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ABSTRACT The size of neural networks in deep learning techniques is increasing and varies signifi-
cantly according to the requirements of real-life applications. The increasing network size and scalability
requirements pose significant challenges for a high performance implementation of deep neural networks
(DNN). Conventional implementations, such as graphical processing units and application specific integrated
circuits, are either less efficient or less flexible. Consequently, this article presents a system-on-chip (SoC)
solution for the acceleration of DNN, where an ARM processor controls the overall execution and off-loads
computational intensive operations to a hardware accelerator. The system implementation is performed on a
SoC development board. Experimental results show that the proposed system achieves a speed-up of 22.3,
with a network architecture size of 64 × 64, in comparison with the native implementation on a dual core
cortex ARM-A9 processor. In order to generalize the performance of complete system, a mathematical
formula is presented which allows to compute the total execution time for any architecture size. The
validation is performed by taking Epileptic Seizure Recognition as the target case study. Finally, the results
of the proposed solution are compared with various state-of-the-art solutions in terms of execution time,
scalability, and clock frequency.

INDEX TERMS Deep neural networks, system-on-chip, scalability, hardware accelerator, epileptic seizure
recognition.

I. INTRODUCTION
Deep learning algorithms are getting increasingly popular
for image classification [1], object detection [2] and data
prediction [3] in numerous real-world applications. Conse-
quently, it has dramatically increased the development speed
of machine learning (ML) and artificial intelligence (AI) [4].
It has been shown in [5] that the architecture of deep learning
algorithms is almost identical to the conventional artificial
neural networks. However, the salient characteristic of deep
learning techniques/algorithms is that they work with many
hidden layer [6]. In other words, the basic concept behind all
the deep learning applications is to use a multilayer neural
networkmodel for the extraction of high-level features. These
high-level features combine various low-level abstractions
to find some distributed data features [7]. One of the most

The associate editor coordinating the review of this manuscript and

approving it for publication was Cheng Chin .

widely used deep learning algorithm is the deep neural net-
works (DNN) [8].

Despite the increased popularity of DNN, there are certain
challenges which may hinder its use for practical applica-
tions. These challenges include but not limited to: (a) the
amount of data required to process, particularly during the
training phase, is exponentially increasing, (b) the accu-
racy requirements in modern ML and AI applications are
more demanding [1], [2], (c) the size of neural networks are
becoming very large [5], [7] and (d) the network size for
various real-life applications is heterogeneous, and therefore,
requires a scalable solution [9], [10]. In order to address the
aforementioned challenges, the acceleration of deep learning
algorithms with some scalability features on a dedicated plat-
form is critical.

A. RELATED WORK
Different solutions for the acceleration of DNN algo-
rithms include Graphic Processing Unit (GPU) [11],
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Application Specific Integrated Circuit (ASIC) [12], and
Field-Programmable Gate Array (FPGA) [13]. The advan-
tages of GPU-based solutions are programmability and com-
paratively low cost while providing the high computational
power, which is typically required during the training phase
of deep learning algorithms. However, the implementation of
networks on GPUs is very slow and power hungry.

The ASIC-based solutions, on the other hand, provide
lower power consumption with a moderate performance. As
compared to GPU-based solutions, ASICs have relatively
limited computing resources, and therefore, it is challeng-
ing to develop complex and massive network architectures.
Furthermore, they do not provide flexibility and require a
larger development cycle. In order to address the issues
with conventional ASICs, various commercial alternatives
are available [14]. A typical example of this trend is the Ten-
sor Processing Unit [15], which is not designed for just one
neural network model. Instead, it is a programmable complex
instruction set computer for the execution of miscellaneous
neural network models.

In the context of flexibility and programmability,
FPGA-based solutions for deep learning applications are
getting more importance as it allows designers to build
their entire systems on a single chip. In addition to the
reconfigurability and short development cycles, FPGA have
numerous hard components such as on chip RAM (Random
Access Memory), I/O (Input/Output) transceivers and digital
signal processing units. These components are significantly
helpful in designing full-scale systems [16]. Although the
clock frequency of FPGA is less than GPU, the total num-
ber of required clock cycles in FPGA-based solutions are
significantly less. It provides a competitive advantage in
the low power consumption design and the real-time data
processing. Furthermore, it shows a powerful processing abil-
ity in massive matrix operations and multiply-accumulation
operations which are the main building blocks of deep neural
networks [17].

A high performance solution for the acceleration of a
large-scale DNN is proposed by Chen et al. [18]. The pre-
sented solution, termed as Dian-Nao, targets an energy effi-
cient solution with a high throughput and reduced area. The
design technique in [18] is mainly based on the optimiza-
tion of memory accesses in different layers. Although the
challenges like scalability and limited memory resources are
addressed, the Dian-Nao is not implemented using a recon-
figurable hardware like FPGA. Therefore, it cannot adapt to
different application demands.

To provide adaptability, an FPGA-based solution is pre-
sented in [19] to accelerate the restricted boltzmann machine
(RBM). An RBM is a stochastic neural network architecture
which is used tomodel the analytical behaviour of a particular
data set with a provision of patterns distribution. The network
in [19] builds an internal model which is capable of recog-
nizing the new data from the same distribution. Moreover,
the authors in [19] have created some dedicated hardware
processing cores for the architecture size up to 128 × 128.

Another FPGA-based accelerator for RBM is presented
in [20]. The work in [20] advocates the use of multiple RBM
processing modules in parallel. Each module is responsible
for a relatively lower number of nodes.

The work in [9] presents a deep learning accelerator
unit (DLAU) which is a scalable accelerator architecture
for large-scale DNN using FPGA. The DLAU uses three
pipelined processing units for the improvement of through-
put and utilizes a tile technique to partition the process-
ing data. Furthermore, it employs FIFO (First-In-First-Out)
buffers at both input and output sides. The input FIFO buffer
is used to receive the input sample data, transferred using
the DMA (Direct Memory Access). Similarly, the output
buffer is employed to transfer intermediate outputs. More-
over, the block RAMs ((Random Access Memory) are used
to store weights of the neural network.

B. LIMITATIONS OF EXISTING PRACTICES
It can be observed from Section I-A that the current practices
for the acceleration of DNN mainly focus on the implemen-
tation of a particular application and suffer with a variety of
problems such as limited network size, flexibility, and diffi-
cult to use or no software interface. Another common prob-
lem is the choice of size for the neural network architectures.
Therefore, there is a need for a scalable platform for the accel-
eration of DNNwhich can accommodate various architecture
sizes. Although, the problems of heterogeneous network sizes
and a scalable hardware architecture are addressed in [9],
it mainly discusses the speed acceleration and no discussion
is provided on the accuracy of obtained results. Furthermore,
the total execution time and the power consumption issues
(clock frequency) are required to be further optimized.

C. PROPOSED SOLUTION
This article proposes a scalable System-on-Chip (SoC) solu-
tion to speed-up the DNN algorithm using a co-design
approach, as shown in Fig. 1. The design process starts by
constructing (designing) a DNN in Python, followed by the
training of the network for the given data. Subsequently,
the accuracy of the trained DNN is tested. Once the training
of DNN is accomplished and the final weights are obtained,
the system implementation phase is started.

The system implementation phase is further sub-divided
into two stages: The first stage employs the sequential execu-
tion of DNN (C Code) on the Hard Processing System (HPS)
of the SoC development board. The second stage of sys-
tem implementation involves the development of an hard-
ware accelerator (VHDL language). The developed hardware
accelerator is then integrated with the C-implementation such
that the computationally intensive parts of the algorithm
are executed using the developed hardware accelerator. The
results of second stage (C+VHDL co-simulation) are then
benchmarked with the native C-implementation (first stage).

The proposed system consists of two major modules:
Processor System Module and Accelerator System Module.
These modules are combined to make a complete system

VOLUME 9, 2021 95413



F. Shehzad et al.: Scalable System-on-Chip Acceleration for DNNs

FIGURE 1. Overview of system development.

called Hardware Accelerator for Deep Learning (HADL).
The transfer of data from the Processor System Module to
the Accelerator System Module is performed through some
on-chip block RAMs (BRAMs), using the DMA technique.
The use of BRAMs, instead of registers arrays and FIFO
buffers, along with the DMA technique makes the data trans-
fer operations significantly fast. In addition to the BRAMs,
some general purpose registers are also used for various
configuration and control functionalities.

The DE1-SoC development board from Altera [16] is used
as the target implementation platform as it possesses a pow-
erful processing capacity and abundant hardware resources.
Another reason for selecting the DE1-SoC development
board is the availability of ARM core processor. The devices,
which utilize both the embedded processor and FPGA, opens
a significant amount of opportunities for designers. The SoC
chip in DE1-SoC board integrates ARM cortex A-9 processor
with Cyclone V FPGA through a high bandwidth intercon-
nect backbone.

From the application point of view, the proposed system is
scalable and can be used in multiple scenarios such as facial
recognition, video surveillance, medical diagnosis and so on.
However, in order to validate the proposed method, we have
selected the Epileptic Seizure Recognition as our target case
study. The researchers have proposed different methods for
epileptic seizure detection using the features extracted with
the help of electroencephalogram (EEG) signals [21]. The
dataset for epileptic seizure detection, used in this article,
is published and publicly available at [22].

D. CONTRIBUTIONS
The major contributions of this article are given as:

1) It provides a scalable implementation of DNN algo-
rithm to achieve a performance improvement, as com-
pared to stat-of-the-art FPGA-based implementations,
in terms of computational time, power consumption
and clock frequency.

2) The accuracy of obtained results is also discussed in
this article, along with the computational time, which
has not been discussed in existing solutions. Further-
more, it is also analysed that how the network architec-
ture size affects the accuracy of obtained results.

3) While the DMA technique is also used in [9], the pro-
posed SoC solution uses only BRAMs for the trans-
fer of weights and input data samples. Consequently,
the proposed solution is easy to implement and involves
a lesser hardware complexity as compared to [9].

E. ORGANIZATION
The article is organized as follows: Section II provides the
necessary background on the epilepsy detection problem
and DNN. Section III presents the employed materials and
methods by discussing the overall design methodology, tools,
testing mechanism and various parameters of the target case
study. Section IV elaborates the design, training and testing
of DNN for the target case study.

Section V explains the design of proposed hardware accel-
erator system (HADL) by discussing its internal architecture.
Section VI compares the results of pure software imple-
mentation with the proposed HADL system. Additionally,
the HADL results are benchmarked with various state-of-
the-art techniques. Finally, Section VII concludes the article.

II. BACKGROUND AND MOTIVATION
The necessary background of the target application, along
with the motivation for its acceleration through DNN
using some dedicated hardware resources, is presented in
Section II-A. Subsequently, a brief introduction of DNN,
RBM and the training process of DNN are provided in
Section II-B, II-C and Section II-D respectively.

A. CASE STUDY: EPILEPTIC SEIZURE RECOGNITION
Epilepsy is a significant chronic disease of brain which causes
sensory loss, seizures and unbalanced gesture. According to
the world health organization, about 50 million people in the
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world today are suffering with epilepsy [23]. The most effec-
tive technique, commonly used for the detection of epilepsy,
is electroencephalogram (EEG) which records the electrical
activities of neurons in the human brain [24]. In other words,
the EEG is a clinical process that monitors the activity of the
human brain while performing some cognitive task.

In order to detect epilepsy, the analysis of EEG signals
is critical. Generally, the EEG readings are examined to
detect and categorize different patterns into seizures and non-
seizures. However, the visual examination of EEG readings
needs considerable time and efforts. Moreover, it requires
the services of an expert (neurologists). This time consuming
analysis of patient’s data (EEG readings) creates a heavy
burden on neurologists. The aforementioned limitations have
urged researchers to develop some automated systems for
the assistance of neurologists so that they can classify the
patient’s data into epileptic and non-epileptic EEG brain
signals [21]. In other words, the detection of epileptic and
non-epileptic signals is considered as a classification prob-
lem.

An EEG signal contains a kind of hierarchy among the
low-frequency features and high-frequency features. There-
fore, deep learning techniques can be employed to encode a
hierarchy of these features. Recently, the idea of employing
neural networks instead of using the services of experts, for
investigating the data of epileptic patient, has shown great
results [25]. Nevertheless, the machine learning algorithms in
DNN involve a lot of multiplications and addition operations.
As a result, a large computational time is required. Therefore,
some dedicated architectures such as GPUs [11], FPGAs [13]
and ASICs [14] are required.

B. DEEP NEURAL NETWORKS
A DNN consists of different units (neurons), arranged in
certain layers, as shown in Fig. 2. Each unit takes an input,
applies some (often non-linear) function, and then passes the
output to the next layer. Mathematically, the intermediate
output can be described with Equation 1.

Output = Relu

[
N∑
n=1

(
inp(n) ∗W(n)

)]
(1)

Relu(X ) = max(0,X ) (2)

where,N is the total number of input nodes, inp(n) denotes the
input node values and W(n) are the weights of the network.
The DNN model in Fig. 2 is a generalized model which
contains n input nodes while the sizes of hidden layers are
h1 and h2. The output layer contains m number of nodes. For
the epileptic detection application (case study in this article),
we have selected these different parameters (such as the
number of hidden layers, the number of input nodes, weights
of the network etc.) of the network model according to the
requirement of the problem. For example, in the epileptic data
set [22], the size of one sample is 178, and therefore, we have
selected 178 nodes in the input layer. For the hidden layers,
two different sizes 32×32 and 64×64 are used separately to

FIGURE 2. General architecture for a deep neural network with two
hidden layers.

create two different architectures. It is important to note that
the overall objective in the target case study is to classify the
seizure or non-seizures from EEG data, therefore, this type
of binary classification requires only one node in the output
layer.

C. RESTRICTED BOLTZMANN MACHINE (RBM)
RBMs are commonly used to efficiently train each layer of
a DNN. An RBM is a special class of Boltzmann machines
(BM). The BM is a parallel computational model for the
implementation of simulated annealing which is one of the
frequently used heuristic search algorithms [26], [27]. It is
a stochastic neural network which can learn internal rep-
resentations to solve combinatorial optimization problems.
Its massive parallelism, which leads to solve optimization
problems without having a comprehensive knowledge of the
target problem, is highly significant. In a typical BM archi-
tecture, the neurons are connected not only to the neurons in
other layers but also to the neurons within the same layer.
Essentially, every neuron is connected to every other neuron
in the network. Consequently, it poses a serious challenge
in training BM. In other words, an Unrestricted Boltzmann
Machine (UBM) has very little practical significance.
The RBM model, on the other hand, eliminates the con-

nection requirements between the neurons in the same layer.
It facilitates in training the network. Practically speaking,
an RBM is employed in several applications due to a rel-
atively simpler training process as compared to an UBM
architecture. Conventional training algorithms for RBMs are
not efficient in terms of time due to their slow convergence
rate [26]. Therefore, RBMs are generally trainedwith approx-
imate training algorithms [27].

D. TRAINING OF DEEP NEURAL NETWORK
The objective of the training process is to find an optimal
set of network parameters for solving the given task [8]. Fur-
thermore, the network parameters must be initialized before
starting the training process. Although, the random numbers
are commonly selected for the initial values of DNNweights,
however, some heuristics may result in faster adjustment of
the parameters towards the optimal values [7]. Subsequently,
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FIGURE 3. Training of a deep neural network.

the training data is fed to carry out the learning on the training
set through the network. It is an iterative process, where the
outputs, produced against each input from the training set, are
compared with the reference or true values and the network
parameters are adjusted accordingly [5]. The network is con-
sidered to be trained after achieving the target performance
on the training data.

The training of DNN involves the recursive use of
feed-forward and backward propagations, as shown in Fig. 3.
In each iteration, the feed-forward computation is used to
predict the output. The predicted output is then compared
with the expected output to calculate the corresponding dif-
ference. On the other hand, the backward propagation is used
to propagate the errors through all the layers. In this article,
11500 samples are used for the training such that the size of
each samples is 178.

III. MATERIALS AND METHODS
The previous sections of this article set the stage for a
scalable DNN hardware acceleration methodology. This
section describes the employed materials and methods. First,
the overall system design hierarchy and its testingmechanism
are presented in Section III-A and Section III-B respectively.
Then, an overview of different tools and software, used in
different phases of the design, is provided in Section III-C.
Finally, the various parameters of the target case study are
presented in Section III-D.

A. SYSTEM DESIGN HIERARCHY
The design process starts by constructing (designing) a DNN
in Python, followed by the training of the network for the
given data (epilepsy data in our case). Subsequently, the accu-
racy of the trained DNN is tested. Once the training of
DNN is accomplished and the final weights are obtained,
the system implementation phase is started. The proposed
system consists of two major modules: Processor System
Module (Section III-A1) and Accelerator System Module
(Section III-A2). These two modules are combined to make
a complete system (HADL). The proposed system employs a
hardware software co-design technique to execute the DNN
application for a scalable architecture size.

1) PROCESSOR SYSTEM MODULE
It consists of a Hard Processing System (ARM A-9 Pro-
cessor)), BRAMs, DMAs and GPIO (General Purpose

FIGURE 4. Components of processor system module.

Input/Output) registers, as shown in Fig. 4. A C-program
is executed on the processor to perform less computational
intensive tasks (such as reading test samples and weights
data). Furthermore, a virtual mapping of all the components
is also performed.Moreover, the DMAs are configured which
are used to shift the data towards FPGA for fast processing.
Finally, the result from DNN model is stored into a GPIO
register, which is further used for computing the overall
accuracy.

2) ACCELERATOR SYSTEM MODULE
It consists of four major blocks: Read-Block-RAMs (RBR),
Tiled Matrix Multiplication Unit (TMMU), Rectified Linear
Unit (RELU) and Sigmoid component. The data process-
ing in the accelerator system module starts when it gets
permission from the Processor System Module. Once the
permission is received, the RBR component in the accelerator
system module reads the data from FPGA-on-Chip RAMs.
Subsequently, this data is assigned to TMMU module as
its input. The TMMU module multiplies all the tiled inputs
with their respective weights. Moreover, all the intermediate
results are added to generate the final result for the RELU
component. The RELU component is an activation function
which approximates the output between 0 andX i.emax(0,X).
If this activation function is not applied, the output is simply a
linear function which is easy to solve and has low complexity.
In other words, the system has less power to learn com-
plex functional mappings from the data. The aforementioned
three steps are used iteratively to calculate the hidden layer’s
node values. Once all the hidden layer nodes are calculated,
a sigmoid approximation is applied at the output layer using
Sigmoid component to calculate the final output of DNN.

B. TESTING MECHANISM
In order to test the overall functionality of the proposed
system, designed and implemented on DE1-SoC board, it is
important to understand the sequence of entire operations.
Therefore, a system flow-diagram is presented in Fig. 5
to illustrate the working mechanism of the HADL system.
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The system test mechanism is executed on a dual core Arm
cortex A-9 Processor of DE1-SoC board. The first major step
is the memory mapping of all the IP (Intellectual Property)
components for the communication of Processor. Further-
more, FPGA-to-HPS and HPS-to-FPGA bridges are ded-
icated to perform communication between Processor and
other custom IP components. Subsequently, the test samples
and weight data are read and transferred into FPGA-on-Chip
RAM-1 and RAM-2 using DMA-1 and DMA-2 respectively.
It is followed by a for-loop to test the N number of samples.
At the same time, a timer is started in order to calculate the
total time for predicting all the test samples outputs.

After transferring the data, it writes 1 onto the start-ready
GPIO register. This start ready signal is used to inform
the Accelerator System that the data has been written to
BRAMs. In response, the accelerator starts its processing.
Next, the Accelerator System Module performs its functions
to calculate the final output and write 1 at result ready signal
to update the Processor. Subsequently, the final result on
GPIO register is read by the Processor.

The For-loop (for testing the samples) is incremented
by one and then the next input sample is shifted towards
FPGA-on-Chip-RAM-1 (component of Processor System
Module) to predict the 2nd sample output. This step continues
until for-loop is completed and all the samples have been
predicted. The timer is stopped after the completion of for-
loop. Consequently, the total test execution time is calculated
and printed on the screen. At the end of the C-program,
there is a function to calculate the accuracy of the entire
system. This function compares the predicted outputs with
the original labels of test samples and calculates the total
accuracy percentage.

C. OVERVIEW OF DESIGN TOOLS
1) DESIGN AND TRAINING IN PYTHON
The anaconda platform [28], which is an open-source dis-
tribution for scientific computing and machine learning, has
been used for constructing, training and testing the DNN
python model. The Anaconda version 2019 (Linux version)
provides 32-bit and 64 bit installers for the Python 2.7 and
3.7 respectively. As our target hardware platform (DE1-SoC
development board) is a 32-bit architecture, the 32-bit
installer for Python-3.7 has been used. Particularly, the Spy-
der development environment in anaconda platform has been
employed to facilitate the design process.

2) IMPLEMENTATION IN C LANGUAGE
There are two ways to compile and execute a Linux program
(execution of C-programs) for the Arm Processor of the DE1-
SoC hardware. The first method is to write a code on the
command line interface of Linux running on the SoC board,
whereas the second method gives the option to write and
compile the code at host computer and then transfers the
executable file in DE1-SoC board. In this article, we have

FIGURE 5. Flow chart for testing.

adopted the first approach as it is more simple and easy to
implement.

3) IMPLEMENTATION IN C AND VHDL ON SoC
The Processor System Module of the proposed HADL has
been realized using platform designer tool (formerly called
Q-sys) [29] which is the next-generation system integration
tool in the Intel Quartus Prime software [30]. The idea of plat-
form designer is to generate the interconnect logic in order to
connect different IP components, functions and subsystems.
In other words, it allows designers to select the desired IP
components (such as DMA, On-Chip-RAM, Processor etc)
from its library and edit the corresponding specifications as
per particular requirements. Finally, the Quartus prime lite
edition [30] is used to synthesize the overall design and
perform timing analysis.

D. DESIGN PARAMETERS
The epileptic seizure dataset has been selected as an appli-
cation for this article [22]. The selected dataset consists of
5 folders with 100 files each. Moreover, each file represents
the data of one person for his brain activity for 23.6 seconds.
The aforementioned data is sampled into 4097 data points.
These 4097 points are divided into 23 chunks such that each
chunk contains 178 points presenting the brain activity for
1 second. Consequently, the target dataset contains 11500
(23 × 500) pieces of information (or rows). In addition to
various data points, it contains 5 different classes as labels.
Class A and Class B have an EEG recording from healthy
persons with their eyes open and close respectively. Simi-
larly, Class C and Class D contain the recording of epileptic
patients without seizure. Finally, Class E corresponds to the
data of epileptic patient during the seizure.

The two important steps, that must be taken into considera-
tion before training, are: (1) splitting the data into training set
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and test set and (2) feature scaling. It is important to note that
80% of the data set is used for training while the remaining
20% data (2300 samples) is used for the testing. Similarly,
feature scaling or standardization is a data pre-processing
method which is applied to features or independent variables
in the dataset to cluster them between the given minimum and
maximum values. Consequently, the feature scaling method
normalizes the data over a particular range which helps in
speeding up the computations. In this context, the Standard
Scaler from Sklearn library has been used in this article
to scale the data, which standardizes the data features by
removing the means and scaling it to a unit variance [31].

IV. CONSTRUCTION, TRAINING AND EVALUATION OF
DNN MODEL
This section explains the design and training of DNN using
Python language for the target application (detection of
epileptic seizures). The target application requires 178 nodes
in the input layer and 1 node at the output layer. The size
of hidden layer can be varied as per requirements. In this
article, we have used two different sizes for the hidden layers
i.e 32×32 and 64×64. Consequently, the final architectures,
used for epileptic detection, are 178 × 32 × 32 × 1 and
178×64×64×1. Libraries and packages fromKeras-Pandas
[32] are used in Python to create and train the DNN archi-
tecture. The following steps are involved in the construction,
training and evaluation of DNN: (1) Reading the data set,
(2) Splitting the data set into training and test sets, (3) feature
scaling, (4) Add layers (Input, Hidden-1, Hidden-2, Output),
(5) Training of neural network (6) Save the final weights after
training, (7) Predict the outputs for test set, (8) Calculate the
accuracy

The target data set consists of 179 columns. The first
178 columns contain EEG features for patients while the col-
umn 179 describes whether this data belongs to the epileptic
seizure class or non-epileptic class which is also termed as its
label. The data is partitioned into two sets named as Training
Set and Test Set. The training set is composed of 80% of
total samples, whereas the remaining 20% are placed into
the test set. A standard scaler function from the Sklearn
library is used to scale the data in between the minimum and
maximum values (0 and 1). This normalization of the data
over a particular range of 0 to 1 helps in speeding up the
calculations inside the deep learning algorithm.

The next three steps involve the creation of network layers,
training of network and storing of the final weights. To do
this, the Dense and Sequential functions are imported from
Keras library to create an ANN. Size of the layers can be
selected according to the designers choice. The dimensions
for 64×64 architecture are selected. The Relu function is used
for activating the neurons inside the input and hidden layers,
but for the output layer sigmoid function is applied. The sig-
moid function is used specially when there is a need to predict
the probability as an output. Since our goal is to classify the
test samples into seizure and non-seizure class which denotes
to the class of binary representation. Probability can exists

FIGURE 6. Confusion matrix output.

only between 0 and 1, so sigmoid function is the good choice
to use in output layer as an activation function. Finally, the test
set is applied to trained network to check the output behaviour
using the predict function from Keras library. Predicted out-
puts are compared with the original labels of test samples.
Number of correct andwrong predictions are counted in order
to calculate the accuracy using the following formula:

Accuracy =
corrects

corrects+ wrongs
(3)

A. EVALUATION OF DNN
For the evaluation of DNN, a confusion matrix is employed
to measure the performance of classification for any test
data where the true values are already known. The clas-
sifier has made 2300 predictions in total. Out of these
2300 cases, the classifier predicted Yes for 388 times, and No
for 1912 times. Whereas in reality, 446 patients have disease
and 1854 have no disease. The testing results, as summa-
rized in Fig. 6, show that the True Positives (TP) are the
cases in which model has predicted Yes (which means they
have the disease), and they do have the disease in actual.
Similarly, True Negatives (TN) implies that the model has
predicted No, and patients don’t have the disease. More-
over, False Positives (FP) means the model has predicted
Yes but in real patients don’t have the disease. Furthermore,
the False Negatives (FN ) show that the model has predicted
No but in actual patients do have the disease. Consequently,
the accuracy (how often the predictions of the classifier are
correct) is formulated in Equation 4. Similarly, the error rate
shows the frequency of wrong predictions, as formulated in
Equation 5. Accuracy and error rate for our designed DNN
model, calculated through Equation 4 and Equation 5 are
96.95% (1848+382)/2300) and 3.04% (1848+382)/2300)
respectively.

Accuracy =
TP+ TN

N
(4)

ErrorRate =
FP+ FN

N
(5)

V. SYSTEM DESIGN
Once the DNN model is designed, trained and tested in
Python, as described in Section IV, the next step is to present
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the design of proposed HADL system-on-chip solution which
integrates a Cortex A-9 processor with Cyclone-V FPGA.
The C-Program, running on the processor, is responsible
to read the input samples (described in Section III-D) and
weights of the DNN (computed in Section IV). Subsequently,
it transfers input samples andweights to the FPGA side, using
a DMA controller. Once the data is transferred, it informs
FPGA to start the required processing. Subsequently, the out-
put from FPGA is saved in a register. The processor reads the
result from the corresponding register and transfers the next
sample of data to the FPGA side.

A. PROCESSOR SYSTEM DESIGN
It has been mentioned in Section III-C that the Platform
Designer tool has been used to design/configure the Processor
System Module, as per requirements of the application. The
complete Processor SystemModule consists of the following
components: a hard processing system (HPS), a phase-lock
loop (PLL), two block RAMs (SRAM-1 and SRAM-2), four
DMA controllers (DMA-1, DMA-2, DMA-3 and DMA-4)
and three GPIO registers. Once the components along
with their specifications are selected, the connections are
made accordingly. The PLL is responsible to provide the
clock and reset signals to all other components. Similarly,
DMA-1 and DMA-2 are used to copy all the data from HPS
to SRAM-1 and back respectively. Furthermore, DMA-3 and
DMA-4 a are employed to copy all the data from HPS to
SRAM-2 and back respectively. For all the aforementioned
components, there is a unique start-address and end-address,
assigned by the the Platform Designer tool, which defines the
span of the component’s address range. This address range is
ultimately used for the memory mapping in C-code, running
on the processor, in order to access various components of the
Processor System Module.

B. ACCELERATOR SYSTEM DESIGN
It consists of four main components: RBR, TMMU, RELU,
and Sigmoid. The RBR component reads the corresponding
data from BRAMs and delivers it to the TMMUmodule. The
TMMU unit is then used recursively in every clock cycle
until all the values from input layer are multiplied with their
associated weights to generate the intermediate output value.
The RELU approximation of the intermediate output goes
into one of the corresponding nodes inside the hidden-layer-1.
As a result, all the nodes of hidden layer-1 are calculated.
Subsequently, the nodes of hidden layer-1 are multiplied with
their associated weights to calculate the values for hidden
layer-2. Similarly, the nodes of hidden layer-2 are processed
to feed the nodes of output layer. Finally the Sigmoid approx-
imation function is applied to calculate the final output.

1) RBR COMPONENT
Two factors are important in the design of RBR compo-
nent: the data width of accelerator input and the number
of multipliers in TMMU. In the proposed design, there are
32 multipliers and data width for each multiplier input is

16 bits. In order to compute the result of TMMU in a single
clock cycle, it requires that 32 values (16-bit each) should be
available in each clock cycle. These 16-bit inputs of 32 mul-
tipliers can only be read in a single clock cycle provided
that 512 (16× 32) bits are present at one address location of
the BRAM. Therefore, the data width of BRAM memory is
selected to 512.

2) TMMU COMPONENT
The parallelism can be achieved using a large number of
hardware resources which leads to more speedup. However,
the size of TMMU (tile size) is critical due to the limitation
of available hardware resources. The cost of TMMU mainly
depends upon the tile size (number of multipliers) and there
is always a trade-off between the hardware resources and
speedup of the system. In our design, the tile size depends
upon the availability of hardware resources in the target
DE1-SoC board. Therefore, the total number of multipliers
are 32. Each multiplier has two 16-bit inputs and one 32-bit
output. Finally, the outputs of all the multipliers are added in
a pipeline strategy, as shown in Fig. 7.

3) RELU COMPONENT
It is used for the activation of neurons in the hidden layers of
DNN. It performs a non-linear transformation to the output
neuron, making it capable to learn more and perform com-
plicated tasks. The output of TMMU is an input to RELU
component to calculate the approximation value and feed the
output to the corresponding node of hidden layer. Mathemat-
ically this function can be described by Equation 6:

F(x) = max(0, x) (6)

4) SIGMOID COMPONENT
It is used to determine the output of a neural network (Yes
or No). It maps the resulting values in between 0 to 1. The
purpose of Sigmoid function in our case is to approximate the
inputs (ranging from −8 to +8) to the outputs (ranging from
0 to +1). The Sigmoid function is particularly useful for all
those scenarios where we one has to predict probability as an
output. Since the probability of anything ranges from 0 to 1,
Sigmoid function is the right choice for such kind of approx-
imation. Mathematically, Sigmoid function can be described
by Equation 7which includes an exponent operator. However,
the exponent factor is not included in VHDL library. There-
fore, the mathematical function of sigmoid is implemented
using look-up tables. To do this, Sigmoid function is first
implemented in MATLAB with step-size of 0.5 with a range
of (−8 to +8). Subsequently, all the results are stored in a
lookup table defined in the VHDL component of sigmoid.

F(x) =
1

1+ e−x
(7)

The communication between the Accelerator System
Module and the Processor System Module is provided in
Appendix VII. Furthermore, the functional Verification of

VOLUME 9, 2021 95419



F. Shehzad et al.: Scalable System-on-Chip Acceleration for DNNs

FIGURE 7. Block diagram for tiled matrix multiplication unit.

Processor System Module and Accelerator System Module
is provided in Appendix VII and Appendix VII respectively.
Section VII describes the implementation of HADL system
on DE1-SoC development board. Consequently, the next
section provides the Simulation results of Accelerator System
on the target SoC board (DE1-SoC board).

VI. EVALUATION RESULTS
This section evaluates the performance of proposed HADL
system for various architecture sizes in terms of execu-
tion time, accuracy, clock frequency, power consumption
and the required hardware resources. Particularly, the results
are provided for two different architecture sizes (178 ×
32 × 32 × 1 and 178 × 64 × 64 × 1). The input sam-
ple size for the target case study is is 178. The num-
bers 32× 32 and 64× 64 show that the number of nodes
in hidden layers (tile size or number of multipliers) are
32 and 64 respectively. First, the experimental results for
native implementation (C code only) on ARM 9 processor of
DE1-SoC board are presented in Section VI-A. Subsequently,
the results for complete HADL system (C + VHDL) are
provided and benchmarked with the pure C-implementation
in Section VI-B and Section VI-C respectively. A generalized
formula for the computation of total execution time is pre-
sented in Section VI-D. Similarly, the area utilization results
are provided in Section VI-E. Finally, the proposed system is
compared with various state-of-the-art solutions in terms of
different performance attributes in Section VI-F.

A. RESULTS FOR NATIVE IMPLEMENTATION
The execution time and accuracy results for the native imple-
mentation (C code only) on ArmCortex-A9 Processor, for the
architecture sizes of 32×32 and 64×64, are shown in Table 1.
It can be observed from Table 1 that the accuracy is increased

TABLE 1. Execution time and accuracy results for the native
implementation on Arm cortex-A9 processor.

TABLE 2. Shifting and testing time for one sample in HADL system.

with an increase in the architecture size but at the expanse of
more execution time.

B. RESULTS FOR THE PROPOSED HADL SYSTEM
Before analysing the results of proposed HADL on the target
SoC board, it is important to compute the required shift-
ing time for transferring one sample of data using DMA
from HPS memory to the FPGA block memory, as shown
in Table 2. Column 1 of Table 2 shows the corresponding
architecture size. Similarly, column 2 shows the total shifting
time which is 30µsec for both architecture sizes. The total
shifting time is composed of two parts: The first part is
the time required for writing one sample to HPS-on-Chip
memories (28µsec). The second part is the DMA time for
copying the data from HPS-on-Chip memories to FPGA
(2µsec). Similarly, the third column shows the required time
to check the accuracy of the input samples (size is 2300). The
fourth column shows the accelerator time for two different
architecture sizes. Finally, the last column shows the total
testing time for one complete sample of input data. Total
testing time is the sum of shifting time, time to check accuracy
and the accelerator time.

The time and accuracy results for the proposed HADL
system (C+VHDL) onDE1-SoC development board, for the
architecture sizes of 32×32 and 64×64, are shown in Table 3.
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TABLE 3. Time and accuracy results for the proposed HADL system
(C + VHDL) on DE1-SoC.

TABLE 4. Comparison of native implementation with the proposed HADL
system.

C. COMPARISON OF NATIVE IMPLEMENTATION WITH
THE PROPOSED HADL SYSTEM
Table 4 shows a comparison between the native implementa-
tion and the proposed HADL system, in terms of accuracy
and execution time for two different architecture sizes. It
can be observed from Table 4 that the total testing time for
the proposed HADL system is much less as compared to
the native implementation, with a very small effect on the
accuracy. Theminor decrease in accuracy is due to the scaling
factor, selected during the shifting of input and weight data
from Processor towards FPGA. After getting the final result
from FPGA, it is de-scaled with the same scaling factor. For
experimental results in Table 4, a scale of 210 is used. This
scaling factor can be increased to improve the accuracy, but
at the same time, morememory and data width of registers are
required. Consequently, there is a trade-off between hardware
resources and accuracy which can be selected, depending
upon the requirements of a specific application.

It can be observed from Table 4 that if we increase the
architecture size, the total testing time in native as well as
in HADL system increases. Increasing the architecture size
implies that the number of nodes in the hidden layers are
increased which consequently increases the number of com-
putations involved, and therefore, more amount of time is
required to compute the final result. In case of native imple-
mentation, the architecture size 64 × 64 takes more than the
double time as compared to 32× 32 size. On the other hand,
the execution time is not doubled for the SoC-implementation
case. The reason is the shifting time, which is same for both
the architecture sizes, as explained in Section VI-B. It implies
that one can expect more speedup as the architecture size is
increased.

D. A GENERALIZED FORMULA FOR TOTAL EXECUTION
TIME
While the execution time results for two different architecture
sizes are shown in Table 4, it is important to compute the
execution time for other architecture sizes also. However,
the computation of execution time for a larger architecture
size is time consuming. Therefore, a generalized formula for
the calculation of total execution time, without performing
simulations, is critical. The total execution time depends upon
the number of total clock cycles for computing the accelerator
output. Therefore, we have formulated the total number of

required clock cycles in Equation 8:

CC =
[(

X
Ts
+ 3

)
∗ HL(1)

]
+

h−1∑
i=1

[(
HL(i)
Ts
+ 3

)
∗ HL(i+1)

]
+

[(
HL(h)
Ts
+ 3

)
∗ Y

]
(8)

where, CC is the total number of clock cycles, h denotes the
total number of hidden layers, X presents the number of input
nodes, Y shows the number of output nodes, HL(i) is the size
of corresponding ith hidden layer, Ts is the tile size which
shows the number of multipliers in the proposed accelerator
unit.

In addition to the aforementioned factors, it is important
to note that a factor of 3 is added in Equation 8, as 3 addi-
tional clock cycles are required for the following reasons: the
1st clock cycle is required for updating the address signal
of RAMs. When any value is written on the address, it is
available only in the next clock cycle. Similarly, the 2nd clock
cycle is needed for reading the input data from RAMs. The
3rd clock cycle is required for updating the output, as signals
always update their values in the next clock cycle.

In order to validate the proposed formula, the following
values are used: Ts= 32, h= 2, X= 192, Y= 1,HL(1)= 64,
HL(2)= 64. If we put these values in Equation 8,We find that
the total number of clock cycles are 901. Now, if 1 clock cycle
takes 20 nano seconds, (i.e 50 MHZ clock is used) then the
total execution time is 18.02 µsec. It is important to mention
that the time obtained from Equation 8 is slightly different
from the actual time obtained from the DE1-SoC hardware.
For example, in the above example, the time obtained from
Equation 8 is 18.02µsec while the actual time obtained from
the DE1-SoC hardware is 19 µsec, as shown in Fig. 8.

This small difference in execution time is due to some extra
parameters which have not been included in the formula of
Equation 8. For example, the time taken by HPS to FPGA
bridge for informing the FPGA via start ready signal is not
included. Similarly, the time taken by FPGA-to-HPS bridge
to inform processor about the final result is also not included.
Both the aforementioned bridges require 0.3µsec for sending
the control signal information. To summarize, if we include
all these minor factors in Equation 8, the total execution time
obtained from simulation will be equal to the total execution
time obtained from the formula.

E. RESOURCE UTILIZATION
Table 5 and Table 6 provide a brief summary of resources,
consumed by the proposed hardware accelerator, for archi-
tecture sizes 32 × 32 and 64 × 64. It can be analysed from
these tables that the architecture size 64 × 64 consumes
slightly more amount of resources as compared to 32 × 32
architecture but provides a relatively high speedup factor
when benchmarked with the native C-implementation.
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FIGURE 8. Accelerator time for 64× 64 architecture.
TABLE 5. Resource utilization on DE1-SoC hardware for architecture size
32× 32.

TABLE 6. Resource utilization on DE1-SoC hardware for architecture size
64× 64.

The 32×32 architecture uses 7094 registers while 64× 64
architecture consumes 7392 registers. It implies that the dif-
ference is not very high in terms of total registers used.
However, 64 × 64 architecture uses 13% of block memory
whereas 32× 32 size uses only 7%.

F. COMPARISON WITH STATE-OF-THE-ART
Table 7 presents a comparison of proposed work with state-
of-the-art in terms of speedup, network architecture size,
clock frequency and power consumption. The work in [19]
provides a speedup of 5 at 100 MHZ, for a network archi-
tecture size of 64 × 64. The power consumption results are
not reported in [19] (shown as N.R in Table 7). On the
other hand, for the same network architecture size (64× 64),
the proposed HADL system achieves a speedup of 22.3 at
a relatively lower clock frequency (50 MHZ) and consumes
272 mW. The lower clock frequency ensures the lower power
consumption. Similarly, the work in [20] obtains a speedup
of 25 at 200 MHZ. However, the architecture size for the
speedup in [20] is 256×256 which consumes relatively more
hardware resources. The work in this article achieves almost
the same speedup (22.3) with a significantly lower network
size (64 × 64 network size) and reduced clock frequency
(50 MHZ). Furthermore, the works in [19] and [20] provide
their results for RBM algorithms only, whereas the proposed
HADL system is much more scalable and flexible.

It can be observed from Table 7 that the work in [18]
provides more speedup (117.87) as compared to the proposed

TABLE 7. Comparison of HADL with state-of-the-art.

solution. However, the higher speedup in [18] is achieved
with a clock speed of 1 GHZ which may result in a very high
power consumption (not reported in the article). Furthermore,
the work in [18] is not implemented using a reconfigurable
hardware, and therefore, it cannot adapt to different appli-
cation demands. In other words, it is hard wired instead of
implemented on an FPGA platform, and therefore, it cannot
efficiently adapt to different sizes for network architecture.

A scalable and flexible solution is presented in [9] which
obtains a speedup of 19.4, with a network architecture size
of 64 × 64, at 200 MHZ clock with a power consumption
of 1814 mW. In comparison, the proposed HADL system is
able to achieve a speedup of 22.3 with the same network size
(64 × 64), but with a reduced clock frequency of 50 MHZ.
Moreover, the power consumption is reduced to 272 mW. In
other words, although the work in [9] is scalable and flexible,
but in comparison, the proposed HADL provides same scal-
ability with high speedup and low power consumption. The
reason for this performance difference is that the BRAMs are
not used in [9] to store input samples. Instead, the authors
in [9] have used an array of 32 registers at FPGA side to
store 32 instances of a sample. Consequently, more number of
DMA operations are required to shift one complete sample.
Subsequently, the processing is performed on 32 instances of
the sample. Once the processing is finished, the DMA is exe-
cuted again to shift next 32 instances of the input sample. The
proposed HADL design, on the other hand, uses an additional
2KB memory to store input sample data instead of an array
of registers. This approach significantly reduces the number
of DMA transfer operations. In [9], the DMA is executed
6 times to transfer the data for one input sample, whereas
in HADL, it is executed only one time to transfer one input
sample. As a result, the DMA transfer operations is 5 times
less for a specific case of tile size (32). Similarly, the proposed
HADL system uses 50 MHZ clock as compared to the work
in [9] which uses 200MHZ. Therefore, the proposed solution
is also more efficient in terms of power consumption as
compared to [9].

Experimental results in Table 7 demonstrate that the pro-
posed scalable architecture provides a relatively high speedup
and reduced clock frequency as compared to existing solu-
tions. At this point, one can argue that if the input sample
size is very large and the employed memory (2 KB) in the
proposed HADL system is not sufficient to store it, then the
input sample can not be shifted (transferred) in one DMA
operation. In other words, the number of required DMA
operations for the shifting of one complete input sample will
increase. To avoid this situation, the memory size can be
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FIGURE 9. Communication between processor system and accelerator system.

increased so that a complete input sample can be stored in
a single DMA operation.

It is important to note that the proposed HADL system
can be configured to operate with different architecture sizes,
and therefore, exhibits a trade-off between speedup and
hardware cost. Consequently, the proposed solution is more
flexible to accommodate various machine learning applica-
tions. For example, the computational speed can be further
increased by using a tile size of more than 32. However,
some additional hardware resources are required to achieve
an increase in the corresponding computational speed. Sim-
ilarly, the total shifting time for data from HPS towards
FPGA or from FPGA towards HPS can be further decreased.
Again, some additional hardware resources are needed to
obtain a decrease in data shifting time. Therefore, it can
be concluded from aforementioned results and discussion
that the proposed HADL system best suits those application
where the speed and power consumption are more impor-
tant parameters in comparison to hardware resources and
cost.

To summarize, this section has evaluated the performance
of proposed HADL system on DE1-SoC development board.
For benchmarking, the DNN implementation in C is exe-
cuted on the dual core Arm cortex A-9 processor. The tile
size of 32 is used according to the availability of hardware
resources in DE1-SoC development board. The clock fre-
quency is 50 MHZ which is much less as compared to state-
of-the approaches [9], [18], [20]. Although, only two network
sizes (32 × 32 and 64 × 64) are tested (simulated) to com-
pare the results with state-of-the-art approaches, however,
a general-purpose formula is proposed to calculate the total
number of required clock cycles for any architecture size,

without performing simulation on the target development
board. Finally, the comparison of HADL with state-of-the-art
is provided in terms of execution time, accuracy, power con-
sumption and speed-up.

VII. CONCLUSION
This article has presented a co-design approach, for the clas-
sification of epileptic and non-epileptic samples, using Deep
Neural Network (DNN). The proposed co-design approach
starts with the construction of a DNN for the target case
study. The construction of DNN is followed by the system
implementation phase of the design process. In system imple-
mentation phase, a hardware accelerator is developed for
computational intensive parts of the DNN. The developed
hardware employs a tile technique to split the input data
into smaller sets and compute the arithmetic logic itera-
tively. Consequently, a hardware-software co-simulation is
performed on a System-on-Chip (SoC) development board.
In order to validate the performance of proposed solution,
the developed hardware accelerator is first benchmarked
with a pure software implementation running on the ARM
processor of the target SoC development board. Two dif-
ferent network architectures, with hidden layer sizes equal
to 32 × 32 and 64 × 64, are used to explore the impact
of architecture size on speed and accuracy. The perfor-
mance of proposed solution is also compared with state-of-
the-art in terms of execution time, clock frequency, power
consumption and architecture size. The performance com-
parison show that the proposed solution achieves a higher
speedup with a relatively lower clock frequency and power
consumption.
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FIGURE 10. Output verification for processor system module.

FIGURE 11. Simulation results for RBR component.

APPENDIX A
COMMUNICATION BETWEEN MODULES
The communication between the Accelerator System and the
Processor System modules is shown in Fig. 9. There are two
control signals (single bit each) which are responsible to start
and stop the accelerator. The Address Signals in Fig. 9 are
dedicated for various configuration settings (e.g. read/write
the data from/to the BRAMs). The width of read signals is
512, which is further divided into 32 signals (16 bit each).
These signals are then assigned to the inputs of multipliers.
Finally, the width of final result register is selected as 32 bits.

APPENDIX B
VERIFICATION OF PROCESSOR SYSTEM
To verify the functionality of Processor System Mod-
ule, some known values are transferred from Processor

to FPGA and then read them back, as shown
in Fig. 10.

APPENDIX C
VERIFICATION OF ACCELERATOR SYSTEM
The synthesizeable code for each of the four components
(RBR, TMMU, RELU and Sigmoid) is written in VHDL
and simulated. The RBR component is used to read the data
from memories and assigns the data to the next unit for
further processing. As a test example, some random num-
bers (23 and 67) are copied from Processor to FPGA at
index number 11 and 19 respectively. The output of RBR
component assigned to the final system output, as shown
in Fig. 11. Once the inputs of the Accelerator SystemModule
are read correctly, the data is provided as an input to TMMU
component. At first, the TMMU is simulated independently
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FIGURE 12. Behaviour of TMMU inside the accelerator system module.

FIGURE 13. Simulation results for RELU component.

FIGURE 14. Simulation results for sigmoid component.

to verify the output and then the component is instantiated
inside the Accelerator SystemModule to verify the combined
behaviour, as shown in Fig. 12. As soon as the read start
signal is available, the processing begins and the counter is
updated. The first result is achieved after three clock cycles.
The delay of three clock cycles is due to the update of block
RAM’s addresses and the final result. In order to check the
functionality of RELU component, some random values are
assigned to the input of the component. The corresponding
response is verified accordingly, as shown in in Fig. 13. The
node values, calculated for the last hidden layer, are provided
to the sigmoid component and the corresponding output is
verified, as shown in Fig. 14. The output ranges between 0 and
1, with a scaling of 210. The scaling factor is required to con-
vert decimal values (between 0 and 1) to some large numbers
so that the processor and FPGA can communicate with each
other. Without this scaling factor, the processor and FPGA
can send/receive only zeros as the decimal parts are skipped.
The data type of output entity is unsigned, as the output is
always positive (ranging from 0 to 1). However, the data type
of input is signed (ranging from -8 to +8), with a scaling factor
of 210.
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