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ABSTRACT Detecting botnet threats has been an ongoing research endeavor. Machine Learning (ML)
techniques have been widely used for botnet detection with flow-based features. The prime challenges
with flow-based features are that they have high computational overhead and do not fully capture network
communication patterns. Recently, graph-based ML has witnessed a dramatic increase in attention. In com-
munication networks, graph data offers insights information about communication patterns between hosts.
In this paper, we propose a graph-basedMLmodel for botnet detection that first considers the significance of
graph features before developing a generalized model for detecting botnets based on the selected important
features.We explore different feature sets selected using five filter-based feature evaluationmeasures derived
from various theories such as consistency, correlation, and information. Two heterogeneous botnet datasets,
CTU-13 and IoT-23, were used to evaluate the effectiveness of the proposed graph-based botnet detection
with several supervised ML algorithms. Experiment results show that using features reduces training time
and model complexity and provides high bots detection rate. Our proposed detection model detects different
types of botnet families and exhibits robustness to zero-day attacks. Compared to state-of-the-art techniques
flow-, and graph-based, our approach achieves higher precision and shows competitive accuracy.

INDEX TERMS Botnet detection, cybersecurity, feature selection, machine learning.

I. INTRODUCTION
In recent years, there has been an increase in demand for
cybersecurity and defense against various forms of cyber-
attacks. Cybersecurity has recently attracted a lot of atten-
tion due to the popularity of the Internet of Things (IoT),
the exponential development of computer networks, and the
large number of applications used by individuals or groups
for personal or industrial purposes.

Malicious software (Malware) attacks are progressively
increasing. According to a recent 2021 report [1], about
350,000 new malware and potentially unwanted software are
registered daily by the AV-TEST Institute. The extensive
availability of malware can create botnets, enabling cyber-
criminals to exploit the collective bandwidth of thousands,
if not millions, of infected devices to disrupt the day-to-day
activities of governments and businesses. The number of
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newly discovered botnets increased by 24% in the first quarter
of 2021 [2].

BOTNET is a network of infected computers (also known
as bots or zombies) controlled by a ‘‘botmaster.’’ Botnets
are typically used to carry out intrusion attacks such as dis-
tributed denial-of-service (DDoS) attacks, click fraud (CF),
flooding, and spamming. By combining the power of sev-
eral infected bots, botmasters can exponentially increase the
impact of malicious activities [3], [4]. Botmaster transmits
commands to bots through either centralized command-
and-control (C&C) structures, e.g., Mirai (2016) [5] or decen-
tralized peer-to-peer (P2P) structures, e.g., Hajime (2016) [6],
FritzFrog (2020) [7].

Botnet detection is a critical challenge due to the global
scale of botnet-assisted attacks. Despite concerted efforts
reported in the literature to detect the malicious activities
of botnets, the diversity of botnet structures and protocols
as attackers are continuously devising new intelligent ways
to disrupt networks through botnet-assisted attacks makes
botnet detection a major challenge in the cybersecurity
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domain [8]. Although numerous solutions, such as encryp-
tion and firewalls, are intended to handle Internet-based
cyber-attacks, an intrusion detection system (IDS) is more
effective at protecting a computer network from external
threats. As a result, the primary goal of an IDS is to detect
and prevent various types of malicious network commu-
nications and computer device usage [9]. IDS detects and
identifies malicious cyber-attacks through monitoring and
analyzing the normal daily activities in a network. An IDS
capable of identifying botnets in the network and various
botnet-assisted attacks is essential for improving a system’s
security.

As botnets have progressed and become more complex,
various botnet detection strategies have been proposed. Bot-
net detection using Machine Learning (ML) methods has
gained a lot of attention in the last decade. Feature extraction
is an important step before learning or training ML mod-
els. These features serve as discriminators in learning and
inference. Some existing botnet detection techniques rely on
traffic features or packet information; however, when traf-
fic patterns are confidential or encrypted, these techniques
become obsolete; additionally, traffic patterns can be inten-
tionally altered to avoid detection [10]. Moreover, one of
the major drawbacks of flow-based ML techniques to detect
botnets is that they do not capture the dynamic topological
structure of communication networks.

In recent years, many approaches have been proposed that
leverage graph-based features to represent the true behav-
ior of hosts [10]–[18]. Botnet detection using graph-based
features takes advantage of the disparity in neighborhoods
between anomalous and normal nodes in communication
graphs. Detection of botnets using graph-based features has
shown promising performance as it offers insight into the
communications patterns between hosts in the network.

Numerous studies have recognized graph-based features
for botnet detection [10]–[18]. However, a comprehensive
analysis of the effect of features evaluation measurements on
identifying the best graph-based features is yet to be explored.
In general, ML algorithms can learn efficiently when the
data contains a good set of relevant features and not too
many irrelevant features. Several studies in the literature have
highlighted the importance of feature selection on the perfor-
mance of ML algorithms in botnet detection. To date, most
of these studies have focused mainly on flow-based features.
The primary challenge in this domain is finding the best
graph-based features that reveal hidden network structures
that can expose malicious hosts’ communication patterns.
Therefore, we believe that investigating the significance of
feature selection for graph-based botnet detection would be a
unique contribution.

Accordingly, the aim of this research is to explore new
graph-based features and leverage feature evaluation mea-
sures to select the best features to build an efficient botnet
detection system. Here, Naive Bayes, Decision Tree, Random
Forests, AdaBoost, ExtraTrees, and K-Nearest Neighbors
were used as classifiers to demonstrate the quality of the fea-

ture evaluation measure techniques. The main contributions
of this paper are as follows:

• We present an effective and efficient graph-based bot
detection system that is able to detect different types of
botnets with different types of behavioral characteristics.
The proposed approach is also suitable for a large-scale
dataset and robust to zero-day attacks.

• We explore new graph-based features to train vari-
ous ML techniques for botnet detection. In addition,
we employ a comprehensive feature engineering step
where five different feature evaluation measures derived
from different theories such as information, correlation,
and consistency are investigated to select the most dis-
criminative set of features to improve ML algorithm
performance and scalability.

• We train and validate our graph-based botnet detection
approach on two real botnet datasets.

• We compare the performance of our graph-based botnet
detection approach to state-of-the-art flow-based and
graph-based botnet detection systems.

The rest of this paper is organized as follows: Section II
provides a brief background and presents the current state of
existing botnet detection systems, highlights limitations of
the state-of-the-art and motivates the problem. The system
design of our proposed model is described in Section III.
In Section IV, we delineate our evaluation results in detecting
botnet and benchmark the significance of our comprehensive
features engineering step. Finally, in Section V, we conclude
with a brief summary of this paper, highlights our contribu-
tion and instigates future research directions.

II. BACKGROUND AND RELATED WORKS
A. BOTNET DETECTION
A significant amount of research has been conducted in
the field of cybersecurity to detect and prevent botnets and
botnet-driven attacks. Botnet detection systems are designed
to detect botnets in networks by analyzing and monitoring
network behavior and flow. Numerous botnet detection tech-
niques have been developed, which can be broadly catego-
rized as signature-based and anomaly-based [3].

Signature-based techniques detect intrusions based on pre-
defined attacks patterns (signatures). Signature-based IDSs
are able to efficiently detect known threats and generally, they
scale well. Over the years, many researchers implemented
signature-based IDSs [19]–[21]. However, signature-based
approaches become obsolete against unknown new or modi-
fied attacks. Furthermore, signature-based detection requires
consistent database updates, as they mainly rely on known
attacks signatures.

On the other hand, anomaly-based detection sys-
tems aim to establish normal behaviors of the network,
and anything abnormal is considered an attack. Several
studies [22]–[25] have applied anomaly-based botnet detec-
tion based on analytical features of packet payloads and
network flows.Whereas anomaly-based detection overcomes
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the limitations of the signature-based approaches for detect-
ing unknown attacks, it may lead to a high rate of false alarms
by classifying previously unseen normal system behaviors as
malicious [26].

Several studies have attempted to overcome the aforemen-
tioned limitations by employing ML techniques to detect
attacks. Studies like [27], [28] rely on deep packet inspec-
tion (DPI) to analyze the packet contents. Such techniques
are computationally expensive since they search through the
payload for known application signatures. In addition, due
to rising security and privacy concerns, payload is often
encrypted, making it non-trivial to inspect payload data [29].

Other studies, such as [30]–[33], have shown that
host-based botnet detection techniques are capable of detect-
ing unknown attacks with a low rate of false alarms.
Host-level anomaly detection can be useful for early botnet
detection [3]. However, despite the advantages of host-based
monitoring, these techniques are generally not scalable
because all devices must be adequately equipped with appro-
priate monitoring tools, such as spam detection software and
antivirus software, resulting in poor host resource utilization.
Furthermore, network-based attacks, such as DDoS, must
be detected at the network level. Thus, host-based detection
systems are not capable of detecting such attacks [3].

Flow-based techniques [34]–[41] use flow features
as discriminators to detect anomalies in the network.
Vinayakumar et al. [39] presented a botnet detection frame-
work with two levels of deep learning. Researchers were
able to distinguish between attacks and regular traffic using
the domain generation algorithm. Their experimental results
demonstrated that their proposed system resulted in signifi-
cant improvements in terms of F1-score, detection time, and
false alarm rate. Khan et al. [40] developed a multi-layered
framework for detecting P2P botnets. A four-layer detec-
tion system is presented to address the shortcomings of
single-stage botnet identification, such as class imbalance.
Decision tree algorithm is employed to select the most
important features. Experiment results highlight the impact of
the multi-layer technique in effectively detecting P2P botnet
traffic.

In [42], researchers proposed a hybrid deep learning
scheme for botnet detection in IoT networks. A long
short-term memory autoencoder is used first to minimize the
dimensionality of network traffic features, followed by a deep
bidirectional long short-term memory (BLSTM) to analyze
long-term inter-related network traffic behavior. The finding
shows that the proposed detection system obtained a high
generalization capability, despite the substantial reduction in
feature size.

To overcome the computational complexity of flow-based
techniques, a recent study, BotFP [41], uses flow statistics to
identify bots. However, instead of analyzing all flows, they
proposed defining flows by the source IP address. BotFP
distinguishes host activity using frequency distributions sig-
natures of protocol attributes. Two BotFP variants presented
to detect bots using distances to labeled clusters (BotFP-Clus)

or a using supervised ML algorithm (BotFP-ML) to classify
new bots. Experiment results revealed that both variants iden-
tified bots with high accuracy, while the clustering technique
outperformed supervised ML in terms of recall. Nonetheless,
their approach assumes that bots have to be a minimum active
in order to be effective. Therefore, they proposed filtering
out hosts with a low number of packets based on a threshold
value, which could result in the omission of stealthy bots.

Flow-based botnet detection techniques have been exten-
sively studied, but they have several shortcomings. These
techniques rely on comparing each traffic flow to all others
instead of monitoring overall network activities to detect
malicious traffic, which leads to the omission of important
interdependent relationships among bots that are special to
a botnet. Moreover, per-flow or per-packet analysis may
impose a significant computational overhead. In addition,
these techniques are unreliable, as they can be evaded with
encrypted flow data or with slightly altering flow character-
istics (e.g., flow duration, source bytes, and destination bytes,
etc.) [13], [14], [34], [43]. Further, adversaries may leverage
distributed software, such as Zookeeper, to generate similar
traffic behavior with legitimate C&C servers in order to avoid
detection [13].

In recent years, many researchers [10]–[18] have attempted
to analyze the impact of using communication graphs to
represent hosts activates. The true structure of network
communications, host interactions, and host behaviors are
captured by graph-based features derived from high-level
flow information. These methods are generally more effi-
cient than flow-based approaches as they can recognize
bot topological relationships and identify more informative
behavioral features between bots [43]. BotGM [17] cap-
tures communication patterns between hosts by creating host-
to-host communication graphs from observed network flows,
then using the interquartile method to detect outliers. Their
results have a low number of false positives (FPs) and a
moderate level of accuracy. BotGM, on the other hand, is not
scalable because it requires the creation of a new graph for
each pair of unique IP addresses, resulting in high overhead.

Chowdhury et al. [11] proposed utilizing graph-based fea-
tures to detect botnets in two steps. First, Self-Organizing
Map (SOM) algorithm is applied to seven graph-based fea-
tures to cluster nodes. They believe that larger, more dense
clusters indicate normal connections, whereas smaller, more
distant data points (or clusters of data points) imply mali-
cious behavior. As a result, by eliminating the largest clus-
ter, the detection overhead is reduced. They used statistical
means and experts opinion to classify the remaining clusters
as malicious or benign. While they presented a strong case
for how removing the largest cluster reduced the detection
time, relying on experts opinions is impractical for large net-
works and potentially error-prone, especially for previously
unknown attacks.

Botchase [10] applies a hybrid supervised and unsu-
pervised learning with graph-based features to detect bot-
nets. According to the experiments performed by the
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researchers, stand-alone classifiers are insufficient in terms
of training time, precision, and overall accuracy perfor-
mance. In their analysis, four supervised classification algo-
rithms, namely logistic regression, support vector machine,
feed-forward neural network, and decision tree, were evalu-
ated. Researchers further demonstrated the effectiveness of
applying a two-phase hybrid learning approach using super-
vised and unsupervised learning to detect botnet. Botchase
first employs a clustering phase using SOM, followed by a
classification phase using decision tree algorithm. Botchase
showed impressive performance with 99.99% accuracy.

Some studies combined flow and graph-based features
for botnet detection. Wang et al. [13] proposed BotMark,
a botnet detection based on hybrid analysis of flow-based
and graph-based traffic behaviors. A traffic pre-processing
filtering out phase is first applied to filter out irrelevant
traffic flows based on a whitelist of the top 1000 most
popular websites obtained from Alexa.com in order to min-
imize traffic workload and enhance efficiency. BotMark
employs fifteen statistical flow-based traffic features as well
as three graph-based features. Similarity and stability of
communication-flows (C-flows) are used for the flow-based
detection. In the graph-based detector phase, the least-square
technique and Local Outlier Factor (LOF) are used to calcu-
late anomaly scores, which measure the differences between
neighborhoods of anomalous nodes. The voting results gen-
erated by the three detectors: similarity-based detectors,
stability-based detectors, and graph-based detectors are used
to detect the botnet. According to the researchers’ exper-
imental results, the flow-based detector outperformed the
graph-based detector. However, they only employed three
graph-based features compared to fifteen flow-level features.
Themain limitation of BotMark is that bots that use legitimate
C&C servers can evade detection because they will be filtered
out in the first step. Advanced evasion techniques, such as
changing the number of bytes or packets per flow, can also
be used to evade the flow-based detector. BotMark achieved
a high detection accuracy of 99.94%, but a low F1 score
of 11.52%.

Rahal et al. [18] proposed a distributed architecture to
detect botnets and early signs of possible DDoS attack in a
two-tier detection system. First, SOM is employed to clus-
ter hosts using flow and graph-based features. Correlations
between nodes in each cluster are then used to detect bots
using a deterministic method. They made a similar assump-
tion to [11], that is, most benign hosts will be grouped in
larger, more dense clusters, whereas smaller clusters of data
points indicate malicious behavior as malicious behaviors are
less often in the real world. Therefore, in order to improve
detection speed, their method starts the detection process
with the smallest cluster and works its way up until all
clusters have been evaluated. Such distribution can greatly
reduce detection time. Despite the fact that the majority of
bots were successfully clustered in the same cluster using
SOM, results showed that level two detection did not identify
all bots.

FIGURE 1. Feature Selection Techniques.

B. FEATURE SELECTION FOR BOTNET DETECTION
Realizing the need for lightweight botnet detection, sev-
eral studies [44]–[46] reported in literature illustrate the
impact of feature selection on improving the accuracy of
botnet detection while also reducing the complexity of ML
models. To date, the majority of these studies are focused
on flow-based features. Feature selection (also known as
attribute selection or variable selection) is the process of
automatically identifying and selecting the most relevant fea-
tures in the feature space. This process helps to decrease
the training time, reduces overfitting, and, in some cases,
improves performance.

In general, feature selection techniques can be divided
based on different selection strategies into three categories:
filter, wrapper and embedded methods as shown in Fig. 1.
The wrapper method selects the optimal subset of features
through searching the feature space in a greedy search-based
approach to evaluate all the possible combinations of fea-
tures against the evaluation criterion. In the case of embed-
ded methods, the feature selection process is built into the
learning algorithm; these algorithms are embedded in the
learning stage to guide the feature selection process and find
the optimal feature subset. The main disadvantage of these
methods is that they rely on an exhaustive search strategy
to select the ideal subset among all possible combinations of
feature subsets, resulting in high computational complexity.
Moreover, these methods find the optimal subset features for
the specific ML algorithm (i.e., model dependent) and may
suffer from the risk of overfitting and decrease the generaliz-
ability of the model [47].

On the other hand, filter methods are model-independent
methods that find the ideal subset of features based on pre-
defined metrics. Therefore, the selected features have no
dependence on the specific ML used, which helps in build-
ing a more accurate and generalizable model. Importantly,
they are less computationally expensive than other meth-
ods and are therefore most preferable for large datasets.
Alqahtani et al. [44] applied genetic-based extreme gradient
boosting (GXGBoost) along with Fisher-score-based feature
selection method to select the most relevant features for
IoT botnet detection. According to the evaluation results,
their approach achieved a high detection rate with only
three features chosen using the Fisher-score method. In [45]
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FIGURE 2. Architecture of Botnet Detection System.

Ismail et al. studied the effectiveness of information
gain-based features selection on different classification algo-
rithms for the detection of encrypted botnets. The results
show that using selected features subset improved the detec-
tion rate at the expense of increased false-positive rate.

Alauthaman et al. [46] investigated features selection
algorithms with multilayer feed-forward neural network for
P2P Bot detection. Principal component analysis, Relief
algorithm, and decision tree-based features selection were
applied to select the top ten most relevant features extracted
from TCP control packet headers to construct neural network
model. Experiment results show that the highest accuracy
and detection rate obtained with decision tree-based features
set. Nonetheless, as the approach only tracks TCP traffic to
detect botnets, botnets that do not communicate through TCP
packets will not be detected.

Undoubtedly, graph ML lends itself to accuracy in bot-
net detection. However, the majority of current graph-based
detection approaches rely on two layers of detection. This
can increase the detection time and add to the approach’s
complexity because it requires training (and retraining) two
models. Further, most of these studies have been limited to
a few graph-based features. Meanwhile, several graph-based
features have remained unexplored. With the rapid growth of
network traffic, the need for lightweight graph-based detec-
tion has become evident. Unlike the above approaches, in this
paper, we present a graph-, ML-based security model for
botnet detection that first considers the importance of graph
features and then builds a generalized model for detecting
botnets based on the selected important features to address
the aforementioned limitations.

III. METHODOLOGY
The system architecture for our proposed botnet detection
method is depicted in Fig. 2, which includes three main
components: data bootstrap, feature extraction and selection,
and detection engine. In the following sections, we discuss
these components in detail.

A. DATA BOOTSTRAP
1) FLOW INGESTION
The flow ingestion step aims to convert bidirectional network
flows into a list that is used to create the graph representation
of the network flows. Each node in this study represents a
unique IP address, and each edge represents a connection
between two IP addresses. Network flows are transformed

into a list F that contains four tuples fi ∈ F , such that fi =
sipi, dipi, srcpktsi, dstpktsi. Where sipi is the source host IP
address, dipi is the destination host IP address, the number
of data packets sent by sipi to dipi is srcpktsi, and dstpktsi is
the number of data packets sent by dipi to sipi. As mentioned
above, in our graph each node represents a unique IP address.
Therefore, if multiple tuples have the same source and des-
tination hosts, they are aggregated into one tuple in F , and
the number of source packets and the number of destination
packets are also aggregated. Furthermore, if there exists a
reverse tuple fx , fy ∈ F where, sipx = dipy and sipy =
dipx then, srcpktsx = srcpktsx + dstpktsy and srcpktsy =
srcpktsy + dstpktsy and dstpktsx = dstpktsx + srcpktsy and
dstpktsy = dstpktsy + srcpktsx .

2) GRAPH TRANSFORM
Using the flow representation obtained from the flow inges-
tion step mentioned above, the system builds a directed graph
G(V ,E), whereV is a set of vertices andE is a set of weighted
directed edges. Each edge e ∈ E is associated with two
vertices u and v from V , and has an associated weight w(e).
The set of vertices V is a union of hosts from set F , such that,

V = (sip ∪ dip). (1)

And for each pair of connected vertices vi and vj inV where
sipx = vi and dipx = vj, there exist directed edges ei,j and ej,i
such that,

E = (sipx , dipx) ∪ (dipx , sipx). (2)

The weights w(ei,j) and w(ej,i) of edges ei,j and ej,i are
srcpktsx and dstpktsx , respectively.

B. FEATURE ENGINEERING
1) FEATURE EXTRACTION AND NORMALIZATION
To investigate and evaluate the effectiveness of graph-based
features in detecting and distinguishing between benign and
bot hosts. The graph representation of network flows obtained
during the data bootstrap step is used to extract a set of
graph-based features.We utilize a set of graph-based features,
namely in-degree, out-degree, in-degree weight, out-degree
weight, clustering coefficient and a set of centrality mea-
sures such as in-degree centrality, out-degree centrality, node
betweenness, authority, hub, Katz, PageRank, closeness and
eigenvector centrality. A brief introduction of these features
and the rationale behind leveraging them is discussed below:
• In-Degree (ID) and Out-Degree (OD): Vertex degree
is the measure of the total number of edges connected to
a specific vertex. The in-degree of a vertex v ∈ V in a
graphG(V ,E) is the total number of incident edges to v.
Where out-degree is the total number of incident edges
from v. In C&C botnet topology, all bots communicate
with the botmaster through a C&C server, which results
in a relatively high ID for the C&C node. One of the
primary characteristics of botnets is their fast spreading,
as botnets are continuously increasing their footprint in
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terms of the number of bots to gain higher privileges.
Lateral Movement (LM) [48] is a technique used to
spread through a network, and it is one of the first stages
in any cyber-attack. As a result, having a high OD can
aid in the detection of botnet LM.

• In-Degree Weight (IDW) and Out-Degree Weight
(OWD): In a weighted graph, the in-degree weight and
out-degree weight of v is the total of all the weights
of its incoming and outgoing edges, respectively. IDW
and ODW features capture the total number of packets
exchanged between hosts. As bots communicate with
each other and with the botmaster, bots of the same
botnet’s family tend to have similar behavior in exchang-
ing information or updating commands which can be
captured using IDW and ODW.
In graph theory and network analysis, centrality mea-
sures capture the importance of a node in the network
in terms of node connections, node relationships, and
node communications. Therefore, centrality measures
can help distinguish between bots and hosts. The list
of centrality measures used in this study to capture the
behavior of hosts is explained below.

• In-Degree Centrality (IDC) andOut-Degree Central-
ity (ODC): Degree centrality is one of the most funda-
mental and easy to compute centrality metrics. Degree
centrality assigns a score based on nodes’ communica-
tion with other nodes in the network. IDC and ODC
of v are defined as the total number of incoming and
outgoing connections divided by the total number of
nodes in the network. These features add another layer
of information, as it takes into consideration the entire
network.

• Betweenness Centrality (BC): The betweenness cen-
trality of a vertex is the number of the shortest paths
through the vertex. In other words, BC is the number
of times a vertex acts as a bridge along the shortest path
between two other vertices. BC of vertex v is defined as,

BC(v) =
∑

s6=v 6=d∈V ,s 6=d

σsd(v)

σsd
. (3)

where σsd is the total number of shortest paths from s to
d in V , and (v) is the number of shortest paths from s
to d that pass through a vertex v. BC is then normalized
by dividing through the number of pairs of vertices not
including v, which is (n− 1)(n− 2).
Despite the computational overhead of measuring BC
with O(|V | · |E| + |V |2 · log|V |) time complexity and
O(V · E) space complexity [49], BC can be a very
useful feature to detect botnets. Bots in P2P botnets
communicate directly with one another. If bots are not
directly connected, they are more likely to communicate
using the shortest paths in the network, which is captured
by high BC.

• Closeness Centrality (CC): Closeness centrality is
another intriguing and powerful centrality metric [50].
CC measures how close vertex v to all other vertices in a

graph, where closeness is defined in terms of the shortest
path. The CC of v is calculated as,

CCv =
1∑
u dvu

. (4)

where dvu is shortest path from v to u. However, if the
graph is disconnected and there is no path between two
nodes, then the shortest path is set to Infinity. To avoid
this issue, we use the harmonic CC, which is defined as,

CCv =
∑
u

1
dvu
. (5)

In case there is no path between the two vertices, dvu
is set to Infinity such that 1

dvu
= 0. A vertex’s CC can

reflect its influence; a vertex with a high CCwill bemore
effective at spreading and updating commands. This
feature is also valuable because it perfectly illustrates the
graph’s geometrical centrality and the network’s com-
pactness of organization.

• Eigen Centrality (EC): Eigen centrality [51], or eigen-
vector centrality, is a measure of the level of importance
of a node in a graph, where the importance of a node
depends on the importance of its neighbors. EC is an
extension of degree centralities, with the addition that
nodes are influenced not only by the number of their
neighbors, but also by the importance of their neighbors.
To compute EC, each vi is assigned an influence score
xi, that is iteratively exchanged with adjacent neighbors.
Let, A = (av,u) be the adjacency matrix where,

av,u =

{
1 if v and u are connected
0 if v and u are not connected.

(6)

Then, the centrality score can be defined as,

xv =
1
λ

∑
u∈N (v)

av,uxu. (7)

where, N (v) is the set of neighbors of node v and λ is the
largest eigenvalue associated with the eigenvector of the
adjacency matrix [52]. Based on this definition, nodes
with higher EC values are linked to nodes with higher
EC values as well. As a result, EC eventually groups bots
closer together and distinguishes bots from hosts.

• Katz Centrality (KC): Katz centrality [53] measures
the relative importance of each node in a graph by con-
sidering both immediate and non-immediate neighbor-
ing nodes that are connected via immediate neighboring
nodes. In contrast to EC, where all neighboring nodes
have the same effect on the node’s EC. KC uses attenu-
ation factor β where the centrality of the node is mostly
affected by its first-degree neighboring nodes, and the
effect on the KC diminishes as we expand to higher
neighboring nodes. In other words, KC determines the
importance of a node based on the importance of its
neighboring nodes as well as the proximity of neighbor-
ing nodes to the node. Let AK be the adjacency matrix
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where,

AK(v,u) =

{
1 if there is an edge from v to u at time tk
0 otherwise.

(8)

Then, KC of a node v is computed as:

KCv =
∑
k

βKAKα. (9)

where α is a constant value that must be smaller than the
inverse of the largest eigenvalue of the adjacency matrix.
In a botnet, as bots communicate directly with each other
and/or with the botmaster, KC can help discriminate
between bots and benign hosts as interconnected neigh-
boring nodes tend to have similar KC values.

• PageRank Centrality (PR): The PageRank algo-
rithm [54] is a link analysis algorithm developed by
Google to rank the relative importance of web pages on
their web search engine. In PR, the importance of a node
is related to the node’s links from and to other nodes in a
graph. PR is measured iteratively. The current rank score
of each node is distributed to its adjacent nodes via its
outgoing edges at each iteration. The new rank of each
node at the end of each iteration is the sum of the scores
received from its incoming edges. PR is given as,

PRt (i) = (1− d)
n∑

k=1

W (k)+ d
∑

(i,j)∈E

PRt−1(i)
Oj

. (10)

where PRt (i) denotes PR score of node i at t itera-
tion, (i, j) is the direct link from node i to node j, Oj
denotes the number of outgoing links from node j, and
E represents the set of all edges in the graph. PR can
be a key indicator of benign hosts because hosts with
low connectivity tend to have low PR. Whereas botnets
communicate with each other or with the C&C server to
update commands and or transfer information, resulting
in bots having relatively higher PR scores.

• Hub and Authority: Hyperlink-Induced Topic Search
(HITS) defines two centralities measures, authority and
hub. Similar to PR, HITS is a link analysis approach
developed to rank pages according to their authority and
hub ranking. More specifically, a node’s authority is
measured by the number of incoming edges; an authori-
tative node has a high number of incoming edges. On the
other hand, the hubness of a node is computed by the
number of outgoing edges. A node’s hub and authority
scores are the sums of the hub scores of the node’s
in-neighbors and out-neighbors, and the total author-
ity score of the node’s out-neighbors and in-neighbors,
respectively. Let A be the adjacency matrix and AT

be transpose of matrix A, then hub h and authority a
centrality to the vertices can be given as:

a = αAh

h = βAT a. (11)

Bots in centralized botnets receive commands and
updates from a central node (i.e., botmaster), causing
this node to have a high hubness. Furthermore, bots scan
the network in the early stages of the intrusion kill-chain
to infect more hosts. As a result, authorities and hubs
scores can assist in distinguishing bot behaviors in the
network.

• Local Clustering Coefficient (LCC):The local cluster-
ing coefficient [55] measures the neighborhood connec-
tivity of a node. LCC is a metric to determine how close
a node’s neighbors are to each other. LCC is defined as,

LCCi =

∣∣{ejk}∣∣
ki(ki − 1)

: vj, vk ∈ Ni, ejk ∈ E . (12)

where is ki the out-degree of vertex i, and Ni the set of
out-neighbors of vertex such that,

Ni =
{
vj : ejk ∈ E

}
. (13)

LCC has a low computational overhead withO(|V |
〈
K 2
〉
)

time, where
〈
K 2
〉
is the second moment of the degree

distribution. Interconnectedness can play a major role
in detecting malicious bots’ activities in P2P botnets,
as bots connect and communicate with each other, result-
ing in high LCC.

2) FEATURE SELECTION TECHNIQUES
Feature evaluation measures are crucial in guiding the search
for the best discriminative features in the feature space to
improve accuracy while reducing computational costs. Filter
methods, as previously described, find and select discrimina-
tive features based on predefined metrics without considering
the ML model, making them extremely computationally effi-
cient.

Filter methods use various measures based on the intrin-
sic characteristics of data to determine the significance of
features or feature subsets; these measures can be classified
as univariate or multivariate. Univariate methods assign a
score to each feature and measure the relative importance of
each feature individually; the score of each feature is unaf-
fected by the scores of other features in the features space.
Multivariate methods, on the other hand, assess the relative
significance of the entire set of selected features. In this study,
we investigated various univariate andmultivariate evaluation
measures, which are explained below.
• Information Measure: Information measure [56] is a
univariate filter measure that evaluates the information
significance of each feature in the context of the tar-
get class variable. It is capable of exposing the rela-
tionship of each feature with the target class. To this
end, the information measure evaluates the information
gain (IG) or mutual information for each feature in the
context of the target class [56], [57]. IG is calculated as,

IG = H (C)− H (C|F),

= H (F)− H (F |C),

= H (F)+ H (C)− H (F,C). (14)
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where H (C) is the entropy of class C and is calculated
as,

H (C) = −
∑
c∈C

p(c)log2p(c). (15)

And H (C|F) is the conditional entropy of class C given
the feature F and is calculated as,

H (C|F) = −
∑
f ∈F

p(f )
∑
c∈C

p(c|f )log2p(c|f ). (16)

IG algorithm has low computational complexity with a
time of O(N · T ), where N is the number of features in
the dataset and T is the time required to calculate the IG.
Features with high IG values are important because they
have high relevance in detecting the target class C .

• Gini Impurity (GI): Gini impurity or Gini index [58]
is a well-known measure of the impurity of a node in
statistics and data mining. GI measures the impurity of
a node based on the probability of wrongly classifying
a randomly chosen instance. For a feature f, GI [58] can
be expressed as,

GI (f ) = 1−
c∑
i=1

p2i . (17)

where pi represents the probability of an element being
classified for a particular class. GI is a multivariate
measure that evaluates the feature merit based on the
impurity of the features. Features are ranked in order of
decreasing impurity using the above equation; the lower
the impurity, the more significant the feature.

• Correlation Measure (CM): Correlation measure [59]
is one of the most powerful feature evaluation measures.
CM can be implemented in a multivariate or bivariate
manner. The multivariate CM approach is used to deter-
mine the importance of the candidate feature subset,
which considers the degree of correlation between each
feature in the subset and the target class, as well as the
correlation between features within the subset.
CM can be extremely useful in identifying a discrim-
inative feature set with a strong association to the tar-
get class. Furthermore, they are capable of eliminating
irrelevant and redundant features that have a weak cor-
relation with the target class. CM applies a heuristic
search technique to investigate the feature space and
measure the relevance of the candidate feature subset.
Correlations-based features selection (CFS) [59] algo-
rithm starts with an empty feature set and evaluates each
new feature as follows:

Ms =
krcf

k + k(k − 1)rff
. (18)

where Ms is the heuristic merit evaluation of a feature
subset S containing k features, rcf is the mean correla-
tion value between features and class labels f ∈ S, and
rff is the average intercorrelation between two features
in S. This algorithm has computational time complexity

of O(NI ·M2) where NI is the total number of instances
in the dataset, andM is the number of selected features.

• Pearson’s Correlation: Pearson’s correlation [59], [60]
is a bivariate CM,where the correlation between any two
features is computed as,

r =
(xi − x)(yi − y)√
(xi − x)2(yi − y)2

. (19)

r denotes Pearson’s correlation coefficient between two
feature x, y. xi and yi are the values of x variable and
y variable in a sample, respectively. And x, y are the
mean value of the x and y variable in the data. Pearson’s
correlation can be implemented to select the most corre-
lated features with the class label. Pearson’s correlation
is powerful in selecting the most predictive features in
the feature space. However, unlike CFS, the correlation
between the selected features is not considered. There-
fore, the selected subset might have redundant features.
Nonetheless, Pearson’s correlation is more computation-
ally effective in removing irrelevant features, as the time
complexity of this algorithm is O(n).

• Consistency Measure: Consistency measure is a mul-
tivariate measure that assesses the relevance of fea-
tures subsets based on their consistency rate over the
dataset [61]. Starting with the entire original feature set,
feature selection based on consistency measure (CBF)
uses heuristic search technique to search the given fea-
ture space through randomly generating subsets of fea-
tures until it reaches a minimum size feature subset with
a consistency rate equal to the consistency rate of the full
set of features. In CBF, if two instances match except for
their class label, then they are considered inconsistent.
Consistencymeasure is advantageous in discovering and
selecting features that improve the performance of a
learning algorithm. The consistency rate of the features
set is computed as,

CRS =

∑j
i=0 |Ai| − |Bi|

NI
. (20)

where S represents feature subset and j is the number of
possible combinations of feature values for Si. |Ai| and
|Bi| are the number of occurrences and the cardinality
of the majority class for the ith feature value in the
combination, and NI is the total number of instances
in the dataset. The complexity time of this algorithm is
O(NI ·M2).

C. DETECTION ENGINE
To assess the efficiency of graph-based features in identi-
fying botnet behaviors, we investigate several powerful ML
classification algorithms, including Naive Bayes, Decision
Tree, Random Forests, AdaBoost, ExtraTrees Classifier, and
K-Nearest Neighbors. The chosen classifiers cover various
ML families since they approach the problem of super-
vised classification differently. After the ML model has been
trained, it is deployed in the system to perform bot detection.
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TABLE 1. CTU-13 Dataset Description [63].

The detection engine is the core component of our botnet
detection approach. It is responsible for analyzing the net-
work to detect botnet activities.

IV. EXPERIMENT
A. ENVIRONMENT SETUP
1) HARDWARE
Data analysis, pre-processing, visualization, features engi-
neering, model training and validation are performed on Aziz
supercomputer, each experiment performed on a single node
with 24 cores and 96 GB memory for each node.

2) SOFTWARE
The software implementation of our approach is based
on Python. In our experiment, we utilize several pow-
erful python libraries (Pandas, NumPy, scikit-learn, and
Matplotlib). Graph-tool [62] is used to transform network
flows into graphs and extract graph-based features. python-
weka-wrapper library is used to implement different features
evaluation measures.

B. DATASET
The malicious behavior of infected devices by malware
forming botnets is typically associated with cybersecurity
breaches. We aim to build a ML model that can distinguish
the malicious behaviors of different botnet families. For this
purpose, two datasets, CTU-13 and IoT-23, with real botnet
traffic are used in this study.

1) CTU-13 DATASET
CTU-13 [63] is a publicly available dataset that contains thir-
teen scenarios with different numbers of infected computers
and seven real botnet families performing different malicious
activities such as DDoS, CF, port scanning (PS), spamming,
etc. Table 1 summarizes the dataset duration, number of
flows, number of bots and the type of bot in each subset.
We used scenario #9 for testing and the remaining scenarios
were used for training and validation. In scenario #9, there are
10 unique hosts infected with the Neris botnet and ≈ 367K
benign hosts.

TABLE 2. IoT-23 Dataset Description [65].

In the CTU-13 dataset, the distribution of botnet traffic is
only 1.5% of the entire network traffic, which demonstrates
how extremely imbalanced this dataset is. Moreover, as our
approach focuses on detecting infected bots in the network
rather than infected flows, the ratio of benign hosts to bots
is 3M:35. To overcome the class imbalance in the dataset,
we applied ADASYN [64] to over-sample the minority class
to have a 6:4 benign to bot ratio.

2) IoT-23 DATASET
IoT-23 [65] is a network traffic dataset that includes 20 mali-
cious subsets and 3 benign subsets of real IoT devices.
We leveraged 10 of the malicious subsets that contain infa-
mous IoT botnet families as well as the three benign subsets
described in Table 2. We used a stratified split to use 80%
of the dataset for training and validation and 20% for testing.
In addition, since the dataset is also imbalanced, we applied
ADASYN [64] to obtain a 6:4 distribution on the training set.

C. METRICS
Several experiments were conducted to investigate and ana-
lyze the effectiveness of different ML algorithms for botnet
detection. It is important to define performance measures
that are relevant to the task of botnet detection. For this
purpose, the most widely adopted four metrics namely, Accu-
racy, Recall (or detection rate), Precision, and F1-Score, were
adopted as in most previous literature on botnet detection.
These metrics are defined as follows,

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(21)

Recall =
TP

(TP+ FN )
(22)

Precision =
TP

(TP+ FP)
(23)

F1− Score = 2 ∗
(Recall ∗ Precision)
(Recall + Precision)

(24)

D. PERFORMANCE AND RESULTS
1) GRAPH TRANSFORM
To extract graph-based features from graph representations
of network flows, we first generate the graph by ingesting
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TABLE 3. Features Selected by Five Feature Evaluation Measures.

network flows, then extract and normalize all features for
each subset of the datasets.

2) FEATURE SELECTION ANALYSIS
We investigate the impact of feature selection techniques
on the performance of ML algorithms by examining the
five feature evaluation measures listed above to select the
most discriminative set of features. For univariate measures,
we ranked features based on their merit score and selected
the top 40% of our feature space. While for multivariate mea-
sures, we leveraged a greedy step-wise strategy as our search
strategy where the minimum percentage of selected features
is also set to 40%. Features selected by each feature evalua-
tion measure on the training datasets are reported in Table 3.
10-folds stratified cross-validation strategy was applied with
random seed for feature selection to avoid selection bias.
The CBF measure selected the same set of features for both
datasets. Whereas using the GI measure, only four features
on the IoT-23 dataset have merit.

The performance evaluation procedures and the running
time were repeated ten times for each evaluation criteria, and
the numbers reported in the tables are the arithmetic mean of
these ten results. We used stratified 10-fold cross-validation
to train the ML algorithms.

E. EXPERIMENTAL EVALUATION
1) EXPERIMENTAL EVALUATION ON THE CTU-13 DATASET
To ensure the best results from classifiers, the best param-
eter values for each classifier were chosen using a strati-
fied grid-search on the training set. The reported results of
grid-search with the parameter range used and the optimal
parameter values are highlighted in Table 4.

Performance analysis for all classifiers with all baseline
features are presented in Fig 3, where NB, KNN, AdaBoost
and ExtraTrees classifiers were able to accurately detect all
bots with 100% recall. ExtraTrees shows the best perfor-
mance, it successfully detects all bots in the test dataset,
with 100% accuracy and no misclassification of any of the
benign hosts. Comparatively, with superiority in precision
and F1 score, KNN outperformed NB and AdaBoost.

TABLE 4. Parameter Settings for Classifiers.

FIGURE 3. Classification Performance Analysis on CTU-13 with Baseline
Features.

FIGURE 4. Classifiers Training Time on CTU-13.

DT and RF achieved similar performance outcomes,
as both obtained a 90% recall with one undetected bot. From
the above results, it’s apparent that KNN, AdaBoost, and
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ExtraTrees showed efficient performance, while NB, DT,
and RF still have room for improvement. When evaluating
training times of baseline classifiers, as shown in Fig. 4 NB
needed the least training time of 1.85 seconds. AdaBoost
and KNN, on the other hand, required the most time to
train. Even though NB performed well in terms of recall
and training time, the high number of FPs indicates that the
model is over-fitting and not able to correctly identify benign
hosts. However, feature selection can help remove irrelevant
features that cause such bias.

Based on the above performance evaluations, to remedy
the problem of high FPs, reduce computational overhead,
and improve the accuracy of ML models. The second set of
experiments was carried out to investigate the impact of the
feature selection step using feature sets obtained from the
previously discussed feature evaluation measure.

Performance evaluation obtained for classifiers with each
feature evaluation measures over baseline performance of
these classifiers with all features shown in Tables 5 - 7.
As highlighted in Table 6, all classifiers, except RF, were able
to successfully achieve 100% recall using different selected
features subsets, whereas RF achieves 100% recall with
IG and GI features. NB classifier performed impressively
in identifying all bots across all feature subsets. Moreover,
in terms of precision and F1 score, NB exhibits perfor-
mance improvements up to 60% and 50% using Pearson’s
correlation-based feature set. NB performed the best with
Pearson’s correlation-based feature set with only 1.57s train-
ing time.

DT exhibits perfect results with Pearson’s correlation-
based feature set achieving 100% accuracy. Another most
noteworthy result is that the DT classifier was able to boost
the recall to 100% with all selected features subsets. On the
other hand, the precision and F1 score of the DT classifier
deteriorated with IG, CBF and CFS based feature subset,
with 9, 6 and 5 benign hosts were misclassified out of the
≈ 367K hosts. Overall, it can be noted that the DT classifier
with Pearson’s correlation-based feature set and GI feature
set outperformed the baseline classifier with only 43% and
38% of baseline classifier’s training time, respectively.

With Pearson’s correlation-based feature set, the RF classi-
fierwas able tomaintain the same performance as the baseline
classifier while requiring 34% less training time. Although
RF with IG and GI outperforms the baseline classifier in
terms of recall, precision deteriorated as the number of FPs
increased.

When assessing the performance of KNN using selected
features, it is noteworthy that KNN benefited greatly in terms
of training time, requiring the least training time with Pear-
son’s correlation feature set with approximately 3 hours less
than the KNN baseline classifier. However, KNN exhibits
substandard performance across all features subsets as the
number of misclassified benign hosts increases. Generally,
the performance of KNN is significantly affected and con-
fined by the number of neighbors (K). By optimizing the
number of K with Pearson’s correlation features set as shown

TABLE 5. Accuracy Analysis of Features Evaluation Measures on CTU-13.

TABLE 6. Recall Analysis of Features Evaluation Measures on CTU-13.

TABLE 7. Precision Analysis of Features Evaluation Measures on CTU-13.

FIGURE 5. F1 Score VS Number of Neighbors for KNN with Pearson’s
Correlation Features.

in Fig. 5, we were able to increase the F1 score to 65%, with
only 11 benign hosts out of ≈ 367K wrongly flagged.
Similarly, based on the AdaBoost classifier experimen-

tal results, AdaBoost benefited significantly in terms of the
training time, requiring only 60% of baseline total time
with Pearson’s correlation-based feature set. Recall that both
AdaBoost and KNN classifies showed competitive results
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FIGURE 6. F1 Score Analysis of Features Evaluation Measures on CTU-13.

TABLE 8. Classification Performance Analysis on IoT botnet.

with all baseline features, yet both classifiers lacked their
counterparts in terms of training time.

The most remarkable result is that the ExtraTrees classifier
shows significant performance across all feature evaluation
measures. ExtraTrees maintained a perfect score as the base-
line classifier with the GI feature subset while requiring only
26% of the training time. Overall, the ExtraTrees classifier
achieves higher detection accuracy across all feature evalua-
tion measures in comparison to other classifiers.

In general, as highlighted in Fig. 6, the most significant
performance of NB, DT, and RF classifiers was achieved
with Pearson’s correlation-based feature set. ExtraTrees
demonstrated meaningful performance with all feature sub-
sets, but it performed best with GI-based and Pearson’s
correlation-based feature subsets. These findings show that
using the feature selection step reduces the computational
overhead of model training while also improving detection
accuracy.

2) EXPERIMENTAL EVALUATION ON THE IoT-23 DATASET
The IoT-23 dataset is used to assess the efficiency of the clas-
sifiers on IoT botnets. Table 8 presents the overall accuracy
using all baseline features. All classifiers, except for NB, per-
formed well on the baseline features. Classifiers performance
evaluations with the selected feature subsets are highlighted
in Tables 9, 10. Results show that with IG and Pearson’s
correlation-based feature sets, the RF, AdaBoost, KNN, and
ExtraTrees classifiers achieved perfect scores with less train-

TABLE 9. Accuracy Analysis of Features Evaluation Measures on IoT-23.

FIGURE 7. Classifiers Training Time on IoT-23.

ing time in comparison to baseline classifiers as depicted
in Fig 7. More significantly, the DT classifier improved the
F1 score with all selected features subsets.

Although the NB classifier was able to detect all bots
using all feature subsets, when employing the GI features
set, it outperformed the baseline classifier with 80% fewer
FPs. However, the number of FPs remains high. We believe
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TABLE 10. F1 Score Analysis of Features Evaluation Measures on IoT-23.

TABLE 11. Performance Analysis Against Zero-day Attacks.

TABLE 12. Performance Evaluation of Our Model vs Botchase [10].

this is reflective of the fact that the NB classifier is not opti-
mized for imbalanced data. Overall, the effectiveness of the
features selection step is evident from the evaluation results
as RF, KNN, and AdaBoost classifiers presented a substantial
performance among all features set with improved training
time. Whereas ExtraTrees performed the best with IG and
Pearson’s correlation-based features sets.

Based on the above performance evaluation, results clearly
confirm our initial discussion that feature selection plays an
important role in selecting the most discriminative features.
In addition, feature selection eliminates irrelevant features,
resulting in improved classification performance. Evidently,
among all the experiment results, the ExtraTrees classifier
demonstrated superior performance on both datasets. There-
fore, we choose the stand-alone ExtraTrees classifier with
Pearson’s correlation-features set as Our Model for compar-
ison to the state-of-the-art.

To further evaluate our model, we perform a robustness test
against zero-day threats in addition to early attack detection.
To this end, we used scenario #6 of CTU-13 for testing,
which contains a unique bot that is not present in the train-
ing dataset performing anomalous Remote Desktop Proto-
col (RDP) session. RDP is an authentication method used in
LM for an unauthorized host. As discussed before, LM is one
of the earliest stages of any cyber-attack. Results presented
in Table 11 asserts our model’s robustness to detect threats
from new unseen attack sources and early detection ability of
bots activity with only two benign hosts misclassified out of
≈ 107K hosts.

3) COMPARISON TO STATE-OF-THE-ART DETECTION
TECHNIQUES
We used the CTU-13 dataset to compare our model to state-
of-the-art flow-based and graph-based botnet detection meth-

ods, namely Botchase [10] and BotFP-Clus [41] described in
Section II.

For graph-based botnet detection, we compare our model
with Botchase [10]. According to the researchers’ experi-
ments, stand-alone classifiers perform inadequately in terms
of training time, precision, and overall accuracy efficiency.
Therefore, they employed a two-layer detection approach
based on supervised and unsupervised learning. Botchase
first applies a clustering phase using SOM, followed by a
classification phase usingDT.Wefirst compared ourmodel to
their two-layer detection system (i.e. Botchase). In addition,
we also compared our implementation of stand-alone DT to
their stand-alone DT. Results highlighted in Table 12 show
that our stand-alone DT with Pearson’s correlation-based
features outperformed Botchase’s stand-alone DT with fewer
features, confirming the effectiveness of the feature selec-
tion step. Furthermore, our model outperformed Botchase in
terms of precision, as we correctly identified all benign hosts.

We also evaluate our model against state-of-the-art
flow-based botnet detection. We compute performance met-
rics for scenarios 1, 2, 8, 6, and 9 to compare our model
to BotFP-Clus [41]. Table 13 reports the results for each
scenario from the test set. In terms of precision, our model
outperformed BotFP-Clus with only one benign host misclas-
sified in scenarios 1 and 6, and two benign hosts misclassified
in scenario 2. For scenario 8, despite being able to achieve
good recall, BotFP-Clus has a very poor precision of 20%.
Further, our model obtained high recall in all scenarios, with
only one bot remains undetected in scenario 8. Overall, our
model performance is very competitive, as wemaintain a high
accuracy between 99% and 100%.

V. CONCLUSION
In this paper, we proposed a graph-, ML-based security
model for botnet detection. The detection results are very
promising since all algorithms were able to successfully
detect all bots with 100% recall on both datasets. All clas-
sifiers achieved competitive results, with ExtraTrees pro-
viding the best detection accuracy between 99% and 100%
across all feature evaluation measures. After evaluating sev-
eral classification algorithms with different features subsets,
we chose ExtraTrees classifier with Pearson’s correlation fea-
tures subset as the best model with respect to accuracy, recall
and precision in botnet detection. ExtraTrees shows promis-
ing results and outperforms flow-based and graph-based
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TABLE 13. Performance Evaluation of Our Model vs BotFP-Clus [41].

detection approaches with better accuracy. Overall, the com-
prehensive feature evaluation findings will be beneficial in
the development of an efficient, lightweight botnet detection
system for advanced emerging technologies such as IoT and
FogClouds. In ourwork, we focused on the structural features
of the network. Attributed networks include both attribute and
structural data. In future work, we will extend our model to
evaluate node attribute features as well.
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