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ABSTRACT Over the past years Spiking Neural Networks (SNNs) models became attractive as a possible
bridge to enable low-power event-driven neuromorphic hardware. SNNs have a high computational power
due to the implicit employment of the biologically inspired input times. SNNs employ various parameters
such as neuron threshold, synaptic delays, and weights in their structures. However, SNNs applications are
still limited and elementary comparedwith other neural network architectures such as the ConvolutionNeural
Networks (CNNs). In this research, a new SNN-based model named Adaptive Threshold Module (ATM)
and its algorithm are proposed. The proposed ATM and algorithm depend on the adaptation of the internal
spiking neuron threshold level. Adapting the threshold of the neurons is employed to control the spiking
neuron firing rate to uniquely extract the main features of the input pattern that is in the shape of spike
trains. It is shown that this technique works as an automated feature extraction method of input patterns
in an efficient and faster way than other methods. The proposed method can preserve all information of
the input spike trains. Simulations of the proposed model and the algorithm, using the challenging speech
TIDIGITS dataset, sound RWCP dataset, and Poisson distribution spike trains, show encouraging results.
The ATM can make SNN provide an accuracy surpassing that of the current state-of-the-art SNN algorithms
and conventional non-spiking learning models.

INDEX TERMS Spiking neural networks, adaptive threshold, features extraction, speech encoding.

I. INTRODUCTION
For more than half of a century, numerous models and
structures of Artificial Neural Networks (ANNs) were con-
sidered as the cores of data processing automation in the
fields of artificial intelligence and machine learning. ANNs
passed to remarkable progress in the recent years after the
milestone advances in the Deep Neural Networks (DNNs)
with their learning algorithms [1], [2]. Moreover, ANNs are
expected to be progressively engaged in many real-world
applications to solve and ease human’s daily life problems.
Generally, all ANNs models are computational models that
emulate the real biological neural networks in the brains
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of different living organisms. Mainly, an ANN structure is
represented by a network contains processing units which are
called artificial neurons. The neurons are interconnected via
weighted connections that representing artificial synapses.

In the last two decades, more biological and realistic
models of ANNs called Spiking Neural Networks (SNNs)
emerged powerfully in research [3]. SNNs are considered
the third generation of ANNs and have high computational
and biological likely properties [4]–[6]. Recently, distinct
SNN models were proposed to suit the requirements of
real-world applications [6]–[9]. However, few models are
fully biological because of their expensive computations as
the Hodgkin–Huxley model [3]. On the other hand, many
models are biologically realistic with fewer computations
in different level degrees [5], [6], [10]. Moreover, SNNs
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have high computational capabilities due to the employment
of various biologically inspired parameters like the inputs
which are in the shape of spike times. Additional effective
parameters are employed as the neuronal threshold, synaptic
delays, and weights which are implicit in SNN structures [6].
However, various SNN models and structures are utilized as
multi-layers or even state-of-the-art deep neural networks.

On the other hand, over the past few years, DNNs mod-
els and algorithms had arisen very fast. Generally, DNNs
give a massive push to the whole field of artificial intelli-
gence and have become a standard for solving many of the
most complex real-world machine learning problems [1], [2].
However, to solve more advanced real-world problems using
DNNs, growing demand for computing and power resources
is necessary and unavoidable. Therefore, to employ DNNs
on embedded systems still a long way dream for sci-
entists, where available resources are still limited. Thus,
SNNs attract widespread interest as powerful models and
lower computation neural networks due to their event-driven
and low-powered characteristics, especially in hardware and
neuromorphic implementations [11]–[16]. Unfortunately, the
utilization of SNNs still limited to simple applications com-
paring to DNNs despite that SNNs have various benefits over
other ANN such as the famous Convolution Neural Networks
(CNNs). Moreover, research is scant for a full deep SNNs
which can work head-to-head with CNNs. Thus, mixing both
SNN models with the concepts of DNNs can develop high
advances for ANNs research.

Therefore, researchers proposed various models to accom-
plish deep SNNs models in two main ways. First, convert-
ing the traditional CNN partially into an SNN by changing
several parameters of the CNN [9], [17]–[22]. However, the
generated neural networks are not pure SNN. That leads
to the loss of much of SNN capabilities. Therefore, these
models still suffer from the complexity of the computations
inherited from the original CNN models. Second, building
fully SNN-basedmodels and algorithms for feature extraction
and learning may have the same functionality and benefits as
deep learning models while consuming fewer computations.

In this research, a new SNN-basedmodel mainly composes
of the Adaptive Threshold Module (ATM) with its adapta-
tion algorithm is proposed. The ATM and its algorithm are
based on the structure and parameters of SNNs. The adaptive
algorithm is based on the adaptation of the internal threshold
of the ATM spiking neurons. Thus, the main idea is that
adaptation of the threshold level is employed in multiple
stages of theATM to control the firing rate of spiking neurons.
Consequently, by adapting the threshold levels of the neurons,
the output firing frequency is controlled. This leads to the
extraction of the input pattern features and information. The
real-world input patterns are preprocessed and introduced
into the ATM module in the shape of spike trains in the time
domain.

Simulations show that this model not only works as a
feature extraction of the input pattern, in a way almost similar
to the CNN convolution and pooling layers but also with

fewer computations. Moreover, the ATM preserves all infor-
mation of the input spike train by exploiting the adaptation
of threshold levels of spiking neurons. Simulations of the
proposed SNN and its learning algorithm are done and show
that the algorithm has encouraging results.

The following sections of the paper are arranged as fol-
lows: Section II contains a general explanation of the SNN
models. Section III contains related models for the research.
Section IV contains a detailed explanation of the proposed
adaptive threshold and the learning modules. In Section V,
the simulation results of the proposed model and analysis of
these results are discussed.

II. SPIKING NEURAL NETWORKS MODELS
The structure of an ANN and the functions of its neurons have
the main effect on the learning algorithm and the accuracy of
results. ANNs have various algorithms and models that range
from simple networks to the most complex and powerful
DNNs [23], passing through the famous multi-layer ANNs.
From the learning point of view, ANNs may be divided into
supervised and unsupervised learning. Furthermore, ANNs
may be categorized according to their dependency on biolog-
ical structures such as the SNNs or non-biological such as the
multi-layer ANN. However, the biologically plausible neural
network models get rising trends in the last two decades [6].

Understanding the SNNs models, including the spiking
neurons’ function, structure, and way of communication is a
vital step for successful modeling of any related model as in
this research. In the SNN, pre-synaptic neurons send infor-
mation to post-synaptic neurons through electrical pulses
known as action potentials or spikes. These spikes travel
from neurons to others through synapses that connect pre-
and post-synaptic neurons. The synapse is considered one of
the main players in the learning rules of all neural network
models. The learning process is mainly done by changing
the synaptic strengths which are known as weights of the
synapses. The main important characteristic of the SNNs is
the implicit usage of spike times as the main input infor-
mation. Therefore, the time of a spike that passes from a
pre-synaptic neuron carries information through one or more
synapses towards post-synaptic neurons. Thus, for every
spike received by a post-synaptic neuron, it accumulates its
membrane potential according to the SNN model.

However, various SNNs structures and algorithms were
proposed to adapt the requirements of theoretical research
and real-world applications [3], [5], [6], [8], [9]. SNNneurons
have many computational models as the Leaky Integrate and
Fire (LIF) neuron [3], the Spike Response Model (SRM) [5],
and the Izhikevich model [10], among many others. These
models are regularly used for real-world applications due to
their realism in both computational and biological character-
istics. However, in this research a linear approximation of the
SRM is employed rather than the original SRM. That approx-
imated SRM is linear to simplifies the mathematical analysis
of the proposed model with no effect on the performance and
biological concepts as proofed by the author [7].
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FIGURE 1. A spiking neuron excited by spike trains as inputs and fires
output spikes. Each vertical line represents a spike at a specific time. All
input spikes transmit from pre-synaptic neurons (are not shown in this
figure) into the post-synaptic neuron.

As shown in Fig. 1, input spikes from pre-synaptic neu-
rons are fed into a post-synaptic neuron. Each of those
input spikes contains information in its time. Additionally,
information is represented as the time between any two
consecutive spikes is called the Inter-Spike Interval (ISI).
Consequently, the post-synaptic neuron fires output spikes
at different times when it reaches a predetermined threshold
value from below [6]. However, real-world patterns, such as
speech signals, images, and other analog signals, should be
converted because they are not represented originally in the
shape of spikes in the time domain. Thus, there exist many
methods to convert values into suitable spikes input [6], [24].

III. RELATED WORKS
The learning of SNNs is done by changing one or more
of its parameters as synaptic weights, synaptic delays, and
the threshold level of the neuron. The diversity of learn-
ing parameters is one strength of SNNs over other types
of neural networks. However, like in most of ANNs learn-
ing algorithms, SNNs learning methods employ synaptic
weights as the principal learning parameter. Various super-
vised [6], [25], and unsupervised Spike-Timing-Dependent
Plasticity (STDP) [26], [27] learning algorithms had been
proposed which employed SNNs synaptic weights as the
principal learning parameters. Delays of the synapses had
been used as extra and supporting variables for the learning
task [6], [28]–[31].

Like in this work, extensive research showed that gener-
ating of spikes in an SNN can be modeled by adapting the
threshold of its neurons besides other parameters such as
synaptic weight [22], [32]–[41]. Various research showed that
the increase of variability of neuron threshold is proportional
to the increasing in the input spikes firing rate [42]. Also,
a few neuromorphic hardware was built to achieve the rela-
tionship between threshold and firing rate [36]. An experi-
ment that had been performed in vivo showed that threshold
variability plays a crucial role in the information transfer
process in the brain of electric fish [43], [44].

Mainly, researchers use two approaches in model-
ing adapted threshold approaches: (a) adaptation of the

incremental change of the threshold potential level according
to the input spike on a particular time; and (b) adaptation
in the neuron potential using changes in synaptic weight,
during training, while assuming a constant spiking neuron
threshold [42], [45], [46].

In this research, a novel model that exploits the adaptation
of the spiking neuron threshold for real-world applications is
proposed. The proposed model considered that the variability
of the spiking neuron threshold has to include the history of
the occurrence of input spikes times and their accumulated
potentials.

Various research utilized the changes in the SNN param-
eters in various terminologies. One of these terminologies is
neural Intrinsic Plasticity (IP). IP has gained growing concern
from the computational perspective [47]–[51].

IP is a self-adaptive mechanism that can adapt the SNN
response to input stimuli by employing parameters of the
neurons. Thus, it plays an important role in temporal coding
and improving the learning and convergence behavior for
different SNN structures. IP is essential in achieving the
dynamics of neural circuits [47] as it allows spiking neurons
to transmit the maximum amount of information. The highest
entropy may measure this amount of information to their
outputs with a constrained degree of firing activity. It was
observed in various types of biological neurons, as visual
cortical neurons, that IP can change the response of neu-
rons through regulating their intrinsic parameters such as
voltage-gated channels [52], [53].

In [47], the authors proposed that SNN dynamics may
depend on the interaction between IP parameters such as
synaptic weights and time intervals. IP can change both
synaptic weights and the intrinsic membrane properties of
neurons. They showed that neurons with complex temporal
dynamics could provide short-term memory approaches that
rely solely on intrinsic neuronal properties. They represented
that IP may aid in the long-term regulation of intrinsic neu-
ronal properties. They proved that memory in the SNN results
from the interaction between variations in synaptic weights
and intrinsic membrane properties.

In [48], the computational behavior of a feed-forward SNN
(SFNN-IP) was studied based on brain-inspired IP membrane
potential adaptive technique to adjust the intrinsic excitation
capability of each neuron. They presented that the learning
rule can regulate the neural activity for different quantities
of external input. The training started from a conventional
ANN using backpropagation. Afterward, the rate-based neu-
rons were converted into spiking neuron models with the
IP learning. Results confirmed that both over-activation and
under-activation of neuronal response could be avoided dur-
ing the computations.

In [49], an SNN approach, based on STDP + IP learn-
ing rules, was developed for Liquid State Machine (LSM)
with a biologically inspired self-organizing network. The
STDP + IP was based on two neural plasticity learning rules.
The model may optimize the computational performance,
with the intrinsic features of dynamical memory and recurrent
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synapses. The STDP learning rule adapted the connectivity
among neurons; meanwhile, the neuronal excitability degrees
were adapted to provide a moderate average activity level
by an IP learning rule. The threshold for generating spikes
was distinct for each neuron. Results showed that the neural
network learned with the STDP + IP approach has better
entropy and high signal propagation than the other networks.

In [50], an IP mechanism, depends on threshold level, was
applied to a multi-layer SNN. The IP mechanism adapted the
firing rates of neurons at a steady level while maximizing the
information entropy. They showed that the IP rule affected
the network classification accuracy at a high level and the
convergence speed was greatly enhanced.

In [51], they proposed an approach, named SpiKL-IP,
which focused on the limitations of other IP rules. They devel-
oped the SpiKL-IP to enhance the entropy of the output firing
rate distribution of each spiking neuron by regulating the
output firing rate into an optimal distribution. By employing
IP tuning, SpiKL-IP adapted the intrinsic values of a spiking
neuron while reducing the divergence between the desired
distribution and the actual output firing rate distribution.
They showed that SpiKL-IP could effectively operate in a
real-time way under heterogeneous inputs and network situ-
ations. Simulations demonstrated that SpiKL-IP was applied
to different neurons or as a portion of a larger SNN effectively
produced the target distribution. Estimation of the approach
for real-world speech and image recognition tasks proved its
remarkable performance and recognition accuracy.

One of the main points in ANN algorithms is the time
of convergence to the correct results with high accuracy.
Moreover, feature extraction is vital for results accuracy.
Recently, deep learning becomes the state-of-the-art of
many audio classification tasks [54]. In deep learning algo-
rithms, especially Convolutional Neural Network (CNN),
feature extraction consumes much time because of the
tremendous number of the learning parameters employed
in the multiple convectional layers. Nonetheless, revolution-
ary developments in deep learning models show state-of-
the-art performance in ASR starting from the significant
milestone achievements in acoustic modeling [55]–[57] with
the aid of DNNs [58]. Moreover, DNN significantly outper-
formed state-of-the-art methods in Automatic Speech Recog-
nition (ASR) such as Hidden Markov Model (HMM) [59].
As an example, CNN was applied to audio modeling in a
way that applied the convolution across time windows of
audio frames to recognize the audio stream into classes [56].
They applied CNN to ASR where a limited-weight-sharing
algorithm was employed to enhance speech features mod-
eling. The proposed approaches have reduced the error by
6% − 10% compared with DNNs on the TIMIT dataset.
However, the final CNNs were quite complex and employed
over 4 million parameters. Therefore, compared to CNN, the
proposedmodel consumes much fewer parameters for feature
extraction and classification.

Furthermore, as a significant point, CNN is not a desir-
able model for ASR because of the nature of audio signals

and their features. Audio signals depend on temporal fea-
tures besides the spatial features. On the contrary, CNN
offers excellent achievements in image recognition research
because of the nature of images which mainly depend on
spatial features. Thus, in most of the ASR research, speech
signals inputs to CNNs are converted into spectrograms
(spectrum images) to deal with speech signals as input
images [56], [57].

If a model can represent any set of input features as images,
then CNN can classify them. Therefore, the magnitude
spectrograms obtained via Discrete Fourier Transformation
(DFT) of audio signals are used as the input to CNNs
when used for audio classification. Because spectrograms
are 2D images, the audio classification problem may be
treated similarly to a regular image classification prob-
lem using a CNN. However, [60], [61] showed that CNNs
are better suited than DNN and Long Short-Term Mem-
ory (LSTM) networks for the ASR. Although it is not
straightforward to compare state-of-the-art models in ASR
because of the variety of datasets and evaluation methods,
CNNs seems to perform better than other types of classifiers
for ASR.

Recently, end-to-end models were considered in deep
learning for ASR. However, these algorithms still are not
suitable for real-time ASR applications because of their
large model sizes and computation complexity [62]. On the
contrary, SNNs models and algorithms offer challeng-
ing tools for temporal tasks such as ASR because they
can directly deal with temporal features besides spatial
features.

However, it much rather compares the ATM with recur-
rent neural networks (RNNs). RNNs capture the appropriate
temporal patterns in consecutive data, such as audio sig-
nals, to enhance their recognition accuracy. RNNs architec-
ture layers can hold the memory of past parts of an input
sequence. Besides, the long short-term memory (LSTM)
networks have special hidden units, called gates, that can
regulate the amount of information to remember or forget in
the input sequences [63]. Other ASR studies using the LSTM
networks showed notable accuracy enhancement compared
to state-of-the-art DNN models. In [64], researchers applied
a deep LSTM architecture in the ASR over a large vocabulary
set. They found that deep LSTM is superior to baseline DNN
models. This LSTM is successful in an end-to-end speech
learning method for large English and Mandarin Chinese
datasets. In [65], researchers performed extensive experi-
ments using various LSTM architectures for ASR and com-
pared the performance to state-of-the-art models. The LSTM
model is extended in [66] to a bidirectional LSTM (BLSTM)
which was set on top of convolutional layers to enhance
the ASR accuracy. Moreover, including attention enabled
LSTM algorithms to outperform pure RNNmodels. An atten-
tion algorithm, called Listen, Attend, and Spell (LAS), was
used to encode, attend, and decode, respectively. The LAS
appraochwas usedwith LSTM to enhance speech recognition
accuracy [67].
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FIGURE 2. The proposed SNN model. The ATM is for extracting features of the input spike
trains into spatiotemporal outputs. The classifier is for clustering these input spatiotemporal
spikes.

IV. MODEL STRUCTURE
The main idea of the proposed ATM model depends on that
the SNNs have many parameters that can be used for feature
extraction and learning tasks. One of these parameters is the
threshold level of a spiking neuron. The model exploits the
adaptation of the spiking neuron threshold as the fundamental
technique for feature extraction. The model employs the vari-
ability of the spiking neuron threshold to include the history
of the input spike times occurrence in an input spike train.

The model is composed of two main stages: the ATMs and
the classifier modules as shown in Fig. 2. A flowchart of the
proposed model is shown in Fig. 3. First, the spike trains from
a preprocessed input pattern are fed into the cascaded ATM
stages. These stages and their spiking neurons are similar in
structure and function. As shown in Fig. 2, the input pattern
is a combination of spike trains that result from converting
real-world input patterns into spike trains, like the example
shown in Fig. 4. Therefore, the ATM stages extract the timing
information of the input spike trains and convert them into
a pattern composed of spatiotemporal spikes. Finally, those
spatiotemporal patterns are applied into the classifier which
is trained using a local semi-unsupervised learning algorithm
for clustering the input patterns according to their clusters [6].
In the following subsections, I introduce a detailed descrip-
tion of both the ATM and the classifier modules. These two
modules, shown in Fig. 2, are composed of spiking neurons
with different characteristics.

A. THE ADAPTIVE THRESHOLD MODULE (ATM)
The main contribution of this research is the ATM and its
adaptation algorithm. For every input spike train, the feature
extraction process takes place in multiple stages of the ATM,
as shown in Fig. 5.

In this research, the adaptation of the threshold of the ATM
neurons in each stage occurred to achieve two main objec-
tives. The first goal is to preserve the uniqueness between
all input patterns (spike train times) information and the final

FIGURE 3. Flowchart of the proposed model.

spatiotemporal output during the feature extraction process.
The second goal is to reduce the number of output spikes
in each stage, which leads to reducing the number of the
required stages for the feature extraction process. In this
way, by stepping deep into ATM, the feature extraction is
accomplished.

Mainly, in most of the SNNs research, a spiking neu-
ron threshold level is kept constant according to simulation
calculations or to some predetermined settings [3], [5], [6].

97370 VOLUME 9, 2021



H. H. Amin: Automated Adaptive Threshold-Based Feature Extraction and Learning

FIGURE 4. An example of a preprocessed real-world pattern (signal). The
signal is converted into and represented by multiple spike trains.

Therefore, if the neuron threshold level is assigned to a low
potential, then the firing rate of the output spikes is very
high with no much information can be extracted, especially
when input spikes are close in time or burst mode inputs.
In contrast, if the neuron threshold level is assigned to a
high potential, time information represented by the input
spike times maybe not be detected, especially when input
spikes are distant in time. In this case, information may be
lost from the input spike train. In both cases, the output
spikes are not accurately reflecting information in the input
spike train pattern. Hence, the uniqueness between input and
output is missed. Therefore, to overcome those problems,
an adaptation of the threshold level of the neuron should
be involved through the SNNs encoding process. Therefore,
an adaptation of the threshold should exploit the input spike
times, inter-spike intervals (ISIs) between input spikes, and
the mode of input spikes. However, the mode of spikes is the
average ISIs between neurons that may be low or distant in
time. Thus, the adaptation of the neuron threshold level has
to follow how the input spikes contain information.

As shown in Fig. 5, an input spike train is fed into the first
neuron L1 in the ATM. The spikes of the input spike train
are represented by times ti1 to tiN . The time of the earliest
spike, ti1, is used as a reference time for all next spikes in
all stages. Consequently, the output of the ATM neurons is
another spike train that contains fewer spikes compared to
the input spike train. Undoubtedly, the output spike times are
generated at later times to the input spike train times. Thus,
as shown in Fig. 5, output spike times are toN > . . . > to1 >
tiN > . . . > ti1, and the same for all the later output spikes.
The process of the ATM neurons is repeated in all stages
until one output spike is achieved in one of the ATM stages.
Thus, this single spike time is a unique representation of the
input spike train times. However, the number of levels of

the ATM stages should be adjusted in simulations to achieve
this target. The reason behind this is that input spike trains
are not similar in both the number of spikes and inter-spike
interval distribution. Therefore, at a certain level of the ATM,
there would be a single output spike. Thus, some of the
ATM neurons may continue for the next few stages with just
passing through.

To achieve the stated properties, the adaptation of the ATM
employs a spiking neuron model with an excitatory potential,
as in Eq. (1),

vj(t) =
n∑
i=1

wiα(t − ti)

α (t) =
t
τ
e(1−

t
τ
) (1)

where vj represents the spiking neuron post-synaptic poten-
tial, wi represents the input synaptic weights from the
pre-synaptic neurons i, ti represents the input spike arrival
times. α(t) is the SRM potential function as shown in Fig. 6
as an exponential function and τ represents the time constant
of the exponential function which is the decay time constant
of the synapse.

Post synaptic potential, described in the literature, such
as the exponential α(t) function can be reformulate as a
bi-exponential function can be expressed as (exp(−t/τ1) −
exp(−t/τ2) [68]. However, the SRM function is simplified
using the bi-exponential function concept for the reason of
linear implementation [6] as in Eq. (2),

α(t) ≈


τ1t if ti ≤ t < ttop
1 if t = ttop
−τ2t if ttop < t ≤ tmax
0 otherwise

(2)

where τ1 and τ2 represent the time constants of the rising and
decaying parts, respectively, of the linear potential function
shown in Fig. 6. The times ttop and tmax represent the time of
the peak and vanish, respectively, of the potential which has
been arisen due to the spike at time ti. However, as shown in
Fig. 6, both functions are almost the same by adjusting the
parameters of Eq. (2).

As shown in Fig. 7, a preliminary demonstration for one
of the ATM neurons. The threshold level is increased pro-
portionally with the increase of input spike times. Thus, the
adaptation of the threshold value of the neuron follows a
proposed formula represented in Eq. 3,

ϑth (ti) =
δ.ti

ti − ti−1
+ ϑth (ti−1) (3)

where δ is a small constant which controls the rising of the
threshold value and it is in the range 0 < δ < 1. ti− ti−1 is the
ISI between the last two consecutive spikes in an input spike
train. ϑth(ti−1) is the last known adapted threshold value that
is applied from the spike at time ti−1 until a new spike come
at time ti then it is changed to ϑth(ti) on time ti. However,
an initial ϑth(0) is applied at the time of first spike (t1).
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FIGURE 5. The ATM stages. Each ATM stage receives a spike train as an input and outputs another spike train that in turn is submitted into
another ATM stage. In every stage, a neuron adapts its threshold level independently of other neurons. The number of spikes is reduced in every
stage until generating one spike at the final stage.

Equation (3) implies that the increase of the threshold
level is inversely proportional to the ISI between the last
two consecutive spikes, (ti − ti−1). Thus, if the ISI between
any two successive spikes is short in time, i.e. burst mode
spikes, there is a need for much increasing of the threshold
level to reduce the number of output spikes. In contrast, if the
ISI between any two successive spikes is long in time, then
there is a need for a small increase of the threshold level to
transfer all possible information from input to output spike
times. In that way, the main idea is achieved as the ISIs in an
input spike train are short in time then there is a big chance
for multiple output spikes. On the other hand, if the time
between spikes is broad, there is less chance for output spikes.
Moreover, Eq. (3) implies that when the ISI time between
two consecutive spikes is too large, the increase in threshold
value is almost zero. More adjustment of the threshold level
is controlled using the δ parameter that has a great rule during
the threshold adaptation process. δ may change from one
neuron to another as shown in Fig. 5. More discussions are
in the experimental results section. To preserve information,
the adaptation of the threshold level is proportionally relative
to the input spike time, ti.
In that way, features of the input patterns are extracted

during multiple stages of the ATMs. Thus, the final output
spikes are almost in the shape of a spatiotemporal pattern
instead of the complex input spike train patterns.

B. CLASSIFIER LEARNING ALGORITHM
Fig. 8 shows the classifier that is the last stage of the whole
proposed model, as shown in Fig. 2. The SNN classifier con-
sists of spiking neurons that are working differently compared
with the ATM neurons. The main differences are that, dur-
ing the learning process in the classifier, the input synapses
weights are modified, and the threshold level of its neurons
is set to a constant potential level. Its final outputs represent
clusters of the input patterns. Each cluster is represented by
more than one ISI unit according to the behavior of the input
spike times [6]. As shown in Fig. 8, the input to the classifier
is a spatiotemporal spike pattern, which is the output of the
ATM. This pattern is applied to the classifier module that
works as a local semi-unsupervised SNN for clustering input
patterns [6], [7].

FIGURE 6. The original spike response function (the dashed line) and its
approximation.

The learning in the classifier is done by changing the
synaptic weight values using formulas as in Eq. (4) [7]:

wi = β1 × ti;

wi = β2/ti (4)

where β1 and β2 are constants with values less than one.
These constants are employed during the learning process for
limiting the increase of the synaptic weight values that are
adapted according to input spike times ti. The main unit of the
classifier is the ISI unit shown in Fig. 9. Each of the ISI units
consists of two spiking neurons. However, both formulas in
Eq. (4) are used for changing the weight values wi of the two
spiking neurons in the ISI unit. Moreover, the algorithm is
considered a local learning algorithm that uses the changing
the weight values according to the times of input spikes ti
[6]. As shown in Fig. 9, the use of two neurons with different
weight changing techniques is to keep a unique relationship
between inputs and outputs [7]. However, the two spikes, the
output from each ISI unit, are allied with one spike for the
sake of cluster output using a coincident detector [6].

The learning in the classifier is a local semi-unsupervised
clustering algorithm where there is no prior knowledge of
the number of clusters of patterns, while their inputs are
labeled patterns according to their classes. Thus, the learning
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FIGURE 7. An example shows one of the ATM neurons. The upper part represents an ATM
neuron with a spike train input (vertical green pulses) to that ATM neuron and outputs
another spike train (vertical black pulses). The lower part represents the adaptation of the
threshold of that ATM neuron (red stair line) with each of the input spikes. The changes in
the ATM neuron potential are represented by blue lines. When the neuron potential passes
the adapted threshold level, from blew, an output spike fires at this time (black arrows show
these points).

FIGURE 8. The classifier with spatiotemporal spikes inputs represented
by vertical lines. Each ISI unit outputs two spikes due to the learning
method. These final two spikes are collected using a coincident detector
to generate only one output.

method operates by adding one neuron for each new cluster
and approximate any other pattern to the closest cluster [6].

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, various experiments are conducted to demon-
strate the feasibility of the proposed model. Moreover, the
experiments are carried out to cover and discuss all needed
adaptation of the model parameters. The proposed model and
algorithm are demonstrated using codes written from scratch
and simulated using the Matlab software.

FIGURE 9. One of the classifier ISI units. Vertical lines represent input
and output spikes. Each ISI unit contains two neurons called ISI1 and ISI2
that learned using (4).

In these simulations, the employed datasets are converted
to various types of spike trains. These spike trains are applied
as inputs to the ATM. Consequently, the spatiotemporal
spikes outputs of the ATM are clustered by the classifier.

In the following subsections, the simulations are as fol-
lows: First, a preliminary example to describe the method
and to discuss the ATMparameters. Second, complex Poisson
spike train patterns with different rates are used as input
patterns. Finally, real-world datasets of speech and sound
signals are used to compare with other models’ accuracy.

A. PRELIMINARY EXAMPLE AND ATM PARAMETERS
ANALYSIS
Figure 10 illustrates the idea of the ATM using an example
with an input spike train contains nine spikes shown by nine
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FIGURE 10. ATM input/output exa mple. Nine input spikes (vertical green
spikes) are mapped into two output spikes.

green vertical lines on the time axis. In this example, the
input spike train features are extracted by one neuron of the
ATM into only two output spikes at times 1.48 and 3.80 Sec.
represented by the dropped blue vertical lines. Generally, the
output spikes are released when the neuron potential crosses
the threshold level from below [6]. The adapted threshold,
illustrated by a dashed stair red line, is adapted according to
the input spikes and other parameters, as stated in Eq. (3).
Consequently, in every neuron of the ATM stage, the same
process is repeated until one spike is out.

It is recognized from Fig. 10 that the output spike times
increase during extraction in the ATM, and the quantity of
spikes decreases while there is an increase in the threshold
level from one stage to another. This is predicted because
the adapted threshold is proportional to the input spikes
times which increase from one stage to another. Therefore,
the parameters in Eq. (3) should be modified to assess that
decrease in the number of spikes and the increase of the
threshold level from an ATM stage to another.

Therefore, consider the synaptic weights are constant
between the ATM stages, the main parameter that should be
adapted is the δ parameter in Eq. (3). The δ value has to
increase when going from one stage to another in the ATM
module. Moreover, as shown in Fig. 12, the time constants
of the rising (τ1) and decaying (τ2) of the potential function
Eq. (2) has to decrease when going from one stage to another
in the ATM. Thus, the potential function Eq. (2) has to be
broader to cover the increase of the ISI from one stage to
another due to the encoding process. That decrease is done
because the inter-spike intervals between spikes grew wider
due to the reduction of the number of spikes from one stage
to another in the ATM.

To achieve these adjustments, a method is proposed to
adjust the time constants (Eq. (2)) in each stage of the ATM.
It is proposed that the slope of the time constants be inversely
proportional to the maximum inter-spike intervals, ISImax,
of the input spike train for each of the ATM stage neurons.
Thus, in each stage, the ISImax is recalculated, then the time
constants are changed according to it. However, to reduce the
computations for real-time applications, ISImax is calculated

only in the first stage, then constant decreases may be applied
in the following stages as shown in Fig. 11. It is recognized
that the slopes do not noticeably change after some stages,
because ISI grows broader in spike trains in the later stages
of the ATM. However, as the frequency of input spikes
increases, the ISI is smaller for a constant spike train length.
Therefore, as shown in Fig. 11, the steady slope in the lower
frequencies (100 Hz) starts in earlier stages than for higher
frequency inputs (300 Hz).

On the other hand, in Eq. (2) δ increases linearly through
the ATM stages. The initial value is chosen as a small value,
δ = 0.1 and it increases by a tiny constant value (around 0.05)
in each following stage in the ATM.

To overcome the increase of the threshold values, from one
stage to another, it is proposed to reset the time of the first
spike for each stage in the ATM. In that way, the first spike
time in each stage is initialized to 0. Analysis of this approach
is discussed in the following subsection.

B. POISSON SPIKE TRAINS
Spike trains with various Poisson distributions are generated
to demonstrate the proposedmodel using complex input spike
trains distributions. The Poisson distribution spike trains with
predetermined rates (frequencies) have been discussed and
commonly employed in theoretical research [3], [69]–[71].
Moreover, the inner parts of the human ear receive the
frequency and strength of sound sources and generate
spike trains through an inhomogeneous Poisson encoding
process [71].

In this experiment, the spike trains are generated using
various rates and time lengths to emulate real-world prob-
lems such as speech, images, and human activities [72]. The
generated spike trains have diverse points of challenge. For
instance, the ATM outputs, which are spatiotemporal patterns
fed into the classifier, are not similar even for spike trains with
the same distribution and same time lengths. This variability
of the spatiotemporal patterns shows one of the strengths of
the SNN and the proposed ATMwhere some inputs may have
no input spikes within a predetermined duration. However,
in this simulation, no refractory time is used to preserve all
information. As an example of the generated spike trains,
Fig. 13 represents spike trains are generated using Poisson
distribution at a frequency of 50 Hz and length of 300 mSec.

Generally, spike trains are represented as a set of pulses
occur at specific times with an abstracted shape and duration.
Therefore, in the numerical simulations, time is discretized
to 1 msec bins, where each bin contains either pulse (spike) or
nothing in the spike-driven simulations. Some other numeri-
cal simulations use zeros for no spike and ones for a spike in
the suitable bin. In this research, the simulations depend on
the latter method because it is a more biological spike-driven
one.

To demonstrate the proposedmodel and its algorithm using
one of the generated Poisson spike trains, Fig. 14 represents
an example of full ATM stages from the input spike train
until generating one spike at the final stage. The shown
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FIGURE 11. Variations of time constant (τ1 and τ2) slopes through the ATM stages for different input frequencies. When moving
through the ATM stages, the slope decreases. The slope is calculated for random spike trains with various frequencies: 100 Hz, 200 Hz,
and 300 Hz. In the right-bottom figure, the time constant slope for higher frequency 300 Hz is less than slopes for 200 Hz and 100 Hz
in order.

FIGURE 12. The variations in time constants τ1 and τ2 through the ATM stages. When going further in the ATM stages, the potential function
gets broader to cover the increasing spacing in ISI of spikes trains.

example employs an input spike train which is generated
randomly using 200 Hz Poisson distribution at times t =
[22 42 48 50 53 56 58 76 82] with a length of 100 mS and
the initial threshold set to 0.7 V with an initial δ = 0.1.
Figures 14 (a) to (e), represent a sequence of ATM neural
stages to extract features using threshold adaptation. As stated
earlier, many parameters of Eq. (3) and Eq. (4) should be
treated in each stage. As an instance, the rising τ1 and decay-
ing τ2 time constants of the neuron potential decrease from

one stage to another. That is predicted as the time spacing
between output spikes from one stage to another is wider.
Thus, first τ1 and τ2 are both with hight slope values to
detect the burst in the input spikes (Fig. 14 (a)). Then, in the
next stages, they must be broad in time (less slope) to detect
multiple spikes at one output (Fig. 14 (d) and (e)). Moreover,
for the same reason, to adjust the increasing of the threshold
value, an increase of the ATM parameter δ is carried out.
Figure 15 illustrates the same example as in Fig. 14 but with
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FIGURE 13. A set of spike trains generated by poisson distribution of a
firing rate (frequency) 50 Hz and a 300 mS period.

resetting the input spike reference time for each stage to
be zero. Thus, all spike times in each stage input train are
referenced by its first spike. As shown in Fig. 15, in this
way, there are a couple of improvements over the previous
example. First, fewer stages may be employed in the ATM
module to extract the final feature spike time. That is because
new time values arise in each stage as it is counted each
time from zero. Besides, the increase of threshold is less than
the previous example, as stated in Eq. (3). In this way, the
increase of the synaptic potential is less than the previous
example due to fewer spike time values are used. However,
the parameters change considerations for Eq. (3) from one
stage to another still as in the previous example.

Table 1 represents simulation results of 4000 generated
patterns per each Poisson distribution. These patterns are
divided into 70% for training while the other 30% are for
testing tasks. Each pattern consists of 20 spike trains with
the same rate. Therefore, the ATM outputs 20 spikes as a
spatiotemporal pattern to the classifier. The classifier receives
those 20 spikes as one input pattern to cluster it properly.
As shown in Table 1, the output for each rate is divided
into four clusters according to the spike train lengths. From
these results, it is shown that the model can deal with various
complexities of patterns.

For a fair comparison with other models, I have compared
to research using available online codes and resources with
suitable changes to fit inputs types. As shown in Table 2,
Poisson spike trains with the frequency (300 Hz) are used
for this comparison. It is shown that the proposed ATM
has accuracy comparable and challenging to other models.
However, some of these methods accept input spike trains as
it with no conversions [51]; while others such as [73] and [74]
accept the inputs in the shape of spectrograms (images).
Furthermore, models of [73] and [75] show better training
accuracy and closer testing accuracy as shown in Table 2

TABLE 1. Training and testing results of the proposed algorithm.

TABLE 2. The comparisons for 300 Hz poisson distribution patterns
(average accuracy for 4000 patterns).

while their time complexity and the number of employed
parameters are much larger than the ATM due to the recurrent
and deep layers included in these models.

C. AUDIO SIGNALS RECOGNITION
Auditory signals are good candidates for testing SNNs due
to their continuous, dynamic, and time properties. Compared
with static image datasets, speech datasets are more similar
to real-world stimuli. However, employing the audio sig-
nals datasets in research is much less compared to image
datasets. Moreover, static image datasets, such as the famous
MNIST [77], have no implicit time information required
for pattern classification using the SNNs. This provides
motivations to employ audio datasets that implicitly con-
tain spatiotemporal information. Moreover, datasets have
to be general and complex enough to simulate real-world
problems.

Most studies of audio recognition are optimized for spe-
cific objectives. Specifically, in the SNN applications for
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FIGURE 14. An example of the ATM stages and feature extraction of an input spike train (with original input times are used).

speech recognition [78], Mel-Frequency Cepstral Coeffi-
cients (MFCCs) are frequently used as the spectral repre-
sentation for speech recognition. Other researchers tried to
employ a biologically plausible cochlear filter bank, but they
are either analog filters [79], or were studied in a spike-driven
SNN system [80]. Moreover, [81] successfully implemented
a silicon cochlear for event-driven audio sensing.

In this section, the experiments are based on two remark-
able audio datasets: TIDIGITS [82] and RWCP [83].

The TIDIGITS [82] is a speech dataset of spoken words
for speaker-independent speech recognition. The speakers
are of both genders with different ages (adults and children)

and various American English accents. Thus, the corpus
provides sufficient speaker diversity and becomes the most
common benchmark dataset in ASR research. It contains a
vocabulary of 11 spoken words of isolated digits where each
utterance has one individual spoken word, including ‘0’-‘9’
and ‘oh’. Each word in the TIDIGITS is repeated 450 times,
where 2464 (224 × 11) and 2486 (226 × 11) isolated words
utterances for the training and testing set, respectively. How-
ever, in the study of neuromorphic computing, there are
other speech datasets such as the N-TIDIGITS [84] that
was designed for SNN benchmarking, but it is relatively
small compared with the TIDIGITS. Thus, the TIDIGITS
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FIGURE 15. An example of ATM stages and feature extraction of an input spike train (with input times referenced in each stage to
zero).

dataset is employed as one of the main benchmarks for ASR
research [85]–[87].

The RWCP dataset [83] is a non-speech natural sound
dataset recorded in an anechoic room composed of sound
samples with rich and diverse frequency components.
Therefore, there is a diversity of natural environmental sound
categories in this dataset. The sound signals are available in
RAW format (16 kHz and 48 kHz, 16 bit, Mono). Therefore,
the RWCP dataset provides real-world schemes as sounds
cover broader frequency ranges than speech. Each RWCP
clip is encoded into several spike trains representing one
pattern. Ten types of sounds were selected for the simulations
from the RWCP dataset. Each type has 40 sound instances,
where 20 samples are used for training and the other 20 sam-
ples for testing. Those instances are sounds of bells, bottle,
buzzer, cymbals, horn, kara, metal, phone, ring, and whistle
because they have a relatively longer time than other sounds
in the RWCP dataset.

As shown in Fig. 16, the classification task of typical pat-
terns, including audio patterns, consists of three main stages:

the encoding of real-world signals, feature extraction, and
pattern classification. Therefore, the encoding scheme may
significantly simplify the duty of the following classification
task. The method proposed in [88] is employed to encode
the input audio stimulus into spike trains. That method uses
a Mel-spaced tuned filter bank with special function filters.
These filters respond to transient changes in the input signals.
They can detect onsets, offsets, and peaks of transient changes
in the input signals [88]. The output of these filters passes pre-
determined levels from below, above, and maximum critical
value, respectively.

Comparisons between the testing result of the proposed
model and other state-of-the-art methods for the RWCP
dataset are shown in Table 4.

In this experiment, all onset, offset, and peak output
times of each filter, belonging to a filter bank consisting
of 20 band-pass filters, are used. Thus, the filter bank gen-
erates outputs of 20 spike trains. Consequently, These spike
trains are used by the ATM to extract their features. The filter
bank center frequencies are up to 8 kHz for speech signals
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FIGURE 16. A schematic diagram represents encoding, feature extraction, and clustering of audio signals.

FIGURE 17. A word six from the TIDIGITS dataset recorded by an adult
male and its conversion into 20 spike trains using 20 filter banks.

in the TIDIGITS dataset, with each filter having a bandwidth
of 400 Hz. For the sound signals of the RWCP dataset, the
filter bank center frequencies are up to 16 kHz, and each filter
has a bandwidth of 800 Hz. Finally, the output of the ATM,
in the shape of spatiotemporal patterns for the various audio
utterances, is used as input patterns for the classifier.

Using the proposed encoding scheme for both datasets,
each pattern in the datasets is finally converted into a spa-
tiotemporal pattern that can be classified based on one spike
per input. It indicates that when information is encoded in
both temporal (spike time) and spatial (one spike per neu-
ron) domain, the encoding scheme can project the inputs to
another dimension, which takes some of the workloads of the
subsequent classification stages. Thus, dimension reduction
using the ATM stages is necessary for the classifier to cluster
different audio categories. If the experiments are performed
directly on the input spike trains of the audio signals, the SNN
classifier is unable to classify such low-level spatiotemporal
spike patterns, and only achieves very low classification accu-
racy for spike patterns [89].

An example of the TIDIGITS dataset is shown in Figure 17
for the speech signal and its equivalent 20 spike trains using

TABLE 3. Comparisons between the testing results of the proposed
model and other methods for TIDIGITS dataset.

the employed filter bank method. After extracting the fea-
tures in all spike trains using the ATM, the spatiotemporal
spike patterns are fed into the classifier. The classifier uses
a temporal learning rule to fire spikes for patterns from the
desired cluster while remaining silent for patterns of other
clusters. In these experiments, the number of output clusters
is 11 that equals the number of speech classes. It is found by
simulations, each word needs an average of 4 ATM stages
for converting 20 spike trains into a spatiotemporal pattern
contains 20 spikes.

Comparisons between the testing results of the proposed
model and other state-of-the-art methods for TIDIGITS
dataset are stated in Table 3.

As shown in Table 3, it is encouraging to note that the pro-
posed model achieves an accuracy of 97.64%, which is com-
petitive with other bio-inspired and deep learning models for
the TIDIGITS dataset. It is noticed that the traditional RNN
based system offers a competitive accuracy of 97.90% [84].
However, the proposedmodel is fundamentally different from
traditional RNN learning approaches in many aspects such
as input method and training complexity. Moreover, the time
complexity of the RNN is much higher than the proposed
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TABLE 4. Comparisons between the testing result of the proposed model
and other methods for the RWCP dataset.

ATMmodels due to the multiple recurrent stages in the RNN
model. The inputs in the ATM are direct spike trains, while
inputs in the traditional RNN are spectrogram images [84].

Although modern ASR learning techniques perform fairly
fine under noise-free conditions, it is a challenging task for
these techniques to recognize audio signals accurately in
noisy surroundings. To discuss this problem, I investigate
training of the proposed model using noisy audio signals. The
reason for such a technique is that with training examples
gathered from various noisy backgrounds, the model may be
improved to extract unique features and become robust to
noise. This procedure was proven to be efficient for different
ANN models with a reasonable trade-off in performance for
clean sound data [93]. Here, I investigate its generalizability
to the proposed model under noisy environments.

To estimate the accuracy and robustness of the proposed
model, different levels of Gaussian noise, measured by
Signal-to-Noise Ratio (SNR) in dB, are added to the original
speech signals. Figure 18 shows the classification accuracy
under different noise levels and for noise-free conditions.
Moreover, Fig. 18 represents a comparison between the dif-
ferent number of filters in the encoding filter bank. It is
noticed that using fewer filters, 10 filters, leads to less accu-
racy compared to the employing of 20 filters. The reason is
that when using a few filters, the bandwidth of each filter
increases. In the case of 10 filters, the bandwidth for each
filter is 800 Hz instead of 400 Hz in the case of 20 filters.
Thus, the result shows lower accuracy when using 10 filters.
On the other hand, when increasing the number of filters
to 40, there is no remarkable accuracy increase. However,
increasing the number of filters leads to an increase in com-
putation complexity and hardware implementation costs.

Comparisons between the testing result of the proposed
model and other state-of-the-art methods for the RWCP
dataset are shown in Table 4.

As shown in Table 4, the proposed ATM model achieves
a test accuracy of 99.50%, which is competitive with other
deep learning and modern SNN-based models. However, the
CNNmodels are trained using spectrogram images instead of
directly modeling the temporal characteristics of speech sig-
nals. Despite the CNNs high accuracy on this dataset, it may
be challenging to use them in the recognition of audio signals

for a long period as the temporal structures will be changed
unpredictably due to the mandatory rescaling of the spectro-
gram images [97]. On the other hand, RNN and LSTM mod-
els can extract the temporal characteristics directly. However,
these models are hard to train for long-time audio signals due
to the vanishing and exploding gradient problem [98]. The
LSF-SNN and The LTF-SNN [95] classified the audio signals
indirectly by recognizing the spectral characteristics in the
spectrogram images, and then converting these characteristics
into a spatiotemporal spike pattern for classification by an
SNN classifier. Thus, comparing to the previous models, the
ATM can extract the key features embedded in the audio
signals directly in a more biologically plausible way.

D. COMPUTATIONAL COMPLEXITY OF THE ATM AND
CLASSIFIER
In this section, I provide discussions and analysis for the
results in terms of model performance and computation
complexity.

Themain concern is that the threshold values are calculated
for each of ATM neurons while their membrane potentials are
updated accordingly.

In each of the ATM neurons there are two different types
of computations. The threshold is updated with respect to
input spike times using Eq. (3), while the neuron potential
is recalculated at every time step in simulation using Eq. (2).
Therefore, according to Eq. (3), at each spike ti in the input
spike trains, in addition to some fixed parameters like τ1, τ2,
and δ, the ATM neurons calculate the current update amount
of the threshold ϑth(ti) based on the spike input times ti and
ti−1, and previous threshold ϑth(ti−1). Moreover, according
to Eq. (2), at each time step it regulates the changes of the
neuron membrane potential according to τ1 and τ2 to change
the firing behavior of neurons. On the other hand, as stated
previously, for the whole ATM neurons, τ1, τ2, and δ are
updated from one neuron stage to another.

In general, the input dimension of the ATM is consistent
with the dimension of the input spike trains. Therefore, the
amount of computation brought by the ATM threshold in
Eq. (3) and the potential update in Eq. (2) is proportional to
the number of neurons in the ATM na, number of input spike
trains T , and the average number of spikes in these input spike
trains Savg; then the computational complexity of the ATM is
O(2 · na · T · Savg).

For the classifier, only the weights are changed locally for
each neuron while the other parameters, including the thresh-
old level, β1, and β2 are kept constant during the learning pro-
cess. Thus, assuming the number of classifier neurons is nc,
the computational complexity of the classifier is O(2nc · T ).
because the calculations are done twice according to Eq. (4).

Moreover, regarding the time of simulation, if the number
of used time bins are b. All the ATM plus the classifier
calculation are repeated for each bin time.

As a numerical example, assume T = 20, Savg = 100,
na = 4 stages ×20 neurons in each stage, and nc = 250,
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FIGURE 18. The training accuracy for the TIDIGITS dataset using different signal-to-noise ratio and different
numbers of filter banks.

then the needed calculations are 320,000 for the ATM
and 10000 for the classifier as a maximum.

Thus, in the case of ASR, the proposed ATM has two main
points of advantages over CNNs: 1. The preprocessing of the
input signals is done using fewer transformations, so more
accurate information is transferred to the output especially for
real-time applications. 2. The feature extraction is done more
simply from the input signals to the final output, as shown in
examples.

VI. CONCLUSION
In this research, a new SNN model is proposed using the
powerful capabilities of spiking neurons. The two main tar-
gets are: model applicability for real-time applications, and
using input spikes with no much conversion to keep the input
information as possible.

In this model, the ATM is proposed to extract the main
features of input patterns before being clustered by the clas-
sifier module. As the input patterns are in the shape of spike
trains, the extraction is done according to a particular algo-
rithm and parameters. This algorithm leads to unique output
times representing time features in the input spike trains.
The proposed ATM mainly depends on the adaptation of the
neuron threshold to make the extraction follow biological
rules. Demonstrations of the proposed method are done using
multiple spike trains with different Poisson distributions and a
real-world audio dataset.Moreover, the classification of those
input patterns is done using an SNN classifier attached to the
end of the proposed model. Promising results and discussions
are shown for demonstrating the capabilities of the proposed
model and algorithm.

Although the results proved quite illuminating and compet-
ing with other state-of-the-art models such as CNN and RNN,
the model is in its first shape and needs more effort. However,
future work has to be done to enhance the model. The model
has to be modified to deal with more complex and long-time
audio datasets such as the TIMIT dataset.
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