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ABSTRACT Software obfuscation techniques are increasingly being used to prevent attackers from exploit-
ing security flaws and launching successful attacks.With research on software obfuscation techniques rapidly
growing, many software obfuscation techniques with varying quality and strength have been proposed
in the literature. However, the literature on obfuscation techniques has not yet been coherently collated
and reviewed. This research paper aims to present an overview of state-of-the-art software obfuscation
techniques, focusing on quality and strength. A systematic analysis and synthesis of literature published
between 2010 and April 2021 has been performed to identify the common measures to quantify obfuscation
and their measures, the publication venue, and the home country of the researchers. We have identified the
obfuscation quality attributes, such as potency, resilience, cost, stealth, and similarity, that are themost widely
used metrics to evaluate the quality of obfuscation techniques. In addition, different measures have been used
to quantify these qualities, such as complexity (to measure potency), human effort (to measure resilience),
efficiency (to estimate cost), and multiclass performance metrics, distance measures, and matching method
(to quantify similarity). These measures were then categorized into sub-measures. The literature lacks
research in the following two areas: empirical research using a case study strategy, i.e., real-world datasets,
and measurements of obfuscation stealth. Researchers did not address stealth as clearly as they addressed
potency, cost, and similarity.

INDEX TERMS Software obfuscation, obfuscation quality, obfuscation measure, malware detection,
systematic literature review.

I. INTRODUCTION
Software obfuscation is a technique that obscures the struc-
ture and/or behavior of software code without impacting its
expected functionality such that the code is rendered hard
to understand, analyze, or reverse engineer [1], [2]. Soft-
ware obfuscation techniques are developed for bothmalicious
(e.g., evading automatic static code inspection) and benign
(e.g., protecting code privacy or intellectual property) pur-
poses [3]. For example, Malware authors use software obfus-
cation to evade detection and thwart inspection and removal.
Although there is no guarantee that the obfuscated code will
be completely immune to reverse engineering, obfuscation
increases the effort or cost required to learn the obfuscated
code’s functionality [1], [4].
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Various obfuscation methods and techniques have been
proposed in the exiting works, ranging from syntactic tech-
niques (e.g., inserting opaque predicates) to semantics-based
techniques (e.g., complicating control flows). These obfus-
cation techniques differ in quality and strength. Despite this,
there is a lack ofmeasurement in this field to report the quality
and strength of the proposed techniques [4], and it remains
unclear how ‘‘good’’ these techniques are [5]. Measuring
the quality of obfuscation techniques is not only useful but
also necessary because the obfuscator cannot tell whether the
obfuscation is effective if there is no measure of its efficacy.
In addition, the developers can improve obfuscation quality
by increasing the number and type of obfuscation techniques
they use. Therefore, measurement is required for at least eval-
uating and controlling the obfuscation because, as DeMarco’s
rule states, ‘‘you can neither predict nor control what you
cannot measure’’ [6]. In such a context, measurement is
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concerned with quantifying an attribute of an obfuscated
code. It is nothing more than a number or symbol that is
assigned to the obfuscated code to characterize its quality [1].
From the literature, the most common obfuscation quality
attributes are cost, resilience, potency, stealth, and similarity.
Although such attributes go back to the 1990s, researchers
have shown a genuine interest in this area and become com-
petent to discuss obfuscation quality over the last ten years.
This interest stems from the fact that the amount of malicious
software has increased over the last few years, as approxi-
mately 1 million malwares are created daily [7]. This issue
has become worse with the adoption of pervasive computing
and as technology has shifted toward an Internet of Things.

This review article focuses on the measures used to quan-
tify obfuscation quality in the past decade. To this end,
we conduct this systematic literature review (SLR) after ana-
lyzing exhaustively relevant studies. The paper makes the
following main contributions:
• We perform this SLR according to the key features of
measuring software obfuscation quality.

• We provide a systematic overview of the current studies
on the area under study.

• We divide the quality attributes of software obfuscation
into five categories: potency, resilience, cost, stealth,
and similarity. Thereafter, we classify the exiting mea-
sures used to quantify the obfuscation quality into 44
sub-measures.

• We make the discussions and provide directions for
further studies in measuring obfuscation strength.

The rest of the paper is structured as follows.
Section 2 briefly describes the existing work, and the sys-
tematic review itself is presented in Section 3. The findings
are discussed in Section 4. Section 5 discusses some threats
to the study’s validity. We conclude the paper in Section 6.

II. EXISTING SYSTEMATIC REVIEWS
Although useful, existing work has not put significant focus
on obfuscation quality and strength measurement. In the fol-
lowing, we will discuss several review articles on obfuscation
transformation techniques.

A research by Humayun et al. [8] was conducted to
evaluate the most common cyber security threats based on
78 primary studies. The results showed that as the current
security approaches target security generally, more empirical
validation and actual implementation is needed for the solu-
tions presented in these studies. Additionally, their findings
revealed that most of the research focused on a small number
of ordinary flaws, for instance, social engineering, denial-
of-service attacks, and malware. Novak et al. [9] presented
an extensive SLR in academia to detect the similarity of
source-code. They looked at 150 primary studies from var-
ious angles, including automated tools for detection, perfor-
mance metrics, methods for obfuscation, deployed datasets,
and the types of algorithm used. The multiclass metrics
were the most common metrics for assessing system quality
and comparing similarity. Khoshavi et al. [10] conducted

a survey in stack cache memory modules to present a tax-
onomy of attack vectors, most of which were side-channel
attack points. The authors discussed side-channel attacks,
including how they work and how obfuscation techniques
can help to prevent them. The findings included novel
variations of side-channel attacks to perpetrate attacks on
systems, as well as countermeasures against the attacks.
Asadoorian et al. [11] outlined the best practices for security
throughout each development stage in the software develop-
ment life cycle (SDLC). He suggested using the following
two types of obfuscation techniques in the coding stage:
branch insertion/opaque predicates and obfuscation with ran-
dom numbers. Hataba and El-Mahdy [12] briefly explained
the well-known obfuscation techniques that use various trans-
formations (e.g., layout, control-flow, data, and preventive
transformations) and how to implement them. Addition-
ally, they discussed how to evaluate these techniques using
a set of reasonable criteria, including potency, resilience,
and cost.

Hosseinzadeh et al. [4] conducted an SLR of diversifi-
cation/obfuscation techniques. They collected 357 relevant
articles that had been published between 1993 and 2017.
There are several techniques to obfuscate a piece of code,
each of which is used at various stages of the SDLC and
targets different sections of the code. Research gaps included
the following: (a) different execution environments still need
to benefit from obfuscation techniques; and (b) measure-
ments of the effectiveness of obfuscation. Pan et al. [13] per-
formed an SLR to review Android malware detection using
a static analysis. They gathered 98 studies published from
2014 to 2020. The static analysis categories included Android
characteristics, opcodes, code graphs, and symbolic execu-
tion. They concluded that, in terms of detection, the neu-
ral network approach outperformed the non-neural network
approach. Furthermore, there is still a need to improve identi-
fication through the use of novel techniques and the establish-
ment of a single framework for performance evaluation. In the
study by Wang et al. [14], a SLR was used to identify mali-
cious apps by analyzing the behaviors of apps using different
features. The authors examined the extracted features, the
feature subset selection techniques, the detection approaches,
and the scale of performance evaluation. With a wide use of
code obfuscation, extracting useful features from the code
using a static analysis is quite difficult. In contrast, when
it comes to feature extraction of malware apps, a dynamic
analysis outperforms a static analysis. Lu [15] reviewed 14
cybersecurity papers published between 2008 and 2017. The
authors divided the articles into individual, employee, and
organizational categories. These authors painted a picture of
the state of cybersecurity and, using the R Project, created an
integrative framework that could potentially text-mine end-
users’ security behaviors and decision-making processes in
the event of a security breach. Balakrishnan and Schulze [16]
reviewed code obfuscation techniques that could be applied
at the following different abstraction levels: data abstraction,
procedural abstraction, data types, and control-flow.
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Following the discussion above, measuring software
obfuscation quality have not attracted the attention of suffi-
cient researchers. Our work aims to bridge the gap by provid-
ing researchers with an overview of the existing obfuscation
quality measures that are commonly used to quantify the
quality of obfuscation techniques.

III. RESEARCH METHODOLOGY
Recently, the term ‘‘systematic literature review’’ has
appeared in the title of various information security research
papers. It is used in parallel with terms, like ‘‘systematic
mapping study’’ and ‘‘systematic review’’ (for examples, see
[4], [8], [9]). A systematic literature review is used for eval-
uating, identifying, synthesizing, and interpreting a specific
research question or subject [17]. As a result, a system-
atic literature review can identify any gaps in the existing
works and suggests areas for further research. In our study,
we adopted the suggested guidelines in order to carry out
a systematic analysis in [17]–[19]. The study is unbiased
and repeatable by other researchers since we follow specific
guidelines/protocols [20], which differentiates the systematic
review studies from other types of reviews.

The protocol of systematic literature review has five stages.
Figure 1 depicts the five steps that were followed here.

FIGURE 1. Stages of our systematic literature review.

A. QUESTION FORMULATION
To narrow the research target, our systematic review
addresses the six key research questions (RQs). Table 1 dis-
plays the (RQs) along with their motivations.

B. SEARCH STRATEGY
The keywords used to answer the above RQs were as follows:
software, code, program, obfuscation, obfuscate, obfuscator,
measurement, measure, metrics, and metric. By taking these
keywords and combining them with the ‘‘AND’’ and ‘‘OR’’

TABLE 1. RQs with their motivations.

logical connectors, we used the following search command
to find relevant articles from the academic libraries under
consideration:

(software OR program OR code) AND
(obfuscation OR obfuscate OR obfuscator) AND
(measurement OR measure OR metric OR metrics)

C. SOURCE SELECTION
By using these strings, we can find studies on obfuscation
measurement. The above search strings did not aim to search
for certain measures applied at a specific level.

The five sources with which our systematic literature
review was carried out are SpringerLink, IEEE Explore, Sci-
enceDirect, Wiley Online Library and ACM Digital Library.
All the sources include the important journals and confer-
ences in the field, in which significant proposals for obfusca-
tion metrics are presented. It is likely that the primary studies
would then include the number of works presented in these
sources.

D. STUDIES SELECTION
Our systematic literature review procedure will be iterative
and incremental. It is iterative because the systematic review
execution is conducted on one search source first, and then
on another one. It is incremental; the systematic review
document grows with each iteration until it becomes the
definitive one, so that its implementation originates from an
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FIGURE 2. The execution of the systematic literature review.

initial source to more sources until the entire review has been
performed. In the inclusion criterion, we included studies
based on review of the title, abstract, and keywords from
the articles acquired in the search. Moreover, the systematic
review included studies that were written in English and pub-
lished between 2010 and April 2021. According to [8], most
cyber security threats and crimes were reported after 2007.

We applied the following exclusion criteria to the considered
abstracts/titles:
• To exclude any paper that does not present an empir-
ical study. we classified the empirical studies to three
research methodologies, experiment, case study, and
simulation. Simulation methodology was mostly used in
the primary studies for validation.
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TABLE 2. Distribution of studies after applying the inclusion and exclusion criteria (2010–April 2021).

• To exclude any paper that does not discuss measuring
the obfuscation quality, as this is our area of study.

• To exclude MS/PhD theses, posters, technical reports,
and short papers (with less than three pages).

• To exclude the repeated studies.
If we were unsure about a paper after reading its title and

abstract, we read the whole the paper. The procedure for
retrieving data for the selected studies is shown in Figure 2.
Using this procedure, 302 studies were found; 67 of those
were selected as primary studies based on the inclusion and
exclusion requirements. The specifics of each iteration are
shown in Table 2, and possible references within the chosen
studies were not sought for.

E. DATA EXTRACTION
As shown in Figure 2, once the relevant studies were selected,
the needed information was extracted. An information extrac-
tion form (available in Appendix A) was designed to retrieve
information from the primary studies. It was reviewed and
agreed by all three authors. Besides the data about the selected
paper (e.g., title, authors, publication year, and publication
country), the form recorded data on the quality assessment of
the article such the two main types of threats to the validity:
internal validity and external validity.1 Each threat was scored
‘‘yes’’ or ‘‘no’’ depending on whether the study explicitly
explored the possibility of threats (internal or external valid-
ity). Most of the primary studies (59 out of 67) did not
mention the internal and external validity, i.e., did not score
‘‘yes’’ for both attributes.

F. QUALITY ASSESSMENT
We used the strategy described in Kitchenham and Brere-
ton [17], Kitchenham et al. [19] to evaluate the quality of the
papers. The same approach has also been used in several SLR
studies [98]. Specifically, to ensure that the studies included
contribute significantly to the SLR, we developed a checklist

1The internal validity is the extent that the independent variable affects
causality. The external validity is a condition that limits the ability to gener-
alize the study’s results [21].

criterion based on the guideline proposed in Kitchenham and
Brereton [17], Kitchenham et al. [19]. The checklist criterion
consists of five quality appraisal questions for judging the
quality of the studies as shown in the table (Appendix A).
Besides the information extraction form (available in the
appendix) was reviewed and agreed by all three authors,
we assessed the quality of each primary study by means of
the attributes: internal validity and external validity. Each
was scored ‘yes’ or ‘no’ depending upon whether the study
explored explicitly the possibility of threats (internal or exter-
nal validity). In our study, most of the primary studies (59 out
of 67) did not score ‘yes’ for both threats. This was clearly
mentioned in the previous version.

IV. RESULTS AND DISCUSSION
First, we needed to find the most recent research trends in the
field of measuring obfuscation strength in the security com-
munity. The studies distribution by year is shown in Figure 3.

FIGURE 3. Publication trends for the measurement of obfuscation quality.

There is a notable increasing number of studies that deal
with the subject. It shows that the number of papers related to
this area increased after 2010 (when most cyber issues were
reported [8]). The number of studies in 2019 takes the largest
proportion. The little downward trends in 2020 comes from
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the fact that not all empirical studies conducted in 2020 were
published during this review article.

A. ANALYSIS OF THE PUBLICATION VENUE OF (RQ1)
The first aspect of this article focuses on addressing RQ1,
i.e., the source place of selected publications that take an
active part in the area of obfuscation measurement. For this
analysis, we chose five digital libraries as the main venues,
as described in Table 2. The selected studies were published
in three types of publications, namely conferences, journals,
and workshops/symposiums. Table 3 presents the distribution
of the primary articles based on the source type. The propor-
tion of research that have been conducted in conferences and
journals was (c. 49, 73%), while (c. 18, 27%) was published
in both workshops and symposiums.

The results in Table 3 show that (c. 58, 87%) of primary
papers were retrieved from IEEE and ACM libraries. The
number of papers in both libraries is almost the same (c. 29,
43%). In contrast, the IEEE library contains more conference
papers than the ACM library (17 versus 8). In addition, all
workshop papers and symposium papers were extracted from
ACM and IEEE libraries except one paper from Springer.
Like in previous systematic review studies [8], [20], the con-
tribution of the three other libraries -Springer, Wiley Online,
and ScienceDirect- is smaller than that of IEEE and ACM
libraries. In these three libraries, the primary studies relevant
to the obfuscation measurement were almost published in
journals. Additionally, the frequency of papers in ScienceDi-
rect was the highest, with (c. 5, 7%) of the studies. Springer
and Wiley Online scored the second and third place with
(c. 3, 4%) and (1, 1%), respectively.

TABLE 3. Statistics based on the venue and source types.

From Table 3, most the articles retrieved from IEEE and
ACM libraries are conference publications. On the other
hand, all the primary studies extracted from the other three
libraries are almost journal papers. This emphasizes that the
main venues for conference papers in this research are IEEE
and ACM. Table 4 identifies the key journals and confer-
ences/workshops that publish papers on measuring obfusca-
tion quality. It shows the most used repository with two or
more frequencies. The results show that two venues, namely
Journal of Computers & Security and the International Work-
shop on Software Protection, have published more publica-
tions in the present domain area of obfuscation measurement
with a frequency of six and three, respectively.

TABLE 4. Venues with two studies or more.

B. ANALYSIS BASED ON ACTIVE COUNTRIES (RQ2)
We used the author’s affiliation to rank the active countries
regarding research on the measurement of obfuscation qual-
ity, i.e., to answer RQ2. The author’s affiliation was used.
In case of more than one author, the first author’s country was
selected. Figure 4 shows the ten authors’ affiliation countries,
as described in the primary studies. The results (for RQ2)
indicate that the four most relevant countries for the primary
studies, United States of America (USA), Germany, South
Korea, and Singapore contributed (c. 9, 13%, 8, 12%, and 6,
9%, and 5, 7%, respectively). They were followed by authors
from China, Australia, and Iran, who contributed (c. 4, 6%)
each. Japanese and Indian researchers came after that with a
(c. 3, 4%) share. The remaining studies were conducted in
different countries with a frequency of between one and two
studies, as shown in Figure 4. In contrast, as a continent, Asia
leads the statistics with a (c. 30, 45%) share, followed by the
United Kingdom (UK) and Europe, and USA and Canada,
who contributed (c. 19, 28%) and (c. 10, 15%), respectively.
Authors from Africa and Australia were the least associated
continents for the selected articles with a (c. 4, 6%) share
each. These results are shown in Figure 5. Over 60% of
all affiliations are accounted by seven countries, therefore,
the research is focused on a specific number of regions. This
illustrates the need for more research on software obfuscation
from different countries to investigate the effect of sociocul-
tural differences.

TABLE 5. Study strategy used.

C. ANALYSIS BASED ON EMPIRICAL STRATEGY AND
DATASET (RQ3 & RQ3.1)
As the study is focused on empirical studies, the studies
that conducted an empirical validation of the results were
chosen. The results in Table 5 (for RQ3) show the distri-
bution of articles based on the used research strategy and
that experimentation was the most common strategy with
(c. 51, 75%) of the studies using this strategy. The second
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FIGURE 4. Country of publication.

TABLE 6. Study strategy used.

most commonmethodology was simulation with (c. 16, 24%)
of studies, and the least common strategy was a case study,
with (c. 1, 1%) share. The total frequency is 68 studies
because two different strategies, namely experimentation and
simulation, were used in a single study [63]. Table 5 shows
that all papers used experimentation or simulation method-
ologies except for one paper [27] that used a case study
methodology. An explanation for the lack of case studies
might be that the researcher cannot make meaningful gener-
alizations from this methodology type because it is believed
that it does not provide sufficient data to allow general-
izability. Moreover, working with a case study from the
real-world industry is a popular issue in internet technology
research [84] due to confidentiality issues, as details about the
participant’s organization may be published, i.e., the obfus-
cation techniques used by their organization. Therefore, this
methodology type would generally be high in external valid-
ity [21]. Table 6 shows the main sources of the dataset that
have been adopted by researchers (RQ3.1). Column one of
Table 6 lists the dataset source categories that were iden-
tified, column two and three show the frequency and per-
centage of as the dataset source category appeared in the

FIGURE 5. Continent of publication.

primary articles, respectively. Herein, the key sources that
have been identified are six, in-the-wild, manually written
programs, open-source software, benchmark suite, historical
data/previous projects, and web pages. The most-widely used
dataset source is in-the-wild with a (c. 33, 49%) share, fol-
lowed by manually written programs, open-source software,
benchmark suites, and historical data/previous projects, with
(c. 10, 15%, 9, 13%, 8, 12%, and 5, 7%, respectively). The
web page-based dataset source was the least widely used
source in the primary studies of this systematic literature
review with a (c. 3, 4%) share. The last column lists examples
of the corresponding source category with the study number.
Again, the total frequency is 68 studies because two different
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dataset sources, in-the-wild and historical data/previous
projects, were used in a single study [77]. The dataset ‘‘in-the-
wild’’ was the most commonly used dataset in the selected
studies. It is continuously updated and maintained [85];
it contains many samples and diverse categories. Google
Play Store,2 VX Heavens,3 F-Droid,4 and VirusTotal5 are
examples of such a dataset. Most open-source software
was downloaded from SourceForge6 and GitHub7 reposito-
ries. Most manually written programs that were used as a
dataset were written using C language [22], [23], [24], [26],
[28]–[30], [44], [47]–[49], [50]. C, Java, and Python
are the most common programming languages. The pro-
gram to generate prime numbers was used in three
studies [23], [39], [44].

D. CATEGORIZATION OF QUALITY ATTRIBUTES OF
OBFUSCATION (RQ4)
Table 7 shows the main categories of measurements of obfus-
cation strength (RQ4) that were found from our review article.
Column one of Table 7 lists the quality attributes that were
found in our study. Column two defines the attribute and its
key features, column three shows the corresponding primary
study number, and columns four and five show the frequency
and percentage of attribute. Compare to the primary studies,
the total frequency is more (i.e., 67) because one primary
study measured more than one single quality attribute. The
key quality attributes that were identified in our study are
as follows: potency, resilience, cost, stealth, and similarity.
The most widely used obfuscation attribute in the systematic
literature review is similarity c. 36, 54%, followed by cost
and potency. The number of studies that measured these
two attributes is almost the same (c. 21, 31% and 20, 30%,
respectively). The least widely used quality attributes in our
systematic literature review are resilience and stealth (c. 9,
13% and 8, 12%, respectively).

Although software obfuscation was first developed at the
end of 1990 by Collberg et al. [1], [90], potency, resilience,
cost, and stealth remain the most used obfuscation quality
attributes, despite the growing number of security breaches
in the last decade.

Another observation is that over half of the primary studies
focus on similar attributes. The reason for this high num-
ber might come from a serious concern regarding source
code plagiarism in academia, i.e., to prevent any act of
copying a student’s source code with no formal approval.
At least once, 72.5 percent of university students confessed
to cheating [91]. Several worldwide academic institutes then
developed source code similarity detection tools, such as
Stanford University in USA, Karlsruhe Institute of Tech-
nology in Germany, the University of Sydney in Australia,

2https://play.google.com/store
3https://vx-underground.org/archive/VxHeaven/index.html
4https://www.f-droid.org
5https://www.virustotal.com/gui
6https://sourceforge.net
7https://github.com

TABLE 7. Obfuscation quality attributes categorization.

and the Vrije Universiteit Amsterdam in Netherlands, which
developed MOSS,8 JPlag,9 Sherlock,10 and SIM,11 respec-
tively. Several authors relied on such tools to identifymalware
programs from benign programs or the malware variants
from known variants [30], [42], [7], [47], [43]. Most of the
similarity approaches in these studies treat the program as a
sequence of bytes. They typically analyze the source code
structure, such as the Control Flow Graph (CFG), and con-
trast it to another source code to find similarities between
the two codes. Although existing similarity-based studies
generally operate on text strings [59], [82], some studies
used more sophisticated methods to handle tokens instead of
text [36], [57], [82]. Meanwhile, other similarity approaches
tried to detect semantic similarity in source code using a
dependency graph [3], [60]. Others attempted to eliminate
a large portion of the code, which is less relevant to a
similarity comparison [30]. However, complex obfuscation
techniques remain difficult to handle [11]. The existing sim-
ilarity approaches differ in their effectiveness at identifying
the obfuscated code generated by obfuscation techniques,
which is the similarity score between the non-obfuscated
code and its obfuscated/plagiarized version. For this, most of
these studies used performance metrics as a sub-measure to
estimate the similarity attribute (RQ5 will be answered in the
next section).

8https://theory.stanford.edu/∼aiken/moss
9https://jplag.ipd.kit.edu/
10https://github.com/diogocabral/sherlock
11https://dickgrune.com/Programs/similarity_tester/
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TABLE 8. Obfuscation quality measures categorization.

E. MEASURE-BASED ANALYSIS (RQ5)
The fifth research question (RQ5) was framed to find out
the measures of obfuscation quality attributes. As shown
in Table 8, the widely used measures to quantify the obfusca-
tion potency, resilience, cost, and similarity are complexity,

human effort, efficiency, and multiclass performance met-
rics, distance measures, and matching method, respectively.
Because eachmeasure could be used to control the considered
quality attribute at different levels, we have classified them
into 44 different sub-measures, as shown in column three.
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FIGURE 6. Measures and their sub-measures of obfuscation quality based on their frequency of occurrence.

Column four lists the primary study numbers, while the fre-
quency and percentage of occurrence for each sub-measure
as they appeared in the primary studies are shown in the
last two columns (columns five and six). This frequency is
illustrated in Figure 6. According to our extracted data, some
researchers used more than one measure to quantify a single
quality attribute; for example, study [26] used four com-
plexity sub-measures to quantify the potency, and study [49]
used two different sub-measures of human efforts to estimate
the resilience. Therefore, the total frequency is 84 studies
(i.e., greater than the number of primary studies) because

of using more than one sub-measure by a single author
or study.

According to our literature review, the McCabe cyclomatic
number12 and program object-oriented (OO) metrics13 are
the most common two measures for complexity evaluation,
i.e., to quantify the obfuscation potency (c. 7, 10.4% and

12The cyclomatic number is computed for the program’s CFG, as e-n+2,
the CFG has e edges and n nodes. It was defined byMcCabe [92]. Although it
was originally proposed for procedural programming languages, its adoption
in OO languages has often been discussed [25].

13The OO metrics were proposed by Chidamber and Kemerer [93].
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TABLE 9. Data Extraction Form.

4, 6%, respectively). Obfuscation tends to operate on the
opposite side of the refactoring principle [94]. While refac-
toring generally aims to decrease the code complexity and
coupling,14 the obfuscators should propose techniques to
increase both metrics (complexity and coupling). For this,
different obfuscation techniques take opposite mechanisms
with code to make it difficult to analyze. Those techniques
then decrease the two metrics, most likely with the ultimate
goal of in any other way obstructing interpretation. Class
Splitter15 is an example of such techniques [25].

14Coupling is the degree of inter-dependence between modules. In con-
trast, cohesion is the degree of intra-dependence in a single module. From a
software quality perspective, low coupling and high cohesion are two signs
of a good design [95].

15Class Splitter splits the non-obfuscated classes into obfuscated ones by
inserting dummy classes. The rationale for this idea was the class complexity
increases with depth of its inheritance tree [1], [96]

Time and space overheads are the two most common
measures for efficiency evaluation, i.e., to estimate the obfus-
cation cost (c. 16, 23.9% and 6, 9%, respectively). In con-
trast, six sub-measures are used to evaluate human effort,
i.e., to quantify the obfuscation resilience (c. 1, 1.5%, each).
A common factor among the human effort sub-measure is
the effort by both the programmer/reverse engineering expert
and attacker. However, the real effort required for reverse
engineering is not easy to measure because of the varying
experience and skills of the people involved (programmer or
attacker). It may take some attackers longer than others to
analyze the same code. In the case of similarity attributes,
three different sets of measures were used in the evaluation,
as follows:

• Distance measures (c. 23, 34.3%). Most of these
measures were entropy-based measures (e.g., Shannon
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entropy), followed by a cosine measure and longest
common subsequence.

• Multiclass performance metrics (c. 22, 32.8%), includ-
ing precision, recall, and F1-score.

• Matching algorithms (c. 3, 4.5%), such as string
matching.

The remaining sub-measures and their frequency are shown
in Table 8 and Figure 6. The reader is assumed to be familiar
with these measures. Interested readers can consult the rele-
vant studies for further information. Although several of the
extracted studies [3], [24], [27], [40], [57], [58], [71], [73]
mentioned the stealth quality attribute, the authors were not
clear on how to measure it. While one study considered the
quality of input to be an indicator of stealth quality [40], two
other studies used multiclass performance metrics to measure
stealth [58], [71].

The last observation about the measures is their granularity
level. There are three granularity levels [95], as follows:

• Fine grain: the measure works at variable and statement
levels.

• Medium grain: the measure works at function or method
levels.

• Coarse grain: the measure works at the program level.

Herein, the results indicate that most of the measures used
to quantify obfuscation quality attributes are medium and
coarse-grained, with c. 24, 38% and 26, 41%, respectively.
This is practical for large programs that use higher-level struc-
tures. Such programs were used as the input for the obfus-
cation technique in most of the studies; the finely grained
measure is unsuitable to quantify attributes in large sys-
tems. However, the fine-grained measure may be appropriate
when the dataset source is ‘‘manually written programs’’ (see
Table 6).

F. RESEARCH DIRECTIONS (RQ6)
From this paper, there are gaps in the current literature that
need more research. Such research will improve the obfusca-
tion strength and quality. There are four directions for further
research (i.e., answering to RQ6):
• Developing a standard measure that can estimate or
quantify multiple qualities.

• According to Table 8 and Figure 6, which show the
current measures along with their frequency of occur-
rence, there is a lack of measures to quantify the obfus-
cation stealth, although there some studies claimed that
they measured stealth using very general measures. The
researchers were not clear in addressing this issue com-
pared to that with other qualities. A possible reason
might be that a stealthy code in one program does not
mean that it can be stealthy in another program; stealth
is highly context-sensitive.

• There is a need to investigate obfuscation quality
through performing case studies from the industry,
i.e., using real-world datasets. As shown in Table 5, there
is a lack of this type of empirical strategy compared

to experimentations and simulations, which use public
datasets and open-source code.

• There is little research (3 out of 67 studies [23],
[26], [39]) that addresses the obfuscation cost issues
when adopting the parallel processing mechanism. The
need for this research comes from not using OO lan-
guages. In such a case, parallel lines can be drawn with
data structures; for instance, measuring data structures
used by multiple functions [26].

V. THREATS TO VALIDITY AND LIMITATIONS
Like any research work, there are some limitations that may
affect the results. According to [17], the quality assessment
of publication in systematic reviews is still an issue. The fol-
lowing are two limitations related to this systematic literature
review:
• The extraction process may have resulted in some inac-
curacies or bias. Although the chosen databases cover
the relevant publication in the obfuscation technique
domain, some other studies have been not included
because they are published in other databases.

• Missing out some keywords in the search stringmight be
another threat. Although all the relevant keywords have
been covered, there is still a possibility that some were
missed.

VI. CONCLUSION
In this study, the state-of-the-art measures for quantifying
software obfuscation quality according to several attributes
were summarized. Systematic literature review has been per-
formed using 67 studies from 2010 to April 2021. After
analyzing each publication in detail, we found the follow-
ing: (1) the contribution of the IEEE and ACM libraries
is greater than that of the other libraries in the area of
research, and two venues, Journal of Computers & Secu-
rity and IEEE/ACM International Workshop on Software
Protection, were the most common publication venues; (2)
researchers from the USA, Germany, South Korea, and Sin-
gapore were the most active; (3) the most common empir-
ical strategy was experimentation followed by simulation,
and in-the-wild datasets (e.g., Google Play) were the most
widely used datasets, followed by manually written pro-
grams (e.g. programming assignments at a university, such
as prime number generation and matrix multiplication); (4)
the five key obfuscation quality attributes that were the most
discussed in the primary studies were potency, resilience,
cost, stealth, and similarity, and similarity, followed by
cost and potency, was the most cited obfuscation quality
attributes; and (5) the most widely used measure to quantify
the potency, resilience, cost, and similarity were complexity,
human effort, efficiency, and the multiclass performancemet-
rics, distance measures, and matching methods, respectively.
Because each measure could be understood from different
angles, they were classified into 44 sub-measures, as shown
in Table 8. The McCabe cyclomatic number and OO metrics
are the key sub-measures used to estimate the complexity
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(i.e., potency), while time and space overheads were the
key sub-measures that were found to quantify the efficiency
(i.e., cost). The sub-measures that were used to evaluate the
human effort were based on the time spent by the program-
mer and attacker. Moreover, three different sets of measures
were used to evaluate the similarity, distance measures (e.g.,
entropy-basedmeasures), matching algorithms (e.g., function
naming matching) and multiclass performance metrics like
F1-score, precision, and recall.

APPENDIX A
See Table 9.
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