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ABSTRACT Discrete sine transform (DST) is widely used in digital signal processing such as image
coding, spectral analysis, feature extraction, and filtering. This is because the discrete sine transform is close
to the optimal Karhunen–Loeve transform for first-order Markov stationary signals with low correlation
coefficients. Short-time (hopping) discrete sine transform can be employed for time-frequency analysis and
adaptive processing quasi-stationary data such as speech, biomedical, radar and communication signals.
Hopping transform refers to a transform computed on the signal of a fixed-size window that slides over
the signal with an integer hop step. In this paper, we first derive a second-order recursive equation between
DST spectra in equidistant signal windows, and then propose two fast algorithms for computing the hopping
DST based on the recursive relationship and input-pruned DST algorithm. The performance of the proposed
algorithms with respect to computational costs and execution time is compared with that of conventional
sliding and fast DST algorithms. The computational complexity of the developed algorithms is lower than
any of the existing algorithms, resulting in significant time savings.

INDEX TERMS Discrete sine transform, hopping algorithm, short-time transform, sliding algorithm, signal
processing.

I. INTRODUCTION
Discrete sine transform (DST) was first introduced for the
processing of long-term stationary data [1], and later various
versions of this transform were proposed [2], [3]. Unlike the
Karhunen–Loeve transform, the DST is data independent and
possesses a fast algorithm. The DST has found widespread
use in digital signal processing such as data compression [4],
adaptive digital filtering [5], image restoration [6], and inter-
polation [7], [8]. The performance of the DST is comparable
to that of the discrete cosine transform (DCT) and, therefore,
can be seen as a good alternative to the DCT. For signals
with the correlation coefficient close to one, the DCT yields
much better results than the DST. On the other hand, the DST
performs better when the correlation coefficient is in the
interval (−0.5, 0.5) [2].
Signal processing in the short-time domain [9] is a suit-

able technique for carrying out time-frequency analysis and
processing of quasi-stationary signals. It can be applied to
ECG signal processing [10], spectral analysis and speech pro-
cessing [11], adaptive digital filtering [12], [13], radar emitter
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recognition [14], spectral analysis of biological signals [15],
heart sound classification [16], time-frequency analysis of
high-rate dynamic systems [17], etc. Short-time processing
in the orthogonal transform domain can be realized by pro-
cessing the signal in a window moving along the signal with
an integer step. To obtain a reasonable spectral resolution, the
window size must be large enough and, at the same time,
the window size must be small enough so that the signal
processed in the window is approximately stationary. In this
case, short-time (hopping) transform [18] is a time series
of equidistant windowed signal transforms. Recently, fast
algorithms have been proposed to compute Hartley [19] and
DCT [20] short-time transforms. The DST is an important
orthogonal transform for time sequence analysis and may
serve as an appropriate hopping transform for processing
time-varying signals. Computing the DST in a window mov-
ing with one sample step on the signal is computationally
expensive, so fast algorithms were proposed to compute four
types of the transform using recursive equations [21], [22].

In this paper, two fast hopping DST algorithms with an
arbitrary hop step are proposed. The algorithms can adjust
the time hop between successive DST outputs. The work has
the following contributions:
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• Exploiting the z-transform technique, a recursive
second-order equation is obtained for computing the
hopping DST.

• Two fast hopping DST algorithms are proposed by
employing the recursive equation and input-pruned DST
algorithm.

• Computational cost and running time of the proposed
algorithms are compared with those of known fast and
sliding DST algorithms. The computational complexity
of the proposed algorithms is the lowest among existing
fast and sliding DST algorithms.

Organization of the paper is as follows. Section II intro-
duces the notation and derives the relationship between three
adjacent equidistant DST spectra. Two fast hopping DST
algorithms are proposed in Section III. These algorithms
are analyzed and discussed in Section IV. We conclude in
Section V.

II. RECURSIVE COMPUTATION OF HOPPING DST
Let us recall the definition of DST.We use the following nota-
tion: csN (s) ≡ cos( πN rs), snN (rs) ≡ sin

(
π
N rs

)
, where r is an

integer, N is the transform order, and s = 1, . . .N − 1. Since
the normalization factor

√
2/N can be taken into account in

the inverse transform, it is discarded.
Hopping DST with a hop step p is defined as

ys (kp) =
N2∑

n=−N1

x (kp+ n) snN (s (n+ N1 + 1)), (1)

where {x (kp) ; k = . . . ,−N1,−N1+1, . . . 0, 1, . . .N2, N2+

1 . . .} is the input signal; {ys (kp) , s = 1, . . .N − 1} is the
discrete sine transform at time kp; N1 and N2 are integers;
N = N1 + N2 + 2 is the window size.
Three consecutive DST spectra are related as follows [22]:

ys (k + 2)− 2csN (s) ys(k + 1)+ ys(k) = δs(k)snN (s) , (2)

where δs (k) = x (k − N1)+ (−1)s+1 x (k + N2 + 2).
This is a linear difference inhomogeneous equation that

converts into a linear difference equation with constant coef-
ficients for fixed s. A linear casual time-invariant system
defined by such an equation can be analyzed with the uni-
lateral z-transform [9]. By applying the z-transform and then
using its shift property, the following expression is obtained:

z2
[
Ys (z)− ys (0)− z−1ys (1)

]
− 2csN (s) z [Ys (z)− ys (0)]

+Ys (z) = Ds (z) snN (s) , (3)

where Ys (z) andDs (z) are the z-transforms of ys(k) and δs(k),
respectively. Ys (z) is expressed as

Ys (z) =
[
Ds (z) snN (s) z−1 + ys (0)

[z− 2csN (s)]+ ys (1)
]
Ts (z) , (4)

with

Ts (z) =
z−1

1− 2csN (s) z−1 + z−2
.

Ts (z) wcan be represented as follows:

Ts (z) =
1

q1 (s)− q2 (s)

(
1

1− q1 (s)1 z−1
−

1
1− q2 (s) z−1

)
,

(5)

where q1 (s) = exp
(
j πN s

)
and q2 (s) = exp

(
−j πN s

)
are the

roots of the denominator of T s (z).
The inverse transform of Ts (z) can be computed as

ts (k) =
qk1 (s)− q

k
2 (s)

q1 (s)− q2 (s)
u (k − 1) =

snN (ks)
snN (s)

u (k − 1) , (6)

where u (k) is defined as 1, for k ≥ 0, and 0, for k < 0.
Using the convolution and shift properties of the z-

transform, the inverse transform of (4) is given as

ys(k) = snN (s)
k∑

r=0

ts (r − 1)δs (k − r)+ ys (1) ts (k)

+ ys (0) [ts (k + 1)− 2csN (s) ts (k)] (7)

Taking into account that ts(k) = 0 for k ≤ 1, q1(s)q2(s) =
1, q1(s) + q2(s) = 2csN (s) and substituting (6) into (7), for
k ≥ 2 we get

ys(k) =
k−1∑
r=1

snN (rs) δs (k − r − 1)

−
ys (0) snN ((k − 1) s)− ys (1) snN (ks)

snN (s)
. (8)

Suppose that ys(0) and ys(p) (p > 1) are given, we obtain
ys(1) from (8) as follows:

ys(1) =
ys(p)snN (s)+ y(0)snN ((p− 1) s)

snN (ps)

−

p−1∑
r=1

δs(p− r − 1)snN (rs). (9)

Substituting (9) into (8), we express ys(k) for any integer k
as

ys(k) =
snN ((k − p) s)

snN (ps)

p−1∑
r=1

δs(r − 1)snN (rs)− ys(0)


+

snN (ks)
snN (ps)

ys(p)+
k−1∑
r=p

δs(r − 1)snN ((k − r) s). (10)

Finally, the relationship between three adjacent equidistant
DST spectra at times 2p, p,and 0 is written as

ys(2p) =
p−1∑
r=1

(δs(r − 1)+ δs(2p− r − 1))snN (rs)− ys(0)

+ δs(p− 1)snN (ps)+ 2csN (ps) ys(p). (11)
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TABLE 1. Special values of sinusoidal functions.

III. FAST HOPPING DST ALGORITHMS
Let us rewrite (11) for p > 1 as follows:

ys(2p) =
p∑

r=1

As (r)snN (rs)− ys(0)+ 2csN (ps) ys(p), (12)

where {As (r) = δs (r − 1)+ δs (2p− r − 1) ; r = 1, . . . p−
1}, and As (p) = δs (p− 1). The number of additions per win-
dow required for calculating {As (r) ; r = 1, . . . p} is 4p− 2.
Note that the calculation of δs (r) requires two additions (for
even and odd s), and the coefficients {δs (r) ; r = 0, . . . p− 1}
have already been calculated and stored at time p.

A. FAST ALGORITHM BASED ON PROPERTIES OF
DISCRETE SINUSOIDAL FUNCTIONS
Let us analyze the symmetry property of {snN (rs); s = 1, . . .
N − 1, r = 1, . . . p}. Suppose that gr is the greatest common
factor of r and N . Table 1 shows the special values of the
discrete functions; here N , r and l are arbitrary integers.

For fixed r , the number of ones and zeros of the function
is equal to gr and gr − 1, respectively (first line of Table 1).
The quantity of zeros of {csN (ps) ; s = 1, . . .N − 1} is equal
to gp (second line of Table 1). Let us calculate the inte-
gers: r̄r = r/gr and N̄r = N/gr . The discrete func-
tion

{∣∣snN̄r (rs)∣∣ = ∣∣snN̄r (r (N̄r − s))∣∣ ; s = 1, . . . N̄r − 1 ,
r = 1, . . . r̄r } has symmetry about the point

(
N̄r − 1

)
/2.

In addition, for gr > 1 the function is periodic with a
period of N̄r ; that is,

{∣∣snN̄r (rs)∣∣ = ∣∣snN̄r (r (s+ lN̄r))∣∣ ; s =
1, . . . N̄r −1, l = 1, . . . gr −1, r = 1, . . . r̄r }. Assume that N
is even and r is fixed. For even N̄r , from periodicity and sym-
metry of the functions:

{∣∣snN̄r (rs)∣∣ = ∣∣snN̄r (r (lN̄r ± s))∣∣ ,
(−1)s = (−1)lN̄r±s ,As (r) = A

lN̄r±s
(r) ; l = 1, . . . gr −

1, r = 1, . . . r̄, s = 1, . . . N̄r − 1
}
, one can estimate the

number of multiplications required to calculate the first term
of (12) as Cr

MUL =

[
N̄r−1
2

]
. Here [x/y] is the integer

quotient. For odd N̄r , from periodicity and symmetry of
the functions:

{∣∣snN̄r (rs)∣∣ = ∣∣snN̄r (r (2lN̄r ± s))∣∣ , (−1)s =
(−1)2lN̄r±s ,As (r) = A

2lN̄r±s
(r) ; l = 1, . . . gr −

1, r = 1, . . . r̄, s = 1, . . . N̄r − 1
}
, the quantity of multipli-

cations is estimated as Cr
MUL = N̄r − 1. For odd N and fixed

r , the number of multiplications is Cr
MUL = N̄r − 1. Thus,

the total number ofmultiplications per window for computing

the hopping DST can be estimated as

CMUL = (N − 1)+
p∑

r=1

Cr
MUL − gp. (13)

The total number of additions per window is equals to

CADD =(N− 1) (p+ 1)+ (4p−2)−
p∑

r=1

(gr− 1)− gp. (14)

Additional costs are required to calculate the initial p coef-
ficients. We call this algorithm ALG-1. Note that the window
size for the proposed algorithm is any integer determined by
the characteristics of the processed signal.

Next, we give a simple example for computing the hop-
ping DST coefficients for p = 2,N1 = 7,N2 = 7
and N = 16. In other words, the output DST coefficients
{ys (2p) , s = 1, . . . 15} are computed at time 2p. We borrow
two coefficients 1+1 = x−7 + x9;1

−

1 = x−7 − x9 from time
p and pre-calculate the auxiliary data:

1+2 = x−6 + x10;1
−

2 = x−6 − x10;

1+3 = x−5 + x11;1
−

3 = x−6 − x11
A+ = 1+1 +1

+

3 ;A
−
= 1−1 −1

−

3

S1 = 0.1951A+; S2 = 0.3827A−; S3 = 0.5556A+;

S4 = 0.7071A−S5 = 0.8315A+; S6 = 0.9239A−;

S3 = 0.9808A+

Q1 = 0.38271+2 ;Q2 = 0.70711−2 ;Q3 = 0.92391+2
The DST coefficients are calculated as follows:

y1 (2p) = S1 − y1 (0)+ 1.8478y1 (p)+ Q1

y2 (2p) = S2 − y2 (0)+ 1.4142y2 (p)+ Q2

y3 (2p) = S3 − y3 (0)+ 0.7654y3 (p)+ Q3

y4 (2p) = S4 − y4 (0)+1
−

2

y5 (2p) = S5 − y5 (0)− 0.7654y5 (p)+ Q3

y6 (2p) = S6 − y6 (0)− 1.4142y6 (p)+ Q2

y7 (2p) = S7 − y7 (0)− 1.8478y7 (p)+ Q1

y8 (2p) = A− − y8 (0)− 2y8 (p)

y9 (2p) = S7 − y9 (0)− 1.8478y9 (p)− Q1

y10 (2p) = S6 − y10 (0)− 1.4142y10 (p)− Q2

y11 (2p) = S5 − y11 (0)− 0.7654y11 (p)− Q3

y12 (2p) = S4 − y12 (0)−1
−

2

y13 (2p) = S3 − y13 (0)+ 0.7654y13 (p)− Q3

y14 (2p) = S2 − y14 (0)+ 1.4142y14 (p)− Q2

y15 (2p) = S1 − y15 (0)+ 1.8478y15 (p)− Q1.

One can observe that the algorithm complexity is 23 mul-
tiplications and 48 additions.

B. FAST ALGORITHM BASED ON PRUNED DST
Let us define the first term of (12) as follows:

XN (s) =
p∑

r=1

As (r)snN (rs) , s = 1, 2, . . .N − 1. (15)
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It can be seen that only a subset of the input coefficients
for p < N − 1 is employed to compute the output DST.
This method is referred to as input-pruned DST. Suppose that
{As (r) = 0, r > p}, p > 1, and N is of a power of 2, then the
decimation-in-time radix-2 algorithm [23] recursively splits
the DST into two half-length DSTs of the even-indexed and
odd-indexed time samples as follows:

XN (s) = XoN/2(s)+ X
e
N/2(s)

XN (N − s) = XoN/2(s)− X
e
N/2(s)

, s = 1, 2, . . . ,N/2− 1,

(16)

where

XoN/2(s) =
1

2csN (s)

L1∑
r=1

(As (2r − 1)

+ As (2r + 1)) snN/2 (rs)

X eN/2(s) =
L2∑
r=1

As (2r)snN/2 (rs) (17)

with s = 1, 2, . . . ,N/2− 1, and

XN/2(N/2) =
L1∑
r=0

AN/2 (2r + 1) (−1)r , (18)

here L1 = [(p+ 1) /2]− 1 and L2 = [p/2].
The decomposition is used recursively, and the transform

size is halved each time. Note that the fast input-pruned DST
algorithm is defined by a simple structured recursive matrix
factorization of the transform matrix and represented by a
regular signal flow graph. Fig. 1 shows the flow graph for
N = 16 and p = 7. Solid lines with arrows represent
unity transfer factors while dashed lines (red color) represent
transfer factors of −1. A circle represents addition if there is
more than one input line to the left. ↓ means multiplication
by the corresponding factor

{
Cs = 1

2cs16(s)
, s = 1, 2, . . . 7

}
For p = 2µ − 1(µ is integer and µ > 1), the complexity

of the input-pruned DST algorithm in terms of additions
and multiplications can be estimated as DSTADD (N , p) =

N µ(p+1)−2
p+1 + (p+ 1) (µ− 4) + 6 and DSTMUL (N , p) =

Nµ/2− p, respectively.
For other values of p, the complexity can be estimated

using the recursive equations (13)-(18). For example, for p =
2, the quantity of multiplications and additions is given as
DSTMUL (N , p) = 3N/4 − 2 and DSTADD (N , p) = N − 2,
respectively. The total number of multiplications per window
for computing the hopping DST is estimated as

CMUL = (N − 1)+ DSTMUL (N , p)− gp. (19)

The total number of additions per window is equal to

CADD = 2 (N − 1)+ (4p− 2)+ DSTADD (N , p)− gp. (20)

Additional costs are required to calculate the initial p coef-
ficients. We refer to this algorithm as ALG-2.

A pseudo-code of the proposed HDFT algorithms is given
in Table 2. The algorithms require 2N − 2 memory locations

FIGURE 1. Flow graph for the input-pruned DST computation, N = 16 and
p = 7.

to store the DST coefficients computed at times p and 0.
Since recursive computation of the output DST are carried out
‘‘in-place’’ using the memory originally occupied by the DST
computed at time 0, no additional memory is s required to
store the output data. Step 1 requires (N − 1) p + 6p − 2
additional memory locations for storing δs (k), As (r) coef-
ficients and trigonometric weighting factors. Step 2 requires
3N/2−2 additional memory locations to store XN (s) and Cs
coefficients. Step 3 does not require additional memory.

IV. SIMULATION RESULTS
In this section, we analyze the algorithms presented in the
paper with respect to computational costs and execution time.
The most popular among fast DST algorithms are fast radix-
2 [24], [25]. The sliding DST algorithm [22] is executed p
times to calculate the equidistant DST spectra. For p = 2
and varying N , Tables 3 and 4 show the performance in terms
of multiplications and additions, respectively, the following
tested algorithms: FDST is the fast algorithm [24], SDST
is the sliding algorithm [22], ALG-1 and ALG-2 are the
proposed algorithms.

Note that the proposed algorithms have the same complex-
ity, and for N > 16 outperform the fast and sliding DST
algorithms. The execution times for floating point addition
and multiplication in modern processors are comparable.
Therefore, the algorithm complexity can be estimated by the
number of flops (real multiplications and additions). Compar-
ison of the tested algorithms in terms of flops for N = 256
and varying p is given in Table 5.
One can observe that for p > 1 the proposed algorithms

are faster than the sliding DST algorithm. The algorithm
ALG-1 is more efficient than the fast DST algorithm
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TABLE 2. Pseudo-code of the proposed HDST algorithms.

TABLE 3. Performance of algorithms in terms of multiplications,
P = 2, N = 2M .

when p ≤ 7. It can be seen that for p < 63 the algorithm
ALG-2 is superior to the fast DST algorithm. The algo-
rithmALG-2 becomes faster than the algorithmALG-1 when
p > 2. As the window size increases, the boundary step
values at which the fast DST algorithm is still no better than
the proposed algorithms also increase.

TABLE 4. Performance of algorithms in terms of additions, P = 2, N = 2M .

TABLE 5. Performance of algorithms with respect to flops, N = 256.

FIGURE 2. Flow graph for the input-pruned DST computation Measured
running time (milliseconds) of the algorithms per window for N =

256 and varying p.

We implemented all tested algorithms on a laptop with
Intel Core i7-2630QM and 8 GB of RAM using MATLAB
R2016a. To guarantee statistically correct results, we repeated
all experiments 100 times and calculated the average runtime
result for each algorithm. Fig. 2 shows the runtime perfor-
mance of the algorithms.

It can be noted that the theoretical results are in good
accordancewith the experimental results presented in Table 5.

There are several types of DST [2], [3], which are suitable
for processing different signal models. In this paper, fast
hopping DST algorithms have been suggested for only one
type of discrete sine transform (DST-I). The same approach
can be used to design fast hopping algorithms for other types
of DST, which will efficiently handle different signal models.
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V. CONCLUSION
Recursive equation between three adjacent equidistant DST
spectra was obtained with the help of the z-transform. Using
the recursive equation, input-pruned DST and properties of
sinusoidal functions, two fast hopping DST algorithms have
been proposed. The complexity of the hopping algorithms
was compared with that of known fast and sliding DST
algorithms. For the proposed algorithm ALG-1, the length
of the hopping window can be arbitrary, determined by the
characteristics of the processed signal. For the window length
of a power of 2, the algorithm ALG-2 outperforms fast and
sliding DST algorithms in a wide range of parameters. It was
also shown that the obtained theoretical results are in good
agreement with the presented experimental results.
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