. However, as the number of pumps being used
and objectives increase, scheduling the operation of pumps
requires a tremendous amount of computing time [9], [10].
To find faster feasible sets of solutions for scheduling pumps,
approximation methods have been proposed. Puleo et al. and
Kim et al. simplified the pump scheduling problem as a linear
programming problem [10], [11]. Ghaddar et al. proposed
an approximation approach using Lagrangian decomposition
and showed better performance, compared with an approach
that used a mixed integer linear programming problem by
piecewise-linearization [12]. Fooladivanda and Taylor pro-
posed another approximation method, which transformed a
mixed integer non-linear programming problem into a mixed
integer second-order cone programming problem, which also
takes into account the hydraulic characteristics of variable-
speed pumps [13].

Generally, scheduling methods based on solving optimiza-
tion problems generate plans for efficient operation of targets.
This necessarily requires the forecasting of relevant features
such as wastewater inflow amount to solve the problem with
respect to future operation. For this reason, Cheng et al.
proposed deep learning-based models to forecast WWTP
key features such as influent flow and influent biochemical
oxygen demand [14]. However, predictive models can bring
uncertainties caused by forecasting errors when schedul-
ing future operations. For variable targets, there may be a
huge difference between forecasted and real values, which
can lead to an unexpected situation due to improper plans.
Therefore, to apply more stable operation to actual plants,
online forecasting and scheduling is important to compen-
sate for discrepancies between forecasted and real values.
Van Staden et al. proposed an online optimization method
based on model predictive control (MPC) for binary mode
pumping systems [15]. This method means repeatedly solv-
ing optimization problems and using the first index of
plans, which was more robust to model uncertainty than a
scheduling method that solves an optimization problem once.

However, this considered only one pump and assumed that the
inflow of wastewater was constant, which excluded several
conditions for the operation of pumps and a situation in which
the inflow and water demand were variable over time.

Recently, as sensors and networked systems increase
in plants, it becomes possible to collect large amount of
data from the plants. And, this provides opportunities that
data-driven scheduling or control (i.e. real-time scheduling)
framework can deal with decision-making problems with-
out designing complex models considering high dimensional
states. Shiue et al. proposed a Q-learning based real-time
scheduling approach for a smart factory [16]. The reinforce-
ment learning (RL) module is used to select a proper multiple
dispatching rules strategy for manufacturing system, which
outperformed heuristic individual dispatching rules. Xia et al.
proposed a digital twin approach for smart manufacturing,
in which a deep Q-neural network (DQN) agent is trained in
virtual systems to establish an optimal policy and can drive
decision makings for operation in a real-world system [17].
Huang et al. proposed an RL-based demand response (DR)
scheme for steel power manufacturing, where actor-critic-
based deep reinforcement learning (DRL) is utilized for effi-
cient scheduling [18]. The agent reduced energy costs of the
manufacturing process with efficient manufacturing schedule
through DR. RL-based scheduling frameworks have been
applied to not only manufacturing processes but also various
plants, such as vinyl acetate monomer plant, circulating flu-
idized bed plant, coal-fired power plant, nuclear power plant
and WWTP [19]–[24]. In particular, Filipe et al. proposed a
RL-based control framework for variable-frequency pumps in
a WWTP [7]. The framework consists of a predictive model
and a DRL method. It requires only data for training, without
any mathematical model of the pumping system. The model
is used with gradient boosting trees (GBT) for forecasting the
wastewater inflow, and then the inflow forecast is contained
in the state of theDRL. Proximal policy optimization (PPO) is
utilized as the DRL agent, which is one of the policy gradient
methods of DRLs [25].

State-of-the-art pumping systems can be composed of
on/off pumps (i.e. fixed-speed pumps) or variable-frequency
pumps (i.e. variable-speed pumps), and the existing DRL-
based data-driven control approach was proposed only for
variable-frequency pumps [7]. This cannot be directly applied
to on/off pumping systems because there are several different
constraints (e.g. turning on/off pumps properly without being
damaged, selecting a efficient pump combination), which
requires different state information and reward design for
the DRL-based framework to properly operate. In particular,
limiting the number of turning on/off pumps is necessary
to prevent the pumps from being damaged [8], [26], [27].
To that end, new state features and a reward function should
be designed. Even though the DRL-based control approach
for variable-frequency pumps showed better performance
than that ofWWTP experts, this has not been compared to the
previously proposed approaches solving optimization prob-
lems, such as scheduling andmodel predictive control (MPC)
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approaches based on linear programming (LP). In addition,
in [7], the reward function was designed to reduce only
energy consumption. However, such reduction of energy
consumption does not always lead to energy cost savings
owing to variations of electricity prices [11]. Thus, Time of
Use (ToU) tariff has to be considered to ensure that energy
cost can be reduced by decreasing the energy consump-
tion at peak times of ToU tariff. Scheduling based on ToU
can also contribute to alleviating energy peak loads [28].
Thus, designing a smart DRL-based control framework for
on/off pumps is required. And then, performance differences
between the DRL-based control approach and LP-based
approaches should be compared.

In this paper, we propose a DRL-based control scheme for
binary mode pumping systems in WWTPs. The energy con-
sumption amount, energy cost, and number of turning on/off
pumps are jointly considered in a reward function. To this
end, new features for limiting the number of switching pumps
are designed and electricity price information of a ToU tariff
is exploited as an element of state. DQN and PPO are utilized
as DRL agents for controlling on/off pumps. To identify
the performance differences between the proposed scheme
and some existing methods, we compare the proposed DRL-
based control methodwith a schedulingmethod that solves an
optimization problem with integer linear programming (ILP)
and a control method such as MPC that repeatedly solves the
optimization problems for each time interval. The same pre-
dictive model is used to generate wastewater inflow forecasts
for operation of pumps. As a result, we show that the proposed
method for on/off pumps properly works and outperforms the
ILP methods and WWTP experts. The contributions of this
paper are summarized as follows:
• A DRL-based pump control scheme is designed for
pumping systems that are operated in a binary mode.

• New features and a reward function are designed to take
into account the constraints of on/off pumping system,
such as the number of turning on/off pumps and selec-
tion of a proper pump combination.

• The performance of the proposed control scheme is
contrasted against WWTP experts and the approaches
based on ILP.

The remainder of this paper is structured as follows:
Section II describes the pumping station to be targeted and
the general framework of reinforcement learning. Section III
introduces the proposed scheme and benchmark schemes.
Section IV discusses the performance comparison. Section V
concludes the paper.

II. BACKGROUND
A. WASTEWATER TREATMENT PLANT
A WWTP encompasses various treatment phases, includ-
ing pretreatment and primary treatment which are physical
and biological treatments, respectively [29]. In this study,
a WWTP in Busan, South Korea is selected as the target to
be efficiently managed. In the WWTP, the pumping system
that we cover is between pretreatment and primary treatment

FIGURE 1. Schematic diagram of WWTP processes.

TABLE 1. Specifications of the pumping system.

FIGURE 2. The ToU tariff profile.

phases; it moves wastewater from the pumping station to
the distribution gate. Fig. 1 shows that it consists of six
pumps (one for backup), which are binary mode fixed-speed
pumps. Among these pumps, the available ones are changed
according to the season. This is described in Table 1, which
contains the detailed specifications of the pumps. The pump
operation is usually controlled by WWTP experts under the
condition that the water level of the pumping station should
be kept between the specified minimum and maximum of
water levels. In the case of management by WWTP experts,
it is stated in [3] that the energy use in WWTPs is generally
not being optimally managed, which implies some potential
to improve efficiency by reducing redundant energy con-
sumption. In addition, a control strategy with ToU tariffs
can be useful for reducing electricity costs. Fig. 2 shows
the ToU tariff profile that applies to the target WWTP. The
Korea Electric Power Corporation (KEPCO), a South Korean
power provider, supplies power to the WWTP based on this
profile [30].

B. DATASET
We deal with the data observed in the period from
Nov. 2018 toNov. 2019, which contains the actual operational
history of the WWTP experts. The time interval of the data is
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fiveminutes. The inflow rate is not measured in theWWTP of
the target due to structural limitations, but it can be estimated
through the mass-balance equation [31], [32].

It = {Ot ·1t + (Lt+1 − Lt ) · A}/1t (1)

The values of Ot ,Lt+1,Lt ,A,1t are all known from the
data, whereOt is the outflow rate of the pumps, Lt is the water
level of the pumping station, A is the area of the pumping
station, and 1t is used to convert the units of wastewater
inflow rate to the volume of wastewater inflow.

During the given period, abnormal measurements such as
missing values were interpolated by averaging the two nearest
points or deleted if the length of consecutive missing values
was larger than two. The dataset was divided into training
sets (270 days) and test sets (57 days), of which the test set
contains the on/off pattern of pump control by the WWTP
experts. The training set was utilized to train a predictive
model for forecasting future inflow rates and DRL agents for
controlling the pumps of the target. The test set was used for a
performance comparison between the WWTP experts, DRL
agents, and ILP-based approaches.

FIGURE 3. General framework of reinforcement learning.

C. REINFORCEMENT LEARNING
A decision making process based on reinforcement learning
is generally formalized in the Markov decision process
(MDP) framework, as shown in Fig. 3. The framework
comprises an agent and its environment, and interactions
occur between them through three signals (action, state,
reward) [33]. In a nutshell, the MDP is described as a
4-tuple (S,A,P,R). The agent chooses an action at ∈ A
from an observed state st ∈ S and then the environment
determines the reward rt+1 ∼ R(st , at ) and the next state
st+1 ∼ P(st , at ) [34]. The agent continuously learns how
to make an optimal decision (action) at each state through
the interactions with the environment to achieve the maxi-
mum return, maximum cumulative reward, while taking into
account immediate and future rewards. A simple expected
return, gt , can be defined as follows:

gt = rt+1 + γ rt+2 + γ 2rt+3 + γ 3rt+4, . . . ,+γ T rt+T (2)

where T denotes a final time step and γ is a discount factor,
which is a value between 0 and 1, to reflect the present value
of future rewards.

III. METHODOLOGIES
A. PROPOSED SCHEME
Fig. 4 shows the framework of the proposed control scheme.
This framework was inspired by [7], [20], [35]. In [7],
the authors added a predictive model to the general MDP
framework to take into account wastewater inflow forecasts
as features of state, which used GBT as the predictive model
and PPO as the agent for controlling the pumping system.
Similarly, in [20], [35], the frameworks are composed of an
artificial neural network (predictive model) and Q-learning
(agent). In this study, our framework consists of DNN
(predictive model), and PPO or DQN (agent), which cover
the continuous state space with more features (inflow fore-
cast, electricity price, and pump usage time). In particular,
we modified the structure of the PPO used in [7] to apply
to discrete setting (selecting a pump combination), therefore
softmax function was utilized for the policy of PPO instead
of Gaussian or Beta distribution [36]. We denote the modified
PPO as discrete setting PPO (DPPO). And, to distinguish the
our designed DRL agents, we denote the designed DPPO as
A-DPPO and the designed DQN as A-DQN. In this frame-
work, the predictive model generates the wastewater inflow
forecasts, and electricity price is generated from the ToU
information from a power provider in South Korea. In par-
ticular, the WWTP counts the pump usage time and uses it to
limit the frequency of switching pumps. The features serve as
important elements of the state when making a decision for
efficient pump control.

1) PREDICTIVE MODEL
With online updating of the policy for controlling the pump-
ing system, online updating of the predictive model should
be also considered. This is important because the inflow
pattern of wastewater is variable over time and by season.
By exploiting DNNs, we can apply online updates to the
predictive model. We use the features (inflow rate, date) that
were used by [7] to forecast the future inflow rate.

Ît+1, Ît+2, . . . , Ît+N
= f (It , It−1, . . . , It−n,month, day, hour) (3)

In Eq. (3), n is the number of lags and N is the number
of forecasted inflows from the current time. The metrics for
evaluating the predictive model are the mean absolute per-
centage error (MAPE) and the mean absolute error (MAE).

MAPE =
100
N

N∑
t=1

|Ît − It |
|It |

(4)

MAE =
1
N

N∑
t=1

|Ît − It | (5)

2) DEEP REINFORCEMENT LEARNING AGENTS
The existing DRL methods include DQN, PPO, advantage
actor critic (A2C), and deep deterministic policy gradient
(DDPG) which are commonly used in many research fields
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FIGURE 4. The framework of the proposed scheme for the pumping system.

FIGURE 5. Decision making process for controlling the pumping system.

as model-free methods that do not require any mathemat-
ical modeling but do require thousands of interactions for
training [25], [37]–[39]. PPO outperformed almost all other
methods for continuous control and was competitive with
value-based methods in discrete settings [40]. Among the
DRL methods, we used DPPO (i.e. discrete setting PPO)
and DQN as the agent to interact with the environment
(we denoted the designedDPPO asA-DPPO and the designed
DQN as A-DQN). Fig. 5 illustrates the detailed process of
making a decision and reflecting the changed state informa-
tion in the data flow. At a given time, the DRL agent performs
an action for controlling the pumping system and the WWTP
checks the changed state compared with the previous one.
Some elements of the state vector from the WWTP are used
to make electricity price and wastewater inflow forecasts.
A concatenated state vector that contains information about
the WWTP, electricity price, and wastewater inflow forecasts
is used as an input vector to the state input layer of the
DRL. As interactions between the environment and the agent
increase, the neural networks of the DRL are updated, which
provides an optimal control policy for the pumps.
Action: During the test days in spring, three pumps were

operated. Therefore, we constructed an action space as in
Eq. (6) for controlling the pumping system. All of the pump
combinations can also be considered as in [41] without

considering season but we used the action space to compare
the performance of agents with that of WWTP experts under
the condition in which the same pumps are operated. To sim-
plify the process of switching the pumps, it is assumed that
each pump was turned on or off in order of efficiency. The
system efficiency is important to set optimal pump combina-
tions, which can be found by identifying the outflows of the
pumps [42]. The variable at represents the number of pumps
being used. We excluded the uncommon case in which all of
the pumps are turned off.

at ∈ {1, 2, 3} (6)

State: In response to an action from the agent, the environ-
ment provides an observation vector, sWWTPt , which includes
the previous action at−1, water level Lt , pump use dura-
tion dt , current time kt , and current inflow rate It . Then,
vectors, sPMt ,sPPt , which contain some external features such
as inflow forecasts ,Ît+1, Ît+2, Ît+3, . . . , Ît+N and electricity
price ut , ut+1, ut+2, . . . , ut+N are integrated with the obser-
vation vector. Finally, the concatenated vector, sinputt , is given
as the state vector to the agent.

sWWTPt = (at−1,Lt , dt , kt , It ) (7)

sPMt = (Ît+1, Ît+2, Ît+3, . . . , Ît+N ) (8)

sPPt = (ut , ut+1, ut+2, ut+3, . . . , ut+N ) (9)
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sinputt = (at−1,Lt , dt , kt , It , Ît+1, Ît+2, Ît+3, . . . , Ît+N ,

ut , ut+1, ut+2, ut+3, . . . ut+N ) (10)

Reward: Generally, reward functions are designed by trial
and error [33]. To construct reward signals that are closer to
the real costs of pump operation, we use Korean Won (KRW)
units when each reward occurs. First, we consider rrulet+1 which
occurs according to the water level change by an action of the
agent.

rrulet+1 =

{
0, Lmin ≤ Lt ≤ Lmax
−Pδ, otherwise

(11)

If the water level is within the given operating range, this
value is zero. However, if it deviates from the given range,
the penalty cost is added, which takes into account damage to
the pumping system by pump purchase price, P and penalty
coefficient, δ. In [27], when the operating rules are violated,
the penalty factor included pump and water cost.

The pump switching is closely related to the age of the
pumps. Therefore, if switching is not limited during pump
operation, controlling the pumps could be abnormal or even
fatal to the system. In addition, the number of switches is used
as a factor to calculate the maintenance cost [8], [26], [27].
In [15], when scheduling the operation of a pump, the method
includes a constraint in which the frequency of switches is
limited to four times per hour. In the reinforcement learning
framework, there is no specific method for establishing the
constraints for satisfying the given conditions [43]. To solve
this problem, we generate new features that indicate the dura-
tion of pump use and design the corresponding penalty for
frequent pump switching. dt represents the duration for which
the current pumps are used. dlen. is the preferred duration.

1 ≤ dt ≤ dlen. (12)

In a nutshell, if a pump switch occurs before the required
duration length is reached, the penalty is applied to avoid
wearing out the pumps. rswitcht+1 depends on the duration of
pump operation and the amount of energy changed by switch-
ing the pumps, where et represents the energy consumption
at the current time, taking into account pump’s power times
the time interval. If dt is equal to dlen., rswitcht+1 is zero because
the switching frequency causes no damage to the pumping
system. The value of dt can be between 1 and dlen..

rswitcht+1 = −

(
1−

dt
dlen.

)
|et − et−1|ut (13)

Lastly, we design rcostt+1 , which contains the information of
how to reduce energy consumption and cost. In Eq. (15),
c is the electricity price that corresponds to the ToU tariff
provided by KEPCO. The tariff requires a different price
depending on the profile, as shown in Fig. 2. Moreover,
we add new parameters λ1 and λ2 to the ToU tariff to regulate
the impact of the ToU information on the control of the
pumps; this can be used to reduce the power usage during

times when the load is heavy.

λ2 =
1
λ1

(0 < λ1 ≤ 1) (14)

ut ∈ {clowestλ1, cmiddle, chighestλ2} (15)

When continuing the training for constructing a policy of
controlling the pump system, it is necessary to give positive
reward to the agent to keep controlling the pump system
for the maximum return. Therefore, the value of rcostt+1 is set
to the amount of reduced the energy consumption and cost,
compared with the maximum consumption, emax , which was
captured.

rcostt+1 = ut (emax − et ) (16)

We consider all the conditions by summing all of the
reward factors, which can be coordinated by properly setting
w1, w2, and w3 for each purpose. As a result, the agent learns
the optimal policy for maximizing the return from the reward
signals.

rt+1 = w1rrulet+1 + w2rswitcht+1 + w3rcostt+1 (17)

B. SCHEDULING APPROACH FOR BENCHMARK
Scheduling approaches are designed to compare the perfor-
mance of the proposed method with that of an optimization
model, such as a ILP model. The objective function and the
optimization problem are defined as follows:

φ(xt , yt , zt ) =
T∑
t=1

ctxtEX + ctytEY + ctztEZ (18)

min
xt ,yt ,zt

φ(xt , yt , zt ) (19)

The decision variables are defined as xt , yt , and zt which
are set according to the number of pumps being activated.
These variables reflect the action space of the proposed
method for a fair comparison. xt represents a decision of
activating a pump, yt represents a decision of activating two
pumps, and zt represents a decision of activating three pumps,
which are all binary, xt , yt , and zt ∈ {0, 1}. E denotes the
energy consumption of each pump combination and ct is the
electricity price according to the ToU tariff. The constraints
of the optimization problem are as follows:

xt + yt + zt = 1 (20)

Lmin ≤ L0 +
t∑

k=1

Ik − (xkOXk + ykO
Y
k + zkO

Z
k )

≤ Lmax (21)

In Eq. (21), L0 denotes the initial water level at the pumping
station. The given operating range is between Lmax and Lmin.
Also, Ik denotes the inflow of wastewater. The outflow of
each pump combination is denoted as OXk , O

Y
k , and O

Z
k .

To take into account the pump switching, we designed the
features and penalty factors to the proposed control method.
In the ILP approach, the resolution of the data is down-
sampled to limit the switching count while scheduling the
optimal plan for activating the pumps.
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The scheduling method generates a pattern of pump use for
a day. There is no feedback from the target, even though there
are discrepancies between predictive and actual values. The
pump use pattern is generated in two ways. First, to find the
potential maximum gain from optimizing the target, a pattern
of pump use is scheduled under the assumption that the
scheduler already has information about future wastewater
inflows. Then, another pump use pattern is scheduled with
no information about those inflows, where predictive model
is only used with historical information.

C. CONTROL APPROACH FOR BENCHMARK
In this section, an MPC model is designed to compensate for
the discrepancies between the predictive values and actual
values. Control approaches that utilize MPC have already
been exploited in industrial applications [15], [44]–[47]. The
MPC model repeatedly solves optimization problems each
time interval to generate plans for the operation of the target,
in which the first index elements of the plans are used.
Through the process, an online optimization, it can reflect
a changed state, such as the water level per time interval,
which compensates for the above-mentioned discrepancies.
However, when the discrepancy occurs, it can drive the target
to a state in which an optimization problem is infeasible
because of constraint violations. In this case, simply remov-
ing the constraints or re-solving the previous problem could
cause an unexpected control behavior [48]. To deal with
this challenge, slack variables to soften constraints are added
to the optimization problems as a more systematic method
[48]–[50]. These variables serve as penalty factors in the
cost functions of the optimization problems, which cause the
optimizer to find a solution that minimizes the original cost
function and simultaneously keeps the number of violations
as small as possible [48]. Themodified objective function and
the optimization problem are defined as

φ(xt , yt , zt , ε
upper
t , εlowert )

=

T∑
t=1

ctxtEX + ctytEY

+ ctztEZ + Pδ(ε
upper
t + εlowert ) (22)

min
xt ,yt ,zt ,ε

upper
t ,εlowert

φ(xt , yt , zt , ε
upper
t , εlowert ) (23)

where P and δ used in the reward function of the proposed
scheme are utilized as penalty coefficients. The slack vari-
ables εuppert and εlowert in the objective function are added to
the constraints for the operating rules as follows:

0 ≤ εuppert (24)

0 ≤ εlowert ≤ Lmin (25)

Lmin − εlowert ≤ L0 +
t∑

k=1

Ik − (xkOXk + ykO
Y
k + zkO

Z
k )

≤ Lmax + ε
upper
t (26)

As a result, at each time interval, the optimizer repeatedly
solves the optimization problems for a fixed time window

T without any infeasible areas, thereby achieving an online
optimization.

IV. RESULTS AND DISCUSSION
A. MODEL TRAINING
1) PREDICTIVE MODEL
Some of the training datasets (202 days) were used for predic-
tive model training, whereas the others (68 days) were used
for validation, which both were used as training datasets to
establish the policy of the DRL agents. Finally, to test the
performance of the predictivemodel, the test dataset (57 days)
is used. Fig. 6 shows the changes in training and validation
loss by epoch, and Table 2 summarizes the performance of
the model.

FIGURE 6. The change in training and validation loss.

TABLE 2. Performance of the predictive model based on DNNs.

FIGURE 7. Changing return over episodes during training.

2) DRL AGENT MODELS
The agent-environment interactions can be divided into sev-
eral episodes, which are also called trials. The episodes end
in the terminal state where a violation occurs or the final
time step of a day comes. Each return denotes the cumulative
reward during each episode. Fig. 7 shows the process of learn-
ing the policy for controlling the pumping system. The aver-
age return is the mean value per 400 episodes. Reinforcement
learning has the characteristic of high variance because of
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FIGURE 8. The comparison of the predictive inflow rates and actual
inflow rates.

FIGURE 9. The changing water level of the pump station by the ILP
schedulers.

stochasticity caused when exploring and making the policy.
The wastewater inflow is also highly variable on some days
because of different weather conditions, such as rain, dry-
ness, or different seasons. By identifying the increase in
the maximum and average returns, we can confirm that the
policy is improved. After the agents had learned the policy for
controlling the pumping system through the training dataset
(270 days), the learned policy was applied to the test dataset
(57 days).

B. PERFORMANCE COMPARISON DURING THE TEST DAYS
1) OPERATING RULE ANALYSIS
Fig. 8 illustrates the predictive and actual inflow rates for a
test day. The two schedulers generate a pattern of using the
pumps based on the predicted and real values, respectively.
In Fig. 9, the results show that the scheduler with prediction
seriously violates the given operation range. These viola-
tions are caused by errors between the predicted and actual
inflow rates when generating the plan for pump operation.
As the errors accumulate, the severity of the violations also
increases. Therefore, to apply this scheduler to a WWTP, it is
necessary to compensate for discrepancies between forecasts
and ground truths in real time while generating a decision
per time interval. Unless the accuracy of prediction is 100%,
it would be difficult to use the scheduling method for the
efficient operation of targets without compensating for errors
from the states of targets in real time.

FIGURE 10. Error bars of water level change during the test days.

TABLE 3. Water level comparison between WWTP experts, DRL agents
(A-DQN, A-DPPO), MPC, and scheduler).

Fig. 10 shows the average and variation of the chang-
ing water level during the test days. In Table 3, the details
of the figures are identified. They indicate that the DRL
agents showed equal or better performance compared with
the WWTP experts in terms of the operating rules. On the
other hand, the scheduler severely violated the operational
rules, whichwas caused by the accumulated errors of the fore-
casted and actual inflows. The MPC significantly alleviated
violations of the operating rules by taking into account the
errors in real time. However, there were still many violations
compared with the DRL agents and WWTP experts.

The MPC usually tended to respond to violations only
when they had already occurred, which means that it could
not prevent the violations beforehand. TheMPCmade a deci-
sion for the operation of pumps without taking into account
that the changingwater level was approaching the boundaries,
unless it deviated from the boundaries. It considered only
constraints in forecasted inflow rates without taking into
account uncertainties caused by forecasting errors. In contrast
with theMPC, the DRL agents could cope with the challenge.
Whenever the DRL agents made a decision, they evaluated
the cumulative reward at each state, which takes into account
rewards from future states. At this time, a discounting factor
is considered to apply different weights to future rewards as
a function of the time from the current state. If there is a risk
of violations in the near future, the agents choose the most
stable decision to prevent the violations even though there
are chances to reduce energy and cost. Therefore, the MPC
caused a higher standard deviation and violation numbers
than the DRL agents, as shown in Table 3.

2) ENERGY CONSUMPTION AND COST ANALYSIS
The patterns of pump use, the power consumptions, and water
levels are illustrated in Fig. 11. It can be seen that the WWTP
expert mainly activated pumps 1 and 3. On the other hand,
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FIGURE 11. Operation results of each control strategy during a test day.

the A-DQN agent, A-DPPO agent, and MPC typically used
pumps 3 and 4, which created an opportunity to better utilize
the capacity of the pumping station. In addition, the DRL
agents and MPC turned off a pump during the highest price
periods to reduce energy consumption and costs. The highest
price periods were from 10:00 am to 12:00 pm and from
1:00 pm to 5:00 pm during the test days.

In terms of switching number, all of the approaches
showed an increase to better utilize the capacity of the

FIGURE 12. Operation comparison between A-DPPO and DPPO [7].

pumping station. However, if switching pumps occurred very
frequently it could cause tremendous degradation of pumps.
In [15], the possible switching interval was set as 15 minutes
(4 times per one hour). Here, we assume the same switching
interval. Thus, the maximum allowable switching number
is 5472 during the test days (57 days). In the case of the
scheduler and MPC, to satisfy this condition, a pattern of
pump use over time was generated with 15 minute inter-
vals. Through rswitcht+1 , dt , dlen., which were proposed in this
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TABLE 4. Energy consumption and cost comparison between WWTP experts, DRL agents (A-DQN, A-DPPO), MPC and scheduler.

paper, the DRL agents (A-DPPO and A-DQN) prevented any
deviation in maintaining the appropriate switching frequency
range. In Fig.12, during a test day, it is identified that a DPPO
agent [7] without the proposed features and reward function
abnormally changed pump combination, causing highly fre-
quent on/off transition, while the A-DPPO agent with the
features and reward function showed a proper pattern. During
the test days, the switching number of the DPPO agent was
10960, which deviated seriously from the given switching
constraint. The details are described in Table.4.

FIGURE 13. Energy consumption comparison.

FIGURE 14. Energy cost comparison.

Energy consumption and cost comparison are shown
in Fig. 13 and Fig. 14, respectively. The details are presented
in Table 4. It can be seen that the scheduler with prediction
shows a reduction in energy consumption and costs of up
to 1.35% and 1.92% respectively, which indicates severe
violations in the operating rule analysis. The MPC shows a
reduction in energy consumption and costs of up to 3.33%
and 3.86%, respectively. This compensated significantly for
the weakness of the scheduler and simultaneously improved
its performance. The A-DQN could reduce the energy con-
sumption and costs by up to 3.53% and 3.74%, respectively.
The A-DPPO could reduce the energy consumption and costs
by up to 3.76% and 3.94%, respectively. In the case of [7],
without the features and reward function, the DPPOwas stuck

in sub-optimal policy, showing insignificant energy and cost
reduction up to 0.23% and 0.25%, respectively. The perfor-
mance of the scheduler with perfect prediction was used as
an ideal improvement on reducing the energy consumption
and costs. It shows a reduction in energy consumption and
costs of up to 4.18% and 4.66%, respectively. The highest
gain in optimization of the target could potentially be under
the assumption that all future inflow rates are known. The
A-DPPO showed the most similar performance to the ideal
improvement.

The proposed DRL agents (i.e. A-DPPO and A-DQN)
could achieve the increase of operating efficiency without
seriously violating the given operating rules or damaging
the pumping system, compared with the WWTP experts,
scheduler, MPC, and DPPO [7]. The MPC showed almost
the same performance in reducing the energy consumption
and costs, but it caused severe violations compared with the
WWTP experts and DRL agents. In addition, the switching
numbers are lower in the proposed DRL agents than in the
scheduler and MPC, even though the DRL agents showed
the better performance in reducing energy consumption and
costs. As a result, it was confirmed that the proposed scheme
outperformed the ILP-based approaches in the efficient oper-
ation of the target.

V. CONCLUSION AND DISCUSSION
The existing researches on pumping systems focused mainly
on scheduling the operation of the pumps. Online optimiza-
tion approaches such as MPC repeatedly solving optimiza-
tion problems and data-driven predictive control based on
reinforcement learning can compensate for the weakness
of scheduling the operation of the pumps. In this study,
we designed a deep reinforcement learning (DRL) based
predictive control scheme and integer linear programming
(ILP) basedMPC for binary mode fixed-speed pumps. To this
end, a reward function and new features were proposed to
limit the frequency of switching pumps. The pumping station
of aWWTP in the Republic of Koreawas set as the target to be
efficiently controlled. During the test days, the result showed
that the ILP-based scheduling method severely violated the
operating rules and the ILP-based MPC could alleviate sig-
nificantly the number of violations by compensating for
forecasting errors. However, there were still many violations
because the MPC could respond to the violations almost after
those occurred. On the other hand, the DRL-based control
schemes could prevent violations beforehand, which showed
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equal or better performance compared with the WWTP
experts in terms of the operating rules. In terms of energy con-
sumption and cost, the MPC and DRL based scheme showed
similar performance, which outperformed significantly the
WWTP experts and scheduling method. As a result, we con-
firmed that the DRL-based scheme was most suitable for the
operation of pumps in uncertainties caused by forecasting
errors.

We utilized DRL agents such as PPO and DQN based on
model-free algorithms to efficiently control on/off pumps.
Model-free algorithms gradually search for an optimal policy
through exploration and require a lot of training samples to
find a proper policy, compared to model-based algorithms
such as ILP-based MPC. To improve the scheme, Model-
based DRL agent can be considered regarding the future
direction. For some applications, it was identified that model-
based DRL agents could learn a control policy with much
less data and quickly adapt to unseen situations and sudden
changes [51], [52]. We will try to build on a model-based
DRL scheme for on/off pumping system and compare it with
other schemes such as themodel-free-based DRL scheme and
ILP-based MPC.

ACKNOWLEDGMENT
This research was supported in part by Energy AI Con-
vergence Research & Development Program through the
National IT Industry Promotion Agency of Korea (NIPA)
funded by theMinistry of Science and ICT (No. 1711120811)
and in part by GIST Research Institute (GRI) Grant Funded
by the GIST in 2021.

REFERENCES
[1] J. Henriques and J. Catarino, ‘‘Sustainable value–an energy efficiency

indicator in wastewater treatment plants,’’ J. Cleaner Prod., vol. 142,
pp. 323–330, 2017.

[2] M. Lavelle and T. K. Grose, ‘‘Water demand for energy to double by 2035,’’
Nat. Geographic News, 2013.

[3] L. Castellet and M. Molinos-Senante, ‘‘Efficiency assessment of wastew-
ater treatment plants: A data envelopment analysis approach integrating
technical, economic, and environmental issues,’’ J. Environ. Manage.,
vol. 167, pp. 160–166, Feb. 2016.

[4] D. Kirchem, M. Á. Lynch, V. Bertsch, and E. Casey, ‘‘Modelling demand
response with process models and energy systems models: Potential appli-
cations for wastewater treatment within the energy-water nexus,’’ Appl.
Energy, vol. 260, Feb. 2020, Art. no. 114321.

[5] D. Torregrossa, J. Hansen, F. Hernández-Sancho, A. Cornelissen,
G. Schutz, and U. Leopold, ‘‘A data-driven methodology to support pump
performance analysis and energy efficiency optimization in waste water
treatment plants,’’ Appl. Energy, vol. 208, pp. 1430–1440, Dec. 2017.

[6] V. Zejda, V. Máša, Š. Václavková, and P. Skryja, ‘‘A novel check-list strat-
egy to evaluate the potential of operational improvements in wastewater
treatment plants,’’ Energies, vol. 13, no. 19, p. 5005, Sep. 2020.

[7] J. Filipe, R. J. Bessa, M. Reis, R. Alves, and P. Póvoa, ‘‘Data-driven
predictive energy optimization in a wastewater pumping station,’’ Appl.
Energy, vol. 252, Oct. 2019, Art. no. 113423.

[8] B. Barán, C. von Lücken, andA. Sotelo, ‘‘Multi-objective pump scheduling
optimisation using evolutionary strategies,’’Adv. Eng. Softw., vol. 36, no. 1,
pp. 39–47, Jan. 2005.

[9] P. W. Jowitt and G. Germanopoulos, ‘‘Optimal pump scheduling in water-
supply networks,’’ J. Water Resour. Planning Manage., vol. 118, no. 4,
pp. 406–422, 1992.

[10] V. Puleo, M. Morley, G. Freni, and D. Savić, ‘‘Multi-stage linear pro-
gramming optimization for pump scheduling,’’ Procedia Eng., vol. 70,
pp. 1378–1385, Apr. 2014.

[11] Y. Kim, S. Yoon, C. Mun, T. Kim, D. Kang, M. Sim, D. Choi, and
E. Hwang, ‘‘Smart day-ahead pump scheduling scheme for electricity cost
optimization in a sewage treatment plant,’’ in Proc. Int. Conf. Inf. Commun.
Technol. Converg. (ICTC), Oct. 2019, pp. 565–567.

[12] B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, and B. Eck,
‘‘A Lagrangian decomposition approach for the pump scheduling problem
in water networks,’’ Eur. J. Oper. Res., vol. 241, no. 2, pp. 490–501,
Mar. 2015.

[13] D. Fooladivanda and J. A. Taylor, ‘‘Energy-optimal pump scheduling and
water flow,’’ IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1016–1026,
Sep. 2018.

[14] T. Cheng, F. Harrou, F. Kadri, Y. Sun, and T. Leiknes, ‘‘Forecasting of
wastewater treatment plant key features using deep learning-based models:
A case study,’’ IEEE Access, vol. 8, pp. 184475–184485, 2020.

[15] A. J. van Staden, J. Zhang, andX. Xia, ‘‘Amodel predictive control strategy
for load shifting in a water pumping scheme with maximum demand
charges,’’ Appl. Energy, vol. 88, no. 12, pp. 4785–4794, Dec. 2011.

[16] Y.-R. Shiue, K.-C. Lee, and C.-T. Su, ‘‘Real-time scheduling for a smart
factory using a reinforcement learning approach,’’ Comput. Ind. Eng.,
vol. 125, pp. 604–614, Nov. 2018.

[17] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali, and
R. Harik, ‘‘A digital twin to train deep reinforcement learning agent for
smart manufacturing plants: Environment, interfaces and intelligence,’’
J. Manuf. Syst., vol. 58, pp. 210–230, Jan. 2021.

[18] X. Huang, S. H. Hong, M. Yu, Y. Ding, and J. Jiang, ‘‘Demand response
management for industrial facilities: A deep reinforcement learning
approach,’’ IEEE Access, vol. 7, pp. 82194–82205, 2019.

[19] L. Zhu, Y. Cui, G. Takami, H. Kanokogi, and T. Matsubara, ‘‘Scalable
reinforcement learning for plant-wide control of vinyl acetate monomer
process,’’ Control Eng. Pract., vol. 97, Apr. 2020, Art. no. 104331.

[20] X. Xu, Y. Jia, Y. Xu, Z. Xu, S. Chai, andC. S. Lai, ‘‘Amulti-agent reinforce-
ment learning-based data-driven method for home energy management,’’
IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3201–3211, Jul. 2020.

[21] J. Fu, H. Xiao, H. Wang, and J. Zhou, ‘‘Control strategy for denitrification
efficiency of coal-fired power plant based on deep reinforcement learning,’’
IEEE Access, vol. 8, pp. 65127–65136, 2020.

[22] D. Lee, A. M. Arigi, and J. Kim, ‘‘Algorithm for autonomous power-
increase operation using deep reinforcement learning and a rule-based
system,’’ IEEE Access, vol. 8, pp. 196727–196746, 2020.

[23] F. Hernández-del-Olmo, E. Gaudioso, R. Dormido, andN.Duro, ‘‘Tackling
the start-up of a reinforcement learning agent for the control of wastewater
treatment plants,’’ Knowl.-Based Syst., vol. 144, pp. 9–15, Mar. 2018.

[24] F. Hernandez-del-Olmo, E. Gaudioso, and A. Nevado, ‘‘Autonomous adap-
tive and active tuning up of the dissolved oxygen setpoint in a wastewater
treatment plant using reinforcement learning,’’ IEEE Trans. Syst., Man,
Cybern., C (Appl. Rev.), vol. 42, no. 5, pp. 768–774, Sep. 2012.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[26] K. E. Lansey and K. Awumah, ‘‘Optimal pump operations considering
pump switches,’’ J. Water Resour. Planning Manage., vol. 120, no. 1,
pp. 17–35, Jan. 1994.

[27] D. Torregrossa and F. Capitanescu, ‘‘Optimization models to save energy
and enlarge the operational life of water pumping systems,’’ J. Cleaner
Prod., vol. 213, pp. 89–98, Mar. 2019.

[28] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, ‘‘An optimized
EV charging model considering TOU price and SOC curve,’’ IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 388–393, Mar. 2012.

[29] C. K. Yoo, D. S. Kim, J.-H. Cho, S. W. Choi, and I.-B. Lee, ‘‘Process
system engineering in wastewater treatment process,’’ Korean J. Chem.
Eng., vol. 18, no. 4, pp. 408–421, 2001.

[30] Time Use Tariff Provided by Korea Electric Power Corp. (KEPCO).
Accessed: Jul. 2019. [Online]. Available: https://cyber.kepco.co.kr/
ckepco/front/jsp/CY/E/E/CYEEHP00301.jsp

[31] Z. Zhang, Y. Zeng, and A. Kusiak, ‘‘Minimizing pump energy in a wastew-
ater processing plant,’’ Energy, vol. 47, no. 1, pp. 505–514, Nov. 2012.

[32] Z. Zhang, A. Kusiak, Y. Zeng, and X. Wei, ‘‘Modeling and optimization of
a wastewater pumping system with data-mining methods,’’ Appl. Energy,
vol. 164, pp. 303–311, Feb. 2016.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[34] M. Hausknecht and P. Stone, ‘‘Deep recurrent Q-Learning for par-
tially observable MDPs,’’ 2015, arXiv:1507.06527. [Online]. Available:
http://arxiv.org/abs/1507.06527

95370 VOLUME 9, 2021



G. Seo et al.: DRL-Based Smart Joint Control Scheme for On/Off Pumping Systems in WWTP

[35] R. Lu, S. H. Hong, and M. Yu, ‘‘Demand response for home energy
management using reinforcement learning and artificial neural network,’’
IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6629–6639, Nov. 2019.

[36] C. Ching-Yun Hsu, C. Mendler-Dünner, and M. Hardt, ‘‘Revisiting
design choices in proximal policy optimization,’’ 2020, arXiv:2009.10897.
[Online]. Available: http://arxiv.org/abs/2009.10897

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep
reinforcement learning,’’ 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

[38] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘‘Continuous control with deep rein-
forcement learning,’’ 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

[40] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ 2017, arXiv:1709.06560.
[Online]. Available: http://arxiv.org/abs/1709.06560

[41] A. Kusiak, Y. Zeng, and Z. Zhang, ‘‘Modeling and analysis of pumps in
a wastewater treatment plant: A data-mining approach,’’ Eng. Appl. Artif.
Intell., vol. 26, no. 7, pp. 1643–1651, Aug. 2013.

[42] V. K. Arun Shankar, S. Umashankar, S. Paramasivam, and N. Hanigovszki,
‘‘A comprehensive review on energy efficiency enhancement initiatives
in centrifugal pumping system,’’ Appl. Energy, vol. 181, pp. 495–513,
Nov. 2016.

[43] R. Nian, J. Liu, and B. Huang, ‘‘A review on reinforcement learning: Intro-
duction and applications in industrial process control,’’ Comput. Chem.
Eng., vol. 139, Aug. 2020, Art. no. 106886.

[44] J. Richalet, A. Rault, J. L. Testud, and J. Papon, ‘‘Model predictive heuristic
control,’’ Automatica, vol. 14, no. 5, pp. 413–428, Sep. 1978.

[45] C. R. Cutler and R. B. Hawkins, ‘‘Application of a large predictive multi-
variable controller to a hydrocracker second stage reactor,’’ in Proc. Amer.
Control Conf., Jun. 1988, pp. 284–291.

[46] S. Qin and T. Badgwell, ‘‘An overview of industrial model predictive
control technology,’’ in Proc. AIche Symp. Ser., vol. 93, no. 316, 1997.

[47] G. M. Zeng, X. S. Qin, L. He, G. H. Huang, H. L. Liu, and Y. P. Lin,
‘‘A neural network predictive control system for paper mill wastewater
treatment,’’ Eng. Appl. Artif. Intell., vol. 16, no. 2, pp. 121–129, Mar. 2003.

[48] E. C. Kerrigan and J. M. Maciejowski, ‘‘Soft constraints and exact penalty
functions in model predictive control,’’ in Proc. United Kingdom Autom.
Control Council (UKACC) Int. Conf., Sep. 2000.

[49] N. M. de Oliveira and L. T. Biegler, ‘‘Constraint handing and stabil-
ity properties of model-predictive control,’’ AIChE J., vol. 40, no. 7,
pp. 1138–1155, 1994.

[50] P. O. M. Scokaert and J. B. Rawlings, ‘‘Feasibility issues in linear model
predictive control,’’ AIChE J., vol. 45, no. 8, pp. 1649–1659, Aug. 1999.

[51] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, ‘‘Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,’’ 2018, arXiv:1803.11347. [Online].
Available: http://arxiv.org/abs/1803.11347

[52] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, ‘‘Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7559–7566.

GIUP SEO (Graduate Student Member, IEEE)
received the B.S. degree from the School of
Mechanical and Control Engineering, Handong
Global University, Pohang, Gyeongsangbuk,
SouthKorea, in 2019, and theM.S. degree from the
School of Electrical Engineering and Computer
Science, Gwangju Institute of Science and Tech-
nology, Gwangju, South Korea, in 2021, where he
is currently pursuing the Ph.D. degree with the
School of Electrical Engineering and Computer

Science. His research interests include signal processing, intelligent systems,
schedule optimization, and energy informatics.

SEUNGWOOK YOON (Graduate Student
Member, IEEE) received the B.S. degree from the
Department of Electric Engineering, Kwangwoon
University, Seoul, South Korea, in 2014. He is
currently pursuing the integrated M.S. and Ph.D.
degree with the School of Mechatronics, Gwangju
Institute of Science and Technology, Gwangju,
South Korea. His research interests include energy
informatics, vehicle grid integration, and data
channel array signal processing.

MYUNGSUN KIM (Graduate Student Member,
IEEE) received the B.S. degree from the School
of Mechanical Engineering, Gwangju Institute of
Science and Technology, Gwangju, South Korea,
in 2019, where she is currently pursuing the M.S.
degree with the School of Electrical Engineer-
ing and Computer Science. Her research interests
include energy informatics, signal processing, and
data mining.

CHANGHO MUN received the B.S. degree from
the Department of History, Korea University,
Seoul, South Korea, in 2008, and the M.S. degree
from the Department of Electrical Engineering,
PukyongNational University, Busan, South Korea,
in 2020.

He joined Busan Environmental Corporation,
in 2012. He is currently managing electrical
equipment for energy-intensive processes in the
wastewater treatment plant.

EUISEOK HWANG (Member, IEEE) received
the B.S. and M.S. degrees from the School of
Engineering, Seoul National University, Seoul,
South Korea, in 1998 and 2000, respectively, and
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, in 2010 and 2011,
respectively.

He was with the Digital Media Research Center,
Daewoo Electronics Company Ltd., South Korea,

from 2000 to 2006, and the Channel Architecture Group, LSI Corporation
(currently, Broadcom), San Jose, CA, USA, from 2011 to 2014. Since 2015,
he has been an Assistant/Associate Professor with the School of Mecha-
tronics/Electrical Engineering and Computer Science/Artificial Intelligence,
Gwangju Institute of Science and Technology (GIST), South Korea. His
research interests include data channel signal processing and coding, energy
informatics and intelligence implementations for smart grid, and information
processing for system intelligence in emerging ICT/IoT applications.

VOLUME 9, 2021 95371


