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ABSTRACT The database community has observed in the past two decades, the growth of research interest
in preference queries, each of which has its unique techniques, benefits, and drawbacks. One of them is
skyline queries. Skyline queries aim to report to users interesting objects based on their preferences. Yet,
they are not without their limitations. Hence, this paper focuses on efficiently extending skyline query
processing to support the uncertainty in dimensions, which in this paper is defined as uncertain dimension.
To process skyline queries on data with uncertain dimensions, we propose SkyQUD algorithm, where it
provides a mechanism that will partition the dataset according to the characteristics of each object before
skyline dominance tests are performed. In the pruning process, we utilise a probability threshold value τ to
accommodate the large skyline size reported by SkyQUD due to the computed probabilities. The algorithm
has been validated through extensive experiments. Its results exhibit that skyline queries can be performed
effectively on uncertain dimensions, and the proposed algorithm is efficient in query answering and capable
of handling large datasets.

INDEX TERMS Continuous uncertainty model, preference evaluation, skyline query, uncertain data,
uncertain dimensions.

I. INTRODUCTION
In a database system, conventional SQL queries are acknowl-
edged for having strict constraints and reporting an exact
match and complete result set. Nonetheless, due to the grow-
ing number of applications that handles massive amounts
of data, the huge result set reported by the conventional
SQL queries has become very challenging to manage. Hence,
it stirred the interest in researchers to study queries that are
able to report a more concise and meaningful result set.
This is where skyline query comes into existence, as it is
able to capture the desires of the user to procure a result
set that contains only the most interesting and preferable
objects. Skyline query is able to minimize the problems faced
by conventional queries by taking into considerations the
preferences of the users.

Skyline queries retrieve a set of objects that are not domi-
nated by any other objects in a dataset. Assuming that for all
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dimensions minimum values are more desirable, an object V
is said to dominate another object W if and only if 1) V has
a lower value than W in at least one dimension and 2) V has
a lower value or equal to W in all other dimensions. These
dominant objects are the skyline objects of the dataset, where
there exists no other object in the dataset with better features.
A dominance relation between objects in skyline queries is
always transitive, in that if object A dominates object B, and
object B in turn dominates object C, then object A dominates
object C as well. A scoring function to define the relative
significance of all features is not required in a skyline query,
as skyline objects are selected based on the actual values of
the data itself.

Consider a simple database that contains information on
hotels such as room price and distance to the beach. Assume
a user is interested in looking for hotels that are as cheap
as possible and as close as possible to the beach. Applying
skyline query on the database would retrieve all cheap hotels
that are near to the beach, while having no other hotel that is
cheaper and closer to the beach. Fig. 1 illustrates the results
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FIGURE 1. Results of skyline query for hotel database.

of performing the above skyline query on the hotel database
where hotels a, j, and l are the results.

The skyline computation’s complexity is greatly influ-
enced by the number of dimensions and the dataset’s size.
The skyline queries’ search space is also profoundly affected
by the number of dimensions. As the number of dimen-
sions increases, the searching space’s size will extensively
increase as it will become more difficult for objects to be
dominated [43], [50]. Therefore, most of the existing works
[7]–[10], [12], [17], [23], [34], [36], [46], [47], [49], [52]
on skyline queries have attempted to solve these limitations
by minimising as small as possible the searching space and
reducing the skylines’ processing cost. The searching space
in skyline queries is typically determined by the number of
pairwise comparisons performed between objects, which in
turn will result in an expensive cost of processing skyline
queries.

Nevertheless, various scenarios such as data modification,
an approximation of missing data, collection of spatiotem-
poral data, and inadequate equipment for measurement in
the sensor network may cause uncertainty in data. One of
the many scenarios can be seen when extracting web data to
perform analysis on it. In obtaining web data, uncertainty and
incompleteness could not be avoided, and no matter what the
cause of uncertainty is, it is essential to be able to handle
the uncertainty of data. For example, a property investor
wanted to get insights into Vancouver’s rental market. To do
the analysis, he extracted the search result for ‘‘Vancouver’’
performed on Rent.com web page (www.rent.com). For illus-
tration, Fig. 2 shows the result of extracting web data from
rental listings. Data extraction has caused uncertainty in the
dimensions; for instance, the rent dimension, where some of
the rent values are uncertain as they are presented in different
formats. With data uncertainty, the existence of an object
in a database can be interpreted in many ways. It becomes
more complex to compute skyline when the values of one or
more dimensions are imprecise. Having to perform skyline

FIGURE 2. Extraction of web data on rentals from Rent.com.

queries on exact values is one thing but being able to compute
skyline queries on values with continuous ranges efficiently
is another kettle of fish.

When dealing with uncertainty in data, it does not seem
desirable to completely eradicate the uncertain values as it
may lead to inaccurate or incomplete query results. Generally,
there are two types of model when dealing with uncertainty
in data, namely: discrete and continuous. In a discrete uncer-
tainty model, each object has instances, each of which is
associated with a probability distribution. On the contrary,
in a continuous uncertainty model, all objects have an associ-
ated probability density function to capture the likelihood of
possible values over a continuous range.

Various researches were done to handle skyline query
processing based on the above uncertainty models. These
researches were done with the assumption that either
(i) uncertainty in data is caused by multiple existences of
instances that represent an object [1], [6], [37], [51], or (ii) the
representation of values in the form of continuous ranges in
a dimension causes the uncertainty [21]. Regrettably, such
assumptions do not capture well the nature of data uncer-
tainty, wherein values in a dimension are presented as both
exact values and continuous ranges. This imperfection in data
is inherent and inevitable in today’s real-world application.

Given a dataset, in which in a dimension (attribute), each
object may be represented as an exact value and a continu-
ous range. We termed this kind of uncertainty as uncertain
dimensions. How can we determine the dominance relation
between two objects of different representations of values?
Which object shall be the skyline objects on those uncer-
tain data? Can efficient methods be developed to compute
skyline probabilities when encountering those uncertain data
efficiently? To our understanding, the work in [28] is the only
work that has endeavoured to solve the issue regarding the
motivating example described in Fig. 2, by proposing a BBIS
algorithm. The dominance tests are performed by comparing
the objects’ median values, and they have used an R*-tree
structure to index their objects. Regardless of the contribu-
tions, the BBIS algorithm [28] is not without its shortcoming.
The diminished performance of the R*-tree index structure
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on any dataset that contains more than five dimensions is
what that has glaringly affected the performance of the BBIS
algorithm [4], [28], [35].

To solve the above issues, in [41], we have proposed a
conceptual skyline framework that could efficiently cater
to data that has different representation in a same dimen-
sion, and aptly termed this scenario as uncertain dimension.
We depicted visually the data in this scenario to demonstrate
the significant of having the capability to analyse and produce
skyline objects on this data and how existing works might
be ad a disadvantage. We have also explored the effects of
having data sets with uncertain dimensions in relation to the
dominance relation theory. Then, in [38], we proposed an
algorithm as a solution to efficiently answer skyline queries
with uncertain dimensions. The algorithm determined skyline
objects through three methods that guaranteed the probability
of each object being in the final skyline results.

Following these, in this paper, we make the following
contributions.

• We elaborate in detail on the skyline probabilities’ con-
cept for uncertain dimensions by providing additional
proofs.

• We discuss in detailed on the effectiveness of existing
works in supporting skyline computation when given
data with uncertain dimensions.

• We further enhance and explicate the three methods pro-
posed in the SkyQUD algorithm to reduce the searching
space of skyline queries on data with uncertain dimen-
sions.

• We conduct extensive experiments and evaluate the
SkyQUD algorithm against [21], [28], [37], and include
an additional performance metric (i.e. number of pair-
wise comparisons) to measure the performance of the
algorithms.

The organisation of this paper is as follows. We review
the related works in Sect. II and discuss the effectiveness
of applying existing algorithms in Sect. III. In Sect. IV,
the notion of the probabilistic skyline on uncertain dimen-
sions is proposed. Related definitions and notations to clarify
the proposed algorithm are provided. In Sect. V, the SkyQUD
algorithm is developed to compute skyline probabilities on
uncertain dimensions. The SkyQUD algorithm’s performance
study is reported in Sect. VI. The paper is concluded in
Sect. VII.

II. RELATED WORK
In the following, we will discuss the most notable works in
the area of skyline query processing that have been proposed
for both types of data, namely: certain and uncertain data.

A. CERTAIN DATA
Traditionally, data that are collected and stored in databases
are deterministic asmost applications (e.g., employee payroll,
flight ticketing, stock inventory, and firm accounting) in the
old days required precise query results. Below are some of

the more noteworthy algorithms introduced on processing
skyline over certain data.

The skylines evolution in the context of databases can be
seen from Börzsönyi et al.’s pioneered work [7]. They have
developed the Block-Nested-Loop (BNL) and theDivide-and-
Conquer (D&C) algorithms. Börzsönyi et al. [7] have pro-
posed SQL syntax for skyline queries as well. BNL retrieves
skyline objects in a brute force manner by repeatedly reading
a set of objects and compares them to each other in order
to eliminate the dominated objects. D&C on the other hand
divides the dataset into several different partitions to reduce
the probing area and derives the local skyline objects from
each partition.

Inspired by [7], Tan et al. [46] then proposed two algo-
rithms to retrieve skyline objects named Bitmap and Index.
Bitmap works by scanning the dataset and encoding each
object in bitmaps in order to determine whether an object is in
the skyline, while Index works by organising a set of objects
with d dimensions into d lists. Index processes the lists batch
by batch according to the batch with the minimum value.

Kossmann et al. [23] then introduced an online skyline
algorithm based on the nearest neighbour search (NN) using
R*-tree. The algorithm works by retrieving the preliminary
skyline objects while the algorithm is running simultane-
ously. Then, Chomicki et al. [9] introduced presorting into
BNL to build a more effective algorithm, which is called Sort-
Filter-Skyline (SFS). The idea of SFS is to retrieve skyline
objects that have been sorted according to a particular sorting
function. Following the work on SFS, Godfrey et al. [17] have
further improved it by proposing the Linear Elimination Sort
for Skyline (LESS) algorithm. In principle, LESS is recog-
nised for its significant enhancement from the previous BNL
and SFS algorithms as it implements the advantages of both
algorithms while bypassing their disadvantages. To overcome
the problem in the NN algorithm, Papadias et al. [35] have
proposed the Branch-and-Bound Skyline (BBS) algorithm
that is based on the sorted R-tree. The algorithm is able to
retrieve skyline objects in such a progressive manner in which
only a few amounts of objects are needed to be accessed.
However, as theBBS algorithm implements R-tree, the perfor-
mance of the algorithm deteriorates on dataset that involves
high-dimensional spaces as it is known that the performance
of R-tree is only efficient up to five dimensions [35].

Over the years, there are numerous works that have been
introduced to enhance further the efficiency of existing algo-
rithms on processing skyline query [2], [26], [42], [47], [54],
[56] and expand to various domains such as semantic caching
of skyline queries [5], subgraph skyline search [57], skyline
computation on big data [19], and skyline on distributed
datasets [24].

B. UNCERTAIN DATA
In the following, we will discuss the details of both uncer-
tainty models and survey a broad variety of related works on
skyline query processing that adopt each model.
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FIGURE 3. Example of discrete uncertain model.

1) DISCRETE UNCERTAINTY MODEL
In a discrete uncertainty model, objects are modelled as a
probability distribution that is defined on a finite set of possi-
ble instances, each of which is associated with a probability
value. For example, assume a database on the vehicle speed-
ing trap where the images of vehicles are captured in Fig. 3.
From the captured images, the system tries to identify the
PlateNo and theMake of each vehicle. The imagesmight have
‘noises’ on them, and thus, the vehicles can only be identified
by probabilities. This has led to each vehicle having instances
of possible identification with a probability of confidence.
Thus, each possible combination of instances of the vehicles
is considered as a possible world in the uncertain database.
Note that to obtain the possible world is only feasible for
objects with discrete distributions. For continuous distribu-
tions, it is unrealistic as each object will have an infinite
number of possible instances.

In words, under the discrete uncertainty model, each uncer-
tain object is modelled as a finite set of instances associated
with a probability distribution. Uncertain objects in the dis-
crete uncertainty model could not exactly be represented in
one state. Instead, they have more than one possible repre-
sentation, i.e. instance. For example, an uncertain object V
may have n instances, v1, v2, . . . , vn.
Pei et al. [37] first pioneered the concept of probabilistic

skyline on uncertain data, in which each object is represented
by multiple instances and is part of the skyline answer with
a certain probability. They proposed two algorithms, namely:
bottomUp (BU) and topDown (TD), that would report skyline

FIGURE 4. Example of continuous uncertain model.

objects whose probabilities are above a threshold value p. The
probability of an object to be a skyline object is computed by
the summation of the probabilities of its instances that are
not dominated by any other object’s instances. Inspired by
this work, the concept of probability theory has then been
widely used in relation of skyline queries on uncertain data.
Yong et al. [51] later followed with their work, Best First
Search (BFS) algorithm, by defining the concept of skyline
probability for uncertain data with maybe confidence, based
on which top-k skyline tuples with the highest probability are
identified.

Böhm et al. [6] then introduced τ -skyline query which
applies Gaussian Mixture models on the probability density
function to answer skyline query on uncertain data, and
the skyline objects reported by τ -skyline would all have a
minimum probability of τ . To answer τ -skyline query, they
have proposed two algorithms, Priority and Indexed, which
approximate the probability distribution of each object with a
constant number of samples. Atallah and Qi [1] addressed the
issue of computing exact skyline probabilities for all objects.
They debated that requiring threshold value in probabilis-
tic skyline computations would threshold out all uncertain
objects based solely on their skyline probabilities, regardless
of the skyline probabilities of their instances. Therefore, they
propose an algorithm (AQ) that computes skyline probabili-
ties at the instance level with no threshold value.

Having been influenced by Pei et al. [37], there are several
emerging studies that worked on extending skyline queries on
uncertain data that cover various domains such as uncertain
data streams [13], [29], [33], [44], [55], distributed environ-
ment [58], and probabilistic tuples [3], [18], [22], [25], [53].

2) CONTINUOUS UNCERTAINTY MODEL
In the continuous uncertainty model, each object is repre-
sented as a probability density function defined on a con-
tinuous range of values (e.g., line segments, intervals). For
example, assume a database reading on the temperature and
humidity of regions in forests using sensor networks for the
environmental monitoring programs. The researchers might
have deployed a large number of sensors throughout the
regions. There are a lot of factors that might affect the read-
ings on the sensors, and since each region is equipped with
hundreds of sensors, thus the sensors might record different
inaccurate phenomena. To represent these readings in uncer-
tain database (as shown in Fig. 4), each region instead will
be represented by a range of values depicting the temperature
and humidity of each region at a particular time.
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In words, under continuous uncertainty model, each uncer-
tain object is modelled as a continuous range of value, which
is associated with a probability density function representing
the possible values of the object. For example, an uncertain
object V possibly may be at any point within the range
[vmin : vmax] where vmin and vmax are the lower-bound and
the upper-bound values of object V , respectively.

Influenced by the work proposed by Pei et al. [37],
Khalefa et al. [21] then introduced another interesting con-
cept of probabilistic skyline which focuses on uncertainty in
data in continuous domains where an object is represented
as a continuous range in one of its dimension, which is
associated with a probability density function capturing the
likelihood of possible values. Thus, they have proposed a
USky algorithm which employs a filter-refine approach in
two phases. The first phase is responsible for computing
dominating probability of all objects in a simple manner
and filtering out objects that have probability below than a
threshold value. The second phase is responsible for refining
the probabilities of objects from the first phase in order to get
tighter bounds. The refinement process is done iteratively for
each object until the following conditions are met: 1) when
the calculated upper bound probability of the object is below
the threshold value, which concludes that the object is not
part of the skyline query answer, or 2) the calculated lower
bound probability of the object is above the threshold value
and the probability of the object has an error of margin that is
below the tolerance value. Nonetheless, the concept of uncer-
tainty presented by Khalefa et al. [21] states that all objects
are presented as a continuous range in the same dimension,
while in this paper, the concept of uncertainty is presented as
the existence of continuous ranges in a dimension alongside
the exact values. Although theoretically an object with an
exact value v can be treated as a continuous range [vmin :
vmax], where vmin = vmax = v, we explain in detail in
Sect. III, on why this theory is not practical and demonstrate
in Sect. VI, the disadvantage of the USky algorithm with
extensive experiments.

Li et al. [28] later followed with their work where the value
of an attribute for uncertain objects could be represented
as exact values or intervals that conform to a probability
distribution. Therefore, they have proposed a progressive
algorithm, named Branch-and-Bound Interval Skyline (BBIS)
which is modified from the BBS algorithm [35], to process
the interval skyline query with an optimal cost of I/O. The
algorithm employs R*-tree to index the interval objects, and
this ensures that the BBIS algorithm performs only a single
access to all nodes that may contain skyline objects. The
BBIS algorithm works by having the immediate entry in the
R*-tree to correspond to the MBR of a node at the lower
level, while a leaf entry corresponds to a virtual object.
This virtual object is obtained from each dimension of the
median value of the interval of the actual interval object. The
algorithm takes advantage of the R*-tree, which incorporates
a combined optimization of area, margin, and overlap of
each enclosing rectangle as compared to R-tree. Nevertheless,

as with all algorithms that implement R-tree and its variant,
the BBIS algorithm has its disadvantage when performing on
high dimensionality dataset [28], [35]. We demonstrate this
evidence in extensive experiments performed in Sect. VI.

Uncertainty in real-world data can transpire due to vari-
ous scenarios; thus some studies have proposed algorithms
to cater to different domains and environments such as
Saad et al. [39], [40] who extended the study in [38] to
report skyline on uncertain dimensions when given inter-
val queries, Huang [20] who worked on the continuous
dε-skyline query to cater to location-based query for objects
with time-varying attributes, Li et al. [27], who exten-
sively studied skyline query over distributed interval data,
and Ma’aruf et al. [30]–[32], who worked on an alterna-
tive approach from [38] to cater skyline queries on uncer-
tain data. On a different perspective from the two domains
discussed previously, Elmi et al. [15], [16] introduced the
skyline paradigm that focuses on the evidential database,
Dzolkhifli et al. [14] worked on analysing interval uncer-
tain data stream with k-means clustering technique, while
Dehaki et al. [11] proposed a rule-based skyline computation
for data in dynamic database.

III. DISCUSSION ON THE EXISTING ALGORITHMS
Below we discuss the three most significant existing works
([21], [28], [37]) that adopt the uncertainty model in support-
ing skyline computation. Theseworkswill be discussed based
on the following property. Given a two 2-dimensional dataset
D = (C(D1),D2), where C(D1) represents a dimension that
contains values that are in the form of continuous range and
exact values, while D2 represent a dimension that contains
values that are in the form of exact values only. Two objects
x, y ∈ D have the following values, x = ([1 : 5], 2) and
y = (3, 1).
Pei et al. [37] proposed probabilistic skyline in discrete

case where a d-dimensional object V in a data space D
is represented by a set of multiple points in D called
instances denoted by V =

{
v1, v2, . . . , vη

}
, where vi =

(D1,D2, . . . ,Dd ). The number of instances of an object V
is denoted by |V | = η. The probability that V is a skyline is
given by [37]:

Pr(V ) =
1
η

η∑
i=1

∏
W 6=V

(
1−
|{w ∈ W | w ≺ vi}|

|W |

)
(1)

To accommodate [37], a set of samples is drawn from the
continuous range of x in D1. These samples correspond to
instances of object x. Assume that a set of five samples is
collected, thus making object x has five instances where x1 =
(1, 2), x2 = (2, 2), x3 = (3, 2), x4 = (4, 2), and x5 =
(5, 2). On the other hand, as object y is an exact value in all
dimensions, it is therefore left as it is and is assumed to have
only one instance, i.e. y1 = (3, 1). We can see that instances
x3, x4, and x5 are dominated by y1 (assuming that lower values
are preferred). Thus, following Equation (1), we obtain the
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probability that x is not dominated by y as:

Pr(x) =
1
5
× ((1− 0)+ (1− 0)+ (1− 1)

+ (1− 1)+ (1− 1)) = 0.75

As with the nature of continuous ranges, a random variable
x can take on an uncountable infinite value in the continuous
range

(
x.D1

−
≤ x ≤ x.D1

+
)
. Therefore, the more samples

are collected in the hope of approximating the probability
density function of a continuous range, the more accurate
is the calculated probability. However, it is impractical and
expensive (as demonstrated in the experiments conducted) to
sample a colossal number of instances.

Contrariwise , Khalefa et al. [21] proposed probabilistic
skyline in continuous case where a d-dimensional object v
in a data space D with dimension µ presented as continuous
range denoted by v = ([Dl − Du]µ,D2, . . . ,Dd ) , where
Dl and Du represent the lower bound and upper bound ,
respectively , of object v’s continuous range in dimension µ.
The skyline probability of object v is defined as [21]:

Pr (v) =
∫
v∈D

f (v)
∏
w6=v

(
1−

∫
w≺v

f (w) dw
)
dv (2)

However, the above exact probability computation is pro-
hibitively expensive as we have to calculate it against every
object w (w 6= v) that has the potential to dominate v.
Thus, Khalefa et al. [21] proposed four distinguishing cases
to gradually calculate the probability of an object to not be
dominated by another object in a pairwise manner.

To attempt this on the example of objects x and y, the exact
value of object y in D1 will be treated as range in order to
conform to the structure defined in their work. Thus, we have
y = ([3 : 3] , 1)whilemaintaining x = ([1 : 5] , 2).With this,
the probability of x to be a skyline object can be computed
following [21] as:

Pr (x) = Pr
{
x ∈

[
x.Dl − y.Dl

]}
+
1
2
Pr
{
x ∈

[
y.Dl − y.Du

]}
=

2
4
+

1
2
× 0

= 0.5

Notice that in the above equation, Pr{x ∈ [y.Dl −
y.Du]} = 0. This is because a continuous variable has infinite
precision, thus the probability for x to assume any value in
the range (y.Dl ≤ x ≤ y.Du), where y.Dl = y.Du is:

Pr
(
y.Dl ≤ x ≤ y.Du

)
=

∫ y.Du

y.Dl
f (x) dx

= 0

Although we manage to compute the probability of x
in the above, notice that we are calculating the probability
of x to fall within the range of

(
x.Dl ≤ x ≤ y.Dl

)
, that is

(1 ≤ x ≤ 3). This means that we are calculating as well
the probability x = (3, 2) and since y is an exact value

y = (3, 1), we know that y will always dominate x when
x = (3, 2) (as have been proven in the previous example of
computing probabilistic skyline in discrete case).

Then, Li et al. [28] proposed the idea that a data space D
is consisted of interval uncertain data when the value of its
d-dimensional numeric space can be depicted as an interval
that conforms to a probability distribution, or an exact value.
That is, for object v with the structure of (D1,D2, . . . ,Dd ),
where each Di (1 ≤ i ≤ d) is represented as [v.Di−, v.Di+]
if it is an interval number or it is represented as [v.Di, v.Di]
if it is an exact value. They hold onto the notion that, for
two objects v =

[
v.Di−, v.Di+

]
and w = [w.Di,w.Di] in

dimension Di, if the center point of v is smaller than the
center point of w, then Pr (v ≺ w) > 1

2 . Therefore, for the
aforementioned objects x and y where their median values
are obtained by x = ( 5+12 , 2+22 ) and y = ( 3+32 , 1+12 ),
which corresponds to x = (3, 2) and y = (3, 1), if all the
center points of x is not bigger than y in all dimensions, and
at least exist one dimension that is smaller than y, then x
dominates y. From here, it is a straightforward dominance
testing between two objects where it is obvious y dominates
x and therefore, y is always a skyline object. Hence, they
have defined skyline on interval uncertain data D as object
v if there does not exist any object that dominates v. To be
precise, {v | v ∈ D ∧ (@ (w 6= v ∈ D) ∧ w ≺ v)}. This case in
point supports as well our previous argument on the reason of
computing the probability of an object v to be a skyline object
by explicitly excluding any possible values where v may be
dominated.

Conversely, the drawback of computing skyline on median
values is that it is always assumed that all objects are rep-
resented by their median values. In reality, object with con-
tinuous ranges usually represents the uncertainty in the data
collected, for instance, continuous ranges in hotel rate per
night dimension reflect the fluctuation of the price which is
dependent on the ‘peak pricing’. There may be a scenario
when during off-peak season, the hotel rate per night of hotel
v might be at its lowest value, which in turn will make it a
preferable choice compared to other hotelsw. Or when during
peak season, the hotel rate per night of hotel v fluctuates
to its highest value possible, thus making v a bad choice as
there are better hotels w with cheaper pricing. Thus, it is
more practical to compute objects’ probabilities rather than
their expected median value in order to replicate real-world
scenarios.

IV. SKYLINE PROBABILITIES OF OBJECTS IN AN
UNCERTAIN DIMENSION
As a general rule, the uncertainty in data is expressed in term
of probabilities in such a way where:

1) an object is presented with some probability. For exam-
ple, a data space D consists of a finite set of states
called possible worlds W. Thus, the probability of a
possible world Pr(W) is 0 < Pr(W) ≤ 1 and that∑

W∈D Pr(W) = 1 [45]. Or,
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2) the value of a dimension is given by a probability
distribution. For example, the exact value of an object
in a continuous range R is uncertain and is modeled as
a probability density function f inR. Therefore, for any
value r in R, 0 ≤ f (r) ≤ 1 and that

∫
r∈R f (r) = 1 [48].

We consider the second model. This would mean that we
cannot simply derive precise skyline objects from these kind
of datasets. Instead, we can compute the probability of each
object in the dataset to be a skyline object.

Let [vlb : vub] denotes the continuous range of V such
that vlb ≤ v ≤ vub and {vlb, vub ∈ R|0 ≤ vlb ≤ vub}. The
probability that V will be in the continuous range [vlb : vub]
can be defined as:

Pr(V ∈ [vlb : vub]) =
∫ vub

vlb
f (v)dv = 1 (3)

Therefore, all probability statements about V can be
answered in terms of f (v), or in other words the probability
density function (pdf).

Thus far, we have discussed the probability distribution of
a single object with continuous range. However, the main
interest of this paper is in skyline query processing which
involves the probability distributions concerning two or more
objects with continuous ranges. Given two objects V ∈ [vlb :
vub] and W ∈ [wlb : wub], with f (v) and f (w) as the objects’
corresponding pdfs, respectively. The probability that object
V dominates objectW can be expressed as:

Pr(V < W ) =
∫
W∈[wlb:wub]

f (w)
∫
V≺W

f (v) dv dw (4)

As a result, the probability of an object with continuous
range to be a skyline object is the probability of that object
to not be dominated by any other objects. Thus, performing
skyline query on objects with continuous range is bound to
produce a skyline result that is probabilistic. Logically, this
would mean that any object that has a dominating probability
of more than zero will have a potential to be a skyline object.
In other words, the size of skyline result S on datasetDwould
be S ⊆ D. Hence, we employ a probability threshold τ in our
probability dominance test in order to manage the quality and
the size of skyline objects reported.

Given a set of objects O with continuous ranges, where
it is assumed the smaller the value, the better it is, and a
probability threshold τ . The probability of an object V =
[vlb : vub] ∈ O to be a skyline object over another object
W = [wlb : wub] ∈ O is the probability of V to not be
dominated byW , 1−Pr(W < V ), and that the probability is
at least τ .
Lemma 1: For an object V that is uniformly distributed

over continuous range value [vlb : vub] , vlb < vub, it can
be said with certainty that V strictly dominates W , where
[wlb : wub] ,wlb < wub, if the worst case scenario of V
dominates the best case scenario of W , and V dominates W
with probability that is at least τ if [vlb : vub] and [wlb : wub]
intersect.

Proof: Let vg = vlb represents the best case scenario of
v, vb = vub represents the worst case scenario of v, and va =
vlb+vub

2 represents the average case scenario of v. Accordingly,
the same is applied on objectw. For (0 ≤ τ ≤ 1) and τ = 0.5:
1) If vb ≤ wg, then Pr(v < w) = 1 > τ .
2) If va = wa, then Pr(v < w) = Pr(w < v) = 1

2 = τ .
3) If va < wg, then Pr(v < w) > 1

2 > τ .
From all the proofs above, we can conclude that the theory
holds on. �

To extend the concept of dominance testing used in tra-
ditional skyline query to objects with continuous range is not
quite that straightforward as now each dominance testing will
involve probability computations, which in turn can incur an
exorbitant processing cost. This is proven to be true especially
when these objects are represented as multi-dimensional
objects with more than one dimensions where their values are
expressed as continuous range.

To ease the process of dominance testing on objects with
continuous range and to avoid unnecessary probability com-
putations, we consider the following scenarios with respect to
a d-dimensional dataset D = {V ,W }, where Vm denotes the
value of object V in the mth dimension:

1) a pair of certain objects V and W , where ∀m ∈

{1, 2, . . . , d}, Vm andWm are expressed as determinis-
tic/exact values.

2) a pair of uncertain objects V and W , where ∃n ∈
{1, 2, . . . , d}, Vn = [vlb : vub] and Wn = [wlb : wub]
are expressed as continuous ranges.

3) a pair of mismatch objects V and W , where ∃n ∈
{1, 2, . . . , d}, Vn = [vlb : vub] is expressed as continu-
ous ranges, while ∀m ∈ {1, 2, . . . , d},Wm is expressed
as deterministic/exact values.

Determining dominating object in scenario 1 is pretty
straightforward using the traditional dominance test. Con-
versely, to accommodate the computation of an object’s dom-
inating probability in scenarios 2 and 3, we further define the
following possible relations between two objects:
Definition 1 (Relations Between a Pair of Uncertain

Objects):
Disjoint: If wlb ≥ vub

Pr(V < W ) = 1 (5)

Disjoint-inverse: If wub ≤ vlb

Pr(V < W ) = 0 (6)

Overlap: If vlb ≤ wlb ≤ vub ≤ wub

Pr(V < W ) = 1−
1
2

∫ vub

wlb
f (v)dv

∫ vub

wlb
f (w)dw (7)

Overlap-inverse: If wlb ≤ vlb ≤ wub ≤ vub

Pr(V < W ) =
1
2

∫ wub

vlb
f (v)dv

∫ wub

vlb
f (w)dw (8)

Contain: If vlb ≤ wlb ≤ wub ≤ vub

Pr(V < W ) =
∫ wlb

vlb
f (v)dv+

1
2

∫ wub

wlb
f (v)dv (9)
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Contain-inverse: If wlb ≤ vlb ≤ vub ≤ wub

Pr(V < W ) =
∫ wub

vub
f (w)dw+

1
2

∫ vub

vlb
f (w)dw (10)

Equals: If vlb = wlb and vub = wub

Pr(V < W ) =
1
2

∫ vub

vlb
f (v)dv

∫ wub

wlb
f (w)dw (11)

Definition 2 (Relations Between a Pair of Mismatch
Objects):
Disjoint: If w ≥ vub

Pr(V < W ) = 1 (12)

Pr(V < W ) = 0 (13)

Disjoint-inverse: If w ≤ vlb

Pr(V < W ) = 0 (14)

Pr(V < W ) = 1 (15)

Contain: If vlb ≤ w ≤ vub

Pr(V < W ) =
∫ w−ε

vlb
f (v) dv (16)

Pr(V < W ) =
∫ vub

w+ε
f (v) dv (17)

The two main reasons of employing ±ε as appeared in
equations (16) and (17) above are (i) when using a continuous
distribution to approximate an exact value, accurate approxi-
mations are likely to be acquired, and (ii) the approximation
of the probability of an exact value can be obtained from
the continuous distribution. Although it does not look like
much the significant of ±ε in the probability calculations,
the slight change in the probability of an object would affect
the skyline result since we are employing the threshold τ in
the probability dominance test.
Lemma 2: For an object V that is uniformly distributed

over continuous range value [vlb : vub] , vlb < vub and an
object with exact value w, it can be said with certainty that
V strictly dominates W if the worst case scenario of V
dominates W , and V dominates W with probability that is
at least τ if [vlb : vub] and w intersect.

Proof: Let vg = vlb represents the best case scenario
of V , vb = vub represents the worst case scenario of V , and
va =

vlb+vub
2 represents the average case scenario of V . For

(0 ≤ τ ≤ 1) and τ = 0.5:
1) If vb < w, then Pr (V < W ) = 1 > τ .
2) If vb = w, it means we desire to compute the prob-

ability that V is strictly better than W , Pr (V < W ),
which from Definition 2 we may compute this proba-
bility by limε→0 Pr (v ≤ w− ε). Since limε→0 means
that we are taking the limit as ε decreases to 0, then
Pr (v < w)→ 1 > τ .

3) If va < w, following item 3 of the proof in Lemma 1,
Pr (v < w) > 1

2 and following item 2 of the proof in
this lemma, Pr (v < w) 6= Pr (v ≤ w) since Pr(v ≤ w)

also includes the probability that v equals w. Therefore,
Pr (v < w) = limε→0 Pr(v ≤ w− ε) > 1

2 > τ .

From all the proofs above, we can conclude that the theory
holds on. �
When the dominance tests are performed on objects in

scenarios 2 and 3, we test a pair of objects on both of
the objects’ dimensions that do not contain any continuous
ranges. For example, given a pair of mismatch d-dimensional
objects V and W , where W = {wm ∈ R} and V = {[vlb :
vub]m|vlb, vub ∈ R, 0 ≤ vlb ≤ vub} for m = {1, 2, . . . , d}.
Then we have K = {∀m| both V and M have exact values
in m} and C = {∀m|V has continuous range value andW has
exact value inm}. To perform dominance test between objects
V andW , we begin by examining V andW inK. If it is found
in K for all k , vk ≤ wk and there exists k , vk < wk , then V
certainly dominatesW inK, and it can be concluded that V is
a candidate of skyline object regardless ifV will be dominated
by W in C. This is because if V is dominated by W in C,
then it would mean that both objects are incomparable, which
follows the traditional dominance test. However, if it is found
inK there exists k , vk ≤ wk and there exists k , wk ≤ vk , then
it would mean that both V andW do not dominate each other
(incomparable). Thus, the process of dominance testing can
be terminated and both objects will be considered as skyline
objects.

Hence, the process of dominance testing can be reduced to
only determining the probability of W to not be dominated
by V in C as this will be the only chance for W to be a
candidate of skyline object. On the other hand, if V and
W are equal in K, then the process of dominance testing
in C is performed in order to determine the probability of
both objects to not be dominated by another. The dominance
relations between V andW inC can be determined according
to the relations defined in Definition 1 and Definition 2.
As with the dominance testing in K, if it is found that there
exists object V that dominates object W in C in such a way
that (1− Pr(vc < wc)) ≥ τ , then it can be concluded that W
has some probability of at least τ to be a candidate of skyline
object.
Theorem 1: Given a threshold value τ and a set of

d-dimensional objects O = {V ,W } , W = {wm ∈ R} and
V = {[vlb : vub]m|vlb, vub ∈ R, 0 ≤ vlb ≤ vub} for m = {1, 2,
. . . , d}. The objects retrieved by the skyline query on objects
O are objects that are not dominated by any other objects
in K = {∀m| both V and M have exact values in m} and
C = {∀m|V has continuous range value and W has exact
value in m} , and thus they are skyline objects with respect
to τ .

Proof: For two objects {V ,W } ∈ O, the proof consists
of three parts:

1) When V dominates W in K. If ∀k, vk ≤ wk and
∃k, vk < wk , then V definitely dominates W in K,
and thus is a candidate of skyline object regardless if
the probability of V to not be dominated by W in C
is less than τ . This is because if V dominates W in K
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but is dominated by W in C, then both V and W are
incomparable, which follows the inequality in item 2 of
this proof.

2) When V and W are incomparable. If ∃k, vk ≤ wk
and ∃k,wk ≤ vk , then V does not dominate W , and
vice-versa inK, thus the dominance testing inC can be
skipped.

3) When V is dominated by or equals to W in K.
If ∀k, vk ≥ wk , then it is either that V is completely
dominated by W or V and W do not dominate each
other in K as they are equal. Therefore, to determine
if V would still have any chance to be a candidate of
skyline object, thenV has to have a probability to not be
dominated byW that is at least τ in C. If v[lb]c = w[lb]c
and v[ub]c = w[ub]c, then Pr(vc < wc) = Pr(wc <
vc) = 1

2 and we can conclude that V is no better than
W , and vice versa in C. This means that for V to not be
dominated by W in C, then Pr(vc < wc) ≥ Pr(wc <
vc) (since Pr(vc < wc) = 1 − Pr(wc < vc)), and thus
∃c such that Pr(vc < wc) ≥ τ in order for V to be
considered as a candidate of skyline object.

From all the proofs above, we can conclude that if V is not
dominated by other objectsW inK or V has the probability to
not be dominated byW that is more than τ in C, then overall
V is not dominated by W . Therefore, the retrieved object V
is not dominated in K or C, and thus is a skyline object of O.

�

V. THE SKYQUD ALGORITHM
To demonstrate the whole process of the dominance tests on
dataset containing continuous ranges we use the following
example of dataset illustrated in Table 1. The dataset D
contains a total of 40 objects that have been extracted from
Rent.com (www.rent.com) with four main features, namely:
rent per month, square feet, number of bedrooms, and num-
ber of bathrooms. The features rent per month and square
feet are considered uncertain as they contained continuous
ranges in their dimensions, and are represented by D1 and
D2, respectively. On the other hand, the features number
of bedrooms and number of bathrooms are considered as
certain and are represented by D3 and D4, respectively. For-
mally, these dimensions are defined as K = {D3,D4} and
C = {D1,D2}.
We begin the process of dominance tests by partitioning the

dataset according to the characteristic of each object before
skyline dominance tests are performed. The partitioning pro-
cess will produce at least two distinct groups, one of which
will contain objects that were described in scenario 1, while
the other will contain objects that were described in scenario
2. Next, these groups would either have to go through the
exact dominance test (for objects in scenario 1) or probability
dominance test (for objects in scenario 2). Both tests will pro-
duce a set of skyline candidates, all of which will then have
to go through the mismatch probability dominance test that
will finally produce a set of skyline objects. The reasoning

TABLE 1. Running example of a list of house rentals.

behind partitioning the dataset into distinct groups is to avoid
unnecessary probability computations (which would be pro-
hibitively expensive when the number of dimensions in C is
increasingly large).

To partition the dataset into distinctive groups, each object
is examined to determine the existence of continuous ranges.
Each object will have a corresponding list (denoted 2) that
will keep track of the dimensions with continuous range that
exist in a particular object. Therefore, for instance, for objects
R = (r1, [rlb : rub]2, r3, r4), V = (v1, [vlb : vub]2, v3, [vlb :
vub]4) and W = ([wlb : wub]1,w2,w3, [wlb : wub]4),
the corresponding list of dimensions with continuous range
for R, V , and W would be annotated as 2r = {2}, 2v =

{2, 4}, and 2w = {1, 4}, respectively. On the other hand,
for objects that are presented as an exact value in all dimen-
sions, that is for instance, object S = (s1, s2, s3, s4), since
there does not exist any dimensions with continuous range
in S, the corresponding list of dimensions with continuous
range for S will be annotated as 2s = {0}. Hence, once
all objects in the dataset have been examined and the cor-
responding lists have been obtained, the objects will then
be grouped together according to the list 2. Following this,
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TABLE 2. Objects in distinctive groups after partitioning.

by partitioning all objects in Table 1 would yield four distinc-
tive groups of objects as illustrated in Table 2. All objects that
have been grouped together in Group 1 have the same list as
2G1 = {0}, while objects that have been grouped together
in Group 2 have the same list as 2G2 = {1}. Likewise for
objects in Group 3 and Group 4 where they have the same list
as 2G3 = {2} and 2G4 = {1, 2}, respectively.
By partitioning the dataset into distinctive groups, unnec-

essary probability computations can be avoided. For instance,
based on the previous objectsR, S,V , andW , the total number

of dimensions with continuous range is 3, that is D1, D2,
and D4. Without partitioning the objects, when performing
dominance testing on (S,V ), for instance, we need to compute
the probabilities on dimensions D2 and D4, while dominance
testing on (R, W ) would need probability computations on
dimensions D1, D2, and D4. Whereas by partitioning the
objects, if there exists another object that is in the same
group as R, then we only need to compute the probability on
dimension D2, or if there exists another object that is in the
same group as S, no probability computations are needed at
all. Although later on in the mismatch probability dominance
test we still need to perform dominance testing on (S, V ) and
(R, W ), the number of objects that has the same uncertain
dimensions as R, S, V , and W has been reduced, therefore
achieving the aim of the partitioning to avoid unnecessary and
expensive probability computations, and this in turn would
speed up the performance of SkyQUD algorithm.

Having different groups of objects with different represen-
tations, different dominance relation techniques and skyline
probability computations are needed to cater each group as
discussed below.

A. EXACT DOMINANCE TEST
If a group consists of objects that are presented as an exact
value in all dimensions, then the conventional dominance
testing is sufficient enough to be implemented on this group
since it is such a straightforward test without having to take
into account the problem of continuous ranges. The transitive
relation, where A < B and B < C , then A < C , summed
up perfectly the process of filtering out dominated objects
without having to compare with every other objects that
are candidates of skyline objects. Thus, this would reduce
unnecessary probability computations in future.

Based on the set of groups presented in Table 2, only
Group 1 qualifies for the exact dominance test since the cor-
responding list for Group 1, 2G1 = {0}, which indicates that
the presence of continuous ranges in Group 1 is non-existent.
Following conventional dominance testing, we would find
that o12 dominates o13, o16, o22, o26, o27, o30, and o31, o33
dominates o3, o6, o38, and o39, while o36 dominates o11.
On the other hand o12, o33, and o36 do not dominate each
other as they are incomparable since ∀i ∈ (2 ≤ i ≤ 4),
o12.Di ≤ o36.Di ≤ o33.Di and o33.D1 < o36.D1 < o12.D1.
Thus, the dominated objects will be pruned out and only o12,
o33, and o36 will be the skyline candidates of Group 1 as
demonstrated in Table 3. The shaded objects represent the
skyline candidates of the group where these objects are not
being dominated by any other objects in the group. Algo-
rithm 1 presents the algorithm of the exact dominance test.

B. PROBABILITY DOMINANCE TEST
If a group consists of objects that are presented as a continu-
ous range in at least one of the dimensions, it cannot be said
with definite that an object totally dominates any other objects
based solely on the traditional dominance relation theory.
Therefore, the domination concept as defined in Lemma 1
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TABLE 3. Skyline candidate of group 1 after exact dominance test.

Algorithm 1 Exact Dominance Test
Input: a set of objects in G
Output: a set of skyline candidates, SkyC

1 Initialise SkyC ;
2 for each object g ∈ G do
3 for each object sc ∈ SkyC do
4 if g ≺ sc then
5 remove sc from SkyC ;
6 end
7 else if sc ≺ g then
8 remove g from G;
9 continue step 2;
10 end
11 end
12 add g to SkyC ;
13 end
14 return SkyC ;

is better suited for this group to obtain the probability of each
object to be a skyline. The use of threshold value τ has been
utilised in order to help prune out objects that have a skyline
probability less than the threshold value.

To compute the skyline probability of each object V ,
the probability of object V to not be dominated by another
object W , 1 − Pr(w < v), is computed according to the
relations defined in Definition 1, where this probability has
to be more than the threshold value according to Lemma 1
in order to be considered as a candidate of skyline objects.
At this stage, all objects with a probability to be a skyline can-
didate that is lower than the threshold value will be filtered.
This concept is easily applicable on objects with a single
dimension with continuous range. However, if there exists
more than one dimensions with continuous range, the concept
as discussed in Theorem 1 is employed to determine if an
object dominates another objects and if an object is a skyline.

Again, based on the set of groups presented in Table 2,
Group 2, Group 3, and Group 4 qualify for the probability
dominance test since it is found that the corresponding lists
of these groups are ∀i ∈ {2, 3, 4},2Gi 6= {0}. To test

the dominance relations on objects with continuous ranges
following Theorem 1, the dominance relation is performed
first on a set of dimensions with exact values, denotedK. The
aim is to avoid unnecessary probability computations since if
it is found that between two objects they are incomparable
in K, then it would mean that both objects do not dominate
each other and thus can be considered as candidates of skyline
objects. If it is found that an object dominates another object
in K, then the computations of probability are performed on
a set of dimensions with continuous ranges, denoted C, only
on the dominated object. This concept has been deliberated
in Theorem 1.
To acquire the local skyline candidates from each of these

groups, the probability dominance test is performed on the
groups separately. Let us have a look at Group 2. To start,
since K = {D2,D3,D4} and C = {D1} for Group 2, for
each object, the traditional dominance test is performed onK
first. Hence for instance, between objects o1 and o2 as ∀i ∈
{3, 4}, o1.Di = o2.Di and o1.D2 < o2.D2, then o1.K ≺ o2.K
and we can conclude that o1 is a possible candidate of skyline
objects. Therefore, for o2 to be a candidate of skyline objects
as well, o2 has to have the probability to not be dominated by
o1 that is at least τ in C. This probability can be obtained by
Pr(o2.C < o1.C) as defined by Definition 1. As we can see,
the continuous ranges of o1 and o2 intersect in D1 in such
a way that o1[lb] < o2[lb] < o1[ub] < o2[ub]. The relations
between o1 and o2 in D1 can be seen as overlap-inverse. The
probability of o2 to not be dominated by o1 in D1 is equals to
the probability of o2 to dominate o1, that is (1− Pr(o1.D1 <

o2.D1)) = Pr(o2.D1 < o1.D1). Therefore following Eq. 8,
we can obtain Pr(o2.D1 < o1.D1) as follows:

Pr(o2.D1 < o1.D1) =
1
2

∫ o1[ub]

o2[lb]
f (o2)do2

∫ o1[ub]

o2[lb]
f (o1)do1

=
1
2

∫ 2128

2013
f (o2)do2

∫ 2128

2013
f (o1)do1

= 0.34

Should the probability threshold τ is set to 0.5, then the
probability dominance test would prune out object o2 from
further processing.

Following this, we can see that o1 dominates o2, o7, o8, o14,
o17, o18, o19, o20, o21, o28, and o29 in K and these objects
have a probability to not be dominated by o1 of 0.34, 1.0,
1.0, 0.62, 0.31, 0.24, 0.0, 0.0, 0.0, 0.0, and 0.0, respectively
in D1. Assuming that the probability threshold τ is set to
0.5, then the probability dominance test would prune these
objects (except for o7, o8, o14) from Group 2. However, o32
dominates o1, o7, o8, and o14 in K and C, thus removing
these dominated objects from further computations as well
and making o32 as a possible skyline candidate. Between o32
and o37 although o37.K ≺ o32.K, yet o32.C ≺ o37.C, which
would mean both objects are incomparable and thus making
both objects as skyline candidates of Group 2. Accordingly,
the same concept of the probability dominance test is applied
on Group 3 and Group 4. The shaded objects in Table 4
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TABLE 4. Skyline candidates of each group after probability dominance
test.

represent the skyline candidates of groups 2, 3, and 4 where
these objects are not being dominated by any other objects in
their respective group. Algorithm 2 exemplifies the algorithm
of the probability dominance test.

C. MISMATCH PROBABILITY DOMINANCE TEST
All the objects that survived the filtering process of their own
group in the exact dominance test and probability dominance
test are now considered as the candidates of skyline objects.
These objects however have to go through another filtering
process, where they nowwill be compared to different groups
in order to be finally accepted as skyline objects.
Mismatch probability dominance test is computed in a

pairwise fashion between two local skyline candidates from
different groups. This test employs probability calculations
according to the relations defined in Definition 1 and
Definition 2. From Theorem 1, if the computed probability
for an object is below the threshold value τ , then it is no
longer needed to consider the object in any further compu-
tations. In doing the pruning process, it helps to reduce the
unnecessary probability computations. And thus, all objects
that manage to survive the filtering process of the mis-
match probability dominance test are considered as skyline
objects.

Algorithm 2 Probability Dominance Test
Input: a set of objects in G, threshold τ , list 2G
Output: a set of skyline candidates, SkyC

1 K = {k|1 ≤ i ≤ d, k /∈ 2G};
2 C = {c|c ∈ 2G};
3 Initialise SkyC ;
4 for each object g ∈ G do
5 for each object sc ∈ SkyC do
6 if g ≺ sc in K then

/* Def. 1 */
7 if Pr (sc ≺ g) in C < τ then
8 remove sc from SkyC ;
9 end
10 end
11 else if sc ≺ g in K then

/* Def. 1 */
12 if Pr (g ≺ sc) in C < τ then
13 remove g from G;
14 continue step 4;
15 end
16 end
17 else if g = sc in K then

/* Def. 1 */
18 if Pr (g ≺ sc) in C < τ then
19 remove g from G;
20 continue step 4;
21 end

/* Def. 1 */
22 else if Pr (sc ≺ g) in C < τ then
23 remove sc from SkyC ;
24 end
25 end
26 end
27 add g to SkyC ;
28 end
29 return SkyC ;

In order to keep the comparisons between groups of local
skyline candidates simple, the mismatch probability domi-
nance test will treat the group Gm that has the corresponding
list of uncertain dimensions 2Gm = {0} as a set of initial
global skyline candidates, and the group will be compared to
the remaining groups Gn, n 6= m. Therefore, for the purpose
of discussing the mismatch probability dominance test based
on the set of groups presented in Table 5, the set of global
skyline candidates currently contains objects from the local
skyline candidates of Group 1, which are o12, o33, and o36.
Hence, every object in groups Gn will be compared to these
initial global skyline candidates.

For instance, we are performing the mismatch probability
dominance test on local skyline candidates from Group 2 and
the global skyline candidates. Between the initial skyline
candidate o12 and object o32, since the lists 2o12 = {0} and
2G2 = {1}, therefore K = {D2,D3,D4} and C = {D1}.
As implemented in the probability dominance test, when
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TABLE 5. Skyline candidates from exact dominance test and probability
dominance test.

there exists dimensions with continuous range, the domi-
nance testing is performed on K first, the same concept is
applied in the mismatch probability dominance test as well.
As we can see, ∀i ∈ {3, 4}, o12.Di = o32.Di and o12.D2 <

o32.D2, therefore we can conclude that o12 ≺ o32 in K
and o12 still is a global skyline candidate. For o32 to be
acknowledged as a global skyline candidate as well, o32 has
to have the probability to not be dominated by o12 in C.
And since o32[ub] < o12 in D1, then we can conclude that
overall, o12 and o32 are incomparable. Similarly for objects
o33 and o32 where they are both incomparable. This is because
although o32.K ≺ o33.K, o33 manages to not be dominated by
o32 with a probability that is at least τ in C. The relations
between o32 and o33 in D1 can be seen as contain as reflected
in Definition 2. As have been elucidated in Lemma 2, when
calculating the probability of a continuous range to dominate
an exact value, a correction value (denoted ε) is needed to give
values as small enough as possible around the exact value.
Therefore, the probability of o33 to dominate o32 in D1 can
be obtained by following Eq 17 when ε = 0.5 as:

Pr(o33.D1 < o32.D1) =
∫ o32[ub]

o33+ε
f (o32)do32

=

∫ 1196

1153+0.5
f (o32)do32

= 0.71

This proves that o33 is not worse than o32 in C and o33
still is considered a global skyline candidate. Between objects
o32 and o36 however, o32 definitely dominates o36 in both
K and C and thus o36 is eliminated from the set of global
skyline candidates and acknowledging o32 as a global skyline
candidate.

Once all comparisons between the initial global skyline
candidates and the local skyline candidates in Group 2 are

TABLE 6. Global skyline candidates after mismatch probability
dominance test.

performed, we have acquired a new set of global skyline
candidates which currently contains objects o12, o33, and o32.
By implementing the mismatch probability dominance test
in this manner, we manage to avoid redundant compar-
isons between objects from the same group, and the num-
ber of comparisons between objects from different groups
is reduced as well. The remaining local skyline candidates
in Group 3 and Group 4 will be compared to the set of
global skyline candidates by applying the same concept of
the mismatch probability dominance test accordingly. As a
result, this makes o40 the only global skyline candidate that
remain and thus themismatch probability dominance testwill
return o40 as the final skyline object as shown in Table 6.
Algorithm 3 demonstrates the steps involved in the mismatch
probability dominance test in order to derive the final skyline
objects. The general outline of the SkyQUD algorithm is
presented in Algorithm 4.

Suppose there is an algorithm that implements the same
skyline probability computation as in SkyQUD but without
having to partition the dataset into distinct groups. Then,
the complexity of the algorithm is of the orderO(nm), where
n is the total number of objects in the dataset andm is the total
number of skyline candidates. Therefore, it can be assumed
that the complexity of SkyQUD is of the orderO(nzmz), such
that (1 ≤ z ≤ %), where nz < n is the total number of
objects in group z and mz < m is the total number of skyline
candidates in group z.

As the SkyQUD algorithm performs data partitioning on
its dataset prior to any skyline computations, thus, in a
worst-case scenario, the maximum number of distinctive
groups created by the algorithm will be % = 2|C|. Given that
for an n total number of objects in a dataset with a uniform
distribution of continuous data in each d − 1 dimension,
the maximum number of objects partitioned into each dis-
tinctive group will be G% = n

2|C|
. Following this, given that

in a worst-case scenario, none of the objects dominated each
other in each group, then the maximum number of skyline
candidates for each distinctive group will be SkyC% = n

2|C|
.

On the other hand, in the mismatch probability dominance
test, the maximum number of skyline candidates at the initial
stage will be SkyC = n − n

2|C|
, as it combines all the skyline

candidates obtained from each distinctive group (except for
the skyline candidates obtained from the exact dominance
test), while the maximum number of global skyline candi-
dates will be GSkyC = n

2|C|
. At the end of the mismatch

probability dominance test stage, both the SkyC and GSkyC
will be n, respectively, in the worst-case scenario.
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Algorithm 3Mismatch Probability Dominance Test
Input: a set of local skyline candidates

SkyC = {SkyC1, SkyC2, . . . , SkyC%}, threshold τ
Output: a set of objects, Sky, which is the skyline with

probability ≥ τ
1 Initialise GSkyC ;
2 add SkyCm, where 2Gm = {0}, to GSkyC ;
3 for each group SkyCn ∈ SkyC, (1 ≤ n ≤ %), n 6= m do
4 for each object s ∈ SkyCn do
5 for each object sc ∈ GSkyC do
6 K = {k|1 ≤ k ≤ d, k /∈ 2Gn, k /∈ 2sc};
7 C = {c|1 ≤ c ≤ d, c ∈ 2Gn, c ∈ 2sc};
8 if s ≺ sc in K then

/* Def. 1, 2 */
9 if Pr(sc ≺ s) in C < τ then
10 remove sc from GSkyC ;
11 end
12 end
13 else if sc ≺ s in K then

/* Def. 1, 2 */
14 if Pr(s ≺ sc) in C < τ then
15 remove s from SkyCn;
16 continue step 4;
17 end
18 end
19 else if s = sc in K then

/* Def. 1, 2 */
20 if Pr (s ≺ sc) in C < τ then
21 remove s from SkyCn;
22 continue step 4;
23 end

/* Def. 1, 2 */
24 else if Pr (sc ≺ s) in C < τ then
25 remove sc from GSkyC ;
26 end
27 end
28 end
29 end
30 add SkyCn to GSkyC ;
31 end
32 add GSkyC to Sky;
33 return Sky;

VI. EMPIRICAL STUDY
In this section, the results of the extensive experiment to
examine the algorithms proposed in this paper are reported.
All experiments were conducted on a PC with Intel Core
i5-3470 3.20GHz processor and 7.8GB main memory run-
ning Ubuntu Linux operating system.

To fairly evaluate the performance of SkyQUD when pro-
cessing skyline queries on uncertain dimensions, we conduct
extensive experiments on SkyQUD and compare SkyQUD to
USky [21], BBIS [28], BU [37], and TD [37].
Note that for BU and TD, we have sampled a number

of random points for each object with continuous ranges to

Algorithm 4 SkyQUD
Input: a d-dimensional dataset S with

K = {Di}, 1 ≤ i ≤ d , threshold τ
Output: a set of objects, Sky, which is the skyline with

probability ≥ τ
1 Initialise Sky, SkyC , and G;
2 G = apply object partitioning;
3 for each group Gi ∈ G, (1 ≤ i ≤ %) do
4 if 2Gi = {0} then
5 SkyC = apply Algorithm 1;
6 end
7 else if 2Gi 6= {0} then
8 SkyC = apply Algorithm 2;
9 end
10 end
11 Sky = apply Algorithm 3 on SkyC ;
12 return Sky;

represent as instances of the object in order to simulate the
datasets used within these two algorithms. We use the same
parameters described in [37] to generate the instances. The
instances of each object with continuous range are generated
according to a uniform distribution within the continuous
range of the object and the number of instances of an object
with continuous range is distributed uniformly within the
range [1, u], where u is 400 by default. Therefore, in general,
on average each object with continuous range has u2 instances,
and thus the total number of instances in a dataset is nu

2 ,
which is 200,000,000 by default (given that n is 1,000,000 by
default). However, objects with exact value are left as they are
without any manipulation and are assumed to have only one
instance. Thus, the total number of instances generated for
objects with continuous range is nδu2 , which is 100,000,000 by
default (given that the distribution of objects with continuous
range or exact value, denoted δ, is 0.5 by default). Neverthe-
less, note that we did not compare with BU and TD in terms
of number of pairwise comparisons as in our work, it means
performing dominance tests between objects, while in [37]
the dominance tests would instead be performed between
instances of objects and this would be unfair on the BU and
TD algorithms.
The same goes for BBIS where the algorithm performed

comparisons between entries in the R*-tree, and these entries
may be an intermediate entry or a leaf entry. The leaf entries
correspond to the original objects in the dataset, while the
intermediate entries correspond to the minimum bounding
rectangles (MBRs) of nodes at the lower level. Therefore,
it would be unfair to measure BBIS in terms of number of
pairwise comparisons.

On the other hand, since all objects in USky are assumed
to be presented as continuous ranges in the same dimen-
sion, that is, the datasets used in USky have the structure
of ([alb : aub]1, a2, . . . , ad ), therefore, USky will treat every
object with exact value in uncertain dimensions as con-
tinuous ranges by assigning their lower and upper bounds
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TABLE 7. Summary of experiment parameters for SkyQUD.

to be that of the objects’ exact values. In words, suppose
an object v = (5, 3, . . . , 7), USky will treat the object as
v = ([5 : 5], 3, . . . , 7).

Following [21], we generate a d-dimensional synthetic
dataset of n objects with the following settings. We set d
to be varied from 3 to 20 and n to be varied from 1M to
10M. Each dimension is represented with a uniform random
variable from 1 to 10,000. We have set the first dimension to
be the dimension that will represent the concept of uncertain
dimension (i.e. C(D1)), where the distributions (δ) between
exact values and continuous ranges in C(D1)) by default is
set to be equally distributed. On the other hand, the NBA
statistics contains records of 21,961 NBA players from the
year 1946 to 2009. Each record has 16 dimensions that
represent various statistics associated with basketball games
such as game played, total points, total rebound, total assist,
point per game, etc. However, the NBA statistics are initially
represented in exact values that are certain and complete, and
therefore, following [21], we have to explicitly add another
dimension to introduce the concept of uncertain dimension
to the dataset. The uncertain dimension is generated follow-
ing the same settings used by [21] in generating synthetic
datasets.

Table 7 briefly summarises the experiment parameters used
in this section for both the synthetic and NBA datasets, and
unless mentioned otherwise, we set the default value of the
threshold value τ to 0.5, the distributions of exact values δK
and continuous ranges δC in a dimension to 50%, and the
number of tested dimensions d to 10 and 17 for the synthetic
and real datasets, respectively. We also set the default size of
the synthetic and real datasets n to 1M and 21,961, respec-
tively. These default values are shown in bold font.

A. SCALABILITY
Fig. 5 and Fig. 6 show the scalability of our algorithm in
terms of number of pairwise comparisons and CPU time,
respectively, when increasing the data size n (objects) from
2k to 20k for real dataset and from 1M to 10M for synthetic
datasets. However, BU and TD fail to terminate on synthetic
datasets with n > 1M (Fig. 6c, Fig. 6d, and Fig. 6e) due to
the massive number of instances generated

( nδu
2

)
. The per-

formance of both BU and TD is clearly worse than the other
algorithms on NBA dataset (Fig. 6a) due to the tremendous
amount of instances

( nδu
2

)
to be processed as compared to

the number of objects (n) processed in the other algorithms.
Therefore, we evaluate the SkyQUD algorithm in comparison
to the USky and BBIS algorithms in terms of their CPU time

FIGURE 5. Effect of n on number of pairwise comparisons.

(Fig. 6) and the number of pairwise comparisons performed
(Fig. 5) in order to process skyline query on dataset with
uncertain dimensions. SkyQUD shows a better performance
as during pairwise comparison between objects, the cost of
dominance testing is different for each group of objects (see
Sect. V-A and Sect. V-B).

In SkyQUD, the cost has been significantly reduced as the
dominance testing that is performed in the exact dominance
test is applied only on nδ objects and does not require any
probability computation. This is identical to the situations of
processing skylines on certain objects. Only nδ objects do
require skyline probability computations. The experiments
clearly indicate that the pruning technique in SkyQUD has
significantly saved the cost of computing skyline probabili-
ties on large data size. Meanwhile in the USky, BU, and TD
algorithms, the dominance tests require the computation of
objects’ probabilities on n and

( nδu
2

)
objects, respectively,

instead of only nδ. The number of comparisons in SkyQUD
is smaller than all the other algorithms due to the imple-
mentation of the partitioning method as the more objects
that have been eliminated in each group, the little it is the
dominance tests that have to be performed on the skyline
candidates. Generally, anti-correlated dataset has the largest
number of pairwise comparisons and the longest CPU time
while correlated dataset has the smallest number of pairwise
comparisons and the fastest CPU time. This too is similar to
the situations of processing skylines on certain objects.

On the other hand, the SkyQUD algorithm managed to out-
perform the BBIS algorithm on all synthetic datasets (Fig. 6)
due to the implementation of an R*-tree index structure in
the BBIS algorithm to index the datasets. Although R*-tree
is well known for its I/O optimal performance (and this has
undoubtedly contributed to the fast performance of BBIS
as the algorithm only needs to perform a single access to
those nodes that may contain skyline objects [28]), however,
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FIGURE 6. Effect of n on CPU time.

the performance of R*-tree is known to deteriorate as the
number of dimensions in the dataset increases higher than
five [4], [28], [35]. Nevertheless, the performance of R*-tree
is not necessarily dependent solely on the number of dimen-
sions, but the size of dataset plays an important role as well.
As demonstrated in Fig. 6b, BBIS managed to outperform
SkyQUD even when the number of dimensions for the NBA
dataset is set to 17. This is due to the size of its dataset
that is quite small (i.e. 21,961), which indicates that the
dataset is sparser than the synthetic datasets. In sparse dataset,
the bounding boxes of each node in the R*-tree have smaller
chance to overlap, thus making it easier to prune groups of
dominated objects based on their bounding boxes.

Also, since the continuous ranges in the uncertain dimen-
sion in all the datasets have been uniformly but randomly
generated, thus, as the data size grew, there are times when
the overlapping of the data becomes unpredictable, which in
turn has affected the performance of an algorithm. If there are
more data that are overlapping, then the algorithm would be
required to perform probability computation on the overlap-
ping data, which consumes time. Conversely, if there are less
overlapping data, then the algorithm can quickly eliminates
dominated data from further computation without having
to perform any probability computation. This situation has
been reflected in Fig. 6b, Fig. 8d, Fig. 8e, Fig. 9a, Fig. 9c,

FIGURE 7. Effect of τ on number of pairwise comparisons.

Fig. 10d, and Fig. 10e, where the USky and BBIS algorithms’
performance on the CPU time is increasing or decreasing
unsteadily. The reason that the SkyQUD algorithm is largely
unaffected by this situation is due to the exact dominance test
that was performed prior to the probability dominance test,
where nδ of data has been quickly compared and pruned out
without having to perform any probability computation.

B. EFFECT OF THRESHOLD
Fig. 7 and Fig. 8 present the effect of increasing the threshold
value τ in terms of number of pairwise comparisons and
CPU time, respectively, when the threshold value is varied
from 0.1 to 1.0 for both synthetic and real datasets. Logically,
the threshold value is used to filter out all objects that have
the probability to be a skyline candidate that is less than τ .
Thus, as the threshold value τ increases, all algorithms exhibit
an increment of speed in their performance as well. Still,
SkyQUD displays a better performance than USky, BU, and
TD, as other than the use of threshold to help filter objects
efficiently, the implementation of the exact dominance test on
nδ objects would ensure a faster filtering time (as discussed
earlier), since skyline queries on certain objects consume
lesser time than probabilistic skyline queries as the traditional
skyline queries do not require any probability calculations.
Therefore, the exact dominance test method is impervious to
the change of the threshold value.

Regarding the number of pairwise comparisons, the results
clearly indicate that SkyQUD performs fewer dominance tests
than USky as the decision of elimination through the dom-
inance tests on nδ of objects with exact value is guaran-
teed, while in USky the decision of elimination through the
dominance tests on n objects is dependent on the threshold
value. On the other hand, the threshold values do not give
any impact on the performance of BBIS as the algorithm does
not implement any probability computations. Nonetheless,
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FIGURE 8. Effect of τ on CPU time.

to be impartial, we still experimented onBBIS and SkyQUD to
compare their performances in terms of CPU time. We set the
parameter for SkyQUD to be 50% for the threshold value and
tested it against BBIS (Fig. 8). The reason being that BBIS
uses the median value for every continuous range, as this
median value typically reflects the average-case scenario.
To conclude, even though the threshold value does not affect
the BBIS algorithm, yet, SkyQUD managed to outperform
BBIS on all datasets.

C. EFFECT OF DATA DISTRIBUTION
The behaviour of SkyQUD and USky illustrated in Fig. 9
demonstrated their performance in terms of number of pair-
wise comparisons. While the behavior of SkyQUD, USky,
BBIS, BU, and TD illustrated in Fig. 10 demonstrated the
algorithms’ performances against one another in terms of
CPU time. Both experiments are conducted and observed
when the distributions of data are varied in such a manner
where the distributions of data are increased from δC = 10%
and δK = 90% to δC = 90% and δK = 10%. Based on
the results observed, both USky and BBIS’s performances are
not greatly affected by the data distributions. Yet, in general,
the performance of USky is not really affected by the distri-
butions of continuous ranges and exact values.

FIGURE 9. Effect of δ on number of pairwise comparisons.

FIGURE 10. Effect of δ on CPU time.

Similarly, because BBIS treat every continuous range as
an exact value, it would mean that BBIS does not need
to compute any object probabilities. Therefore, the exis-
tence of continuous ranges does not give any impact on
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FIGURE 11. Effect of d on number of pairwise comparisons.

BBIS’s performance. Even so with this advantage on the
USky and BBIS sides, SkyQUD succeeded to outperform
both algorithms. This success can be attributed to the imple-
mentation of data partitioning in SkyQUD, and the poor
performance of R*-tree (as elucidated in Sect. III). The imple-
mentation of the probability dominance test has contributed
as well to the fast performance of SkyQUD. This is because,
the probability computations are executed on groups with
uncertain dimensions and only when one object clearly dom-
inates or equals to the other object inK. This has aided in the
speed of SkyQUD as unnecessary probability computations
can be avoided. Contrarily, as both BU and TD perform
skyline processing on instances of objects, therefore, all data
with continuous range, that is δ = δC, will be used to generate
the corresponding instances. This would mean the higher the
δC generated, the higher the number of instances ( nδu2 ), which
in turn reduces the speed of BU and TD, and thus, greatly
affected their performance.

D. EFFECT OF DIMENSIONALITY
This experiment gives the effect of varying the number of
dimensions in SkyQUD, USky, BBIS, BU, and TD as it is
well known that skyline query is highly influenced by the
number of dimensions. Fig. 11 and Fig. 12 show the number
of pairwise comparisons and the CPU time of SkyQUD,
USky, and BBIS as the number of dimensions is varied from
3 to 20 on 1M objects for synthetic datasets, and from 6 to
17 on 21,961 objects for NBA dataset. All three algorithms
follow similar trends where the CPU time and the number
of pairwise comparisons increase with the increase of the
number of dimensions. This is due to the increase in the cost
of dominance testing between objects, as when the number
of dimensions increases the sparser the datasets will be, and
lesser chance for objects to overlap which cause in a lot of
incomparable objects.

FIGURE 12. Effect of d on CPU time.

Conversely, in terms of speed, BBIS outperforms SkyQUD
when the number of dimensions is below than 6. However,
as it has been proven that R*-tree could not index data with
more than five dimensions adequately [4], [28], [35], it has
indirectly diminished the performance of BBIS as the number
of dimensions increased from 6 to 20. The deteriorating
performance is because the higher the number of dimensions,
the more regions are overlapping in the directory. This occur-
rencewill affect the query performance asmultiple paths have
to be traversed even for a simple search query [4], [28], [35].
Nevertheless, it must be noted that this issue is not a specific
problem that is faced by an R*-tree index structure but then
is a general problem in indexing high-dimensional data [4].
On the other hand, BU and TD can perform faster when
the dimensionality increases. The excellent performance is
proven true as when the dimensionality increases, the dataset
becomes sparser. In turn, it has decreased the averaged num-
ber of possible dominating objects for each object. Neverthe-
less, the performance ofBU and TD still could not outperform
the other algorithms in comparison. This scenario is illus-
trated in Fig. 12a.

VII. CONCLUSION
Data uncertainty generally occurs in web data extrac-
tions, autonomous web databases, decision-making system,
and recommendation system. In these database systems,
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uncertainties may occur in one or more dimensions and are
unavoidable, hence applying the conventional skyline tech-
nique is impractical and can lead to prohibitive processing
cost and inaccurate results. Therefore, we have defined the
concept of uncertain dimensions and proposed an efficient
algorithm, SkyQUD, to answer skyline query on data with
uncertain dimensions. When data is represented as contin-
uous ranges, the result of the skyline query is bound to be
probabilistic as each object is associated with a probability
value of it being a query answer. Therefore, we have designed
the algorithm to be able to accept a threshold value that
is specified by users, in which each object must exceed.
We presented the SkyQUD algorithm in a three-phase con-
text, namely: exact dominance test, probability dominance
test, and mismatch probability dominance test, which fol-
lows the filter-refine approach. These phases are preceded
with a partitioning process to group the data into distinctive
groups. These phases compute each object’s probability for
being a skyline object by avoiding unnecessary probability
computations. We have conducted extensive experiments and
exhibited the results to demonstrate the efficiency of the
SkyQUD algorithm to tolerate skyline queries on data with
uncertain dimensions.
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