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ABSTRACT In-vehicle communication systems are usually managed by controller area networks (CAN).
By broadcasting packets to their bus, the CAN facilitates the interaction between Electronic Control Units
(ECU) that coordinate, monitor and control internal vehicle components. With no authentication mechanism
for identifying the legitimacy and source of packets, CAN are vulnerable to cyber-attacks. An Intrusion
Detection System (IDS) can detect attacks on CAN and machine learning can be used to create the models
for the IDSs to detect non-linear attack patterns. However, car manufacturers and owners might want
to keep the sensitive information required for training the models confidential. Therefore, we proposed
a Blockchain-based Federated Forest Software-Defined Networking (SDN)-enabled IDS (BFF-IDS) to
address the problem of data sharing the sensitive CAN data. To ensure scalability, we used InterPlanetary
File System (IPFS) to host the models, and the blockchain is designed to store only a hash of the model
and a pointer to its location. The SDN provides the dynamic routing of packets and model exchanges. We
used Federated Learning (FL) to create a random forest model. Individuals provide partially trained models,
allowing them to keep the underlying data confidential. Using Fourier transform, we decomposed the CAN
IDs cycle from CAN bus traffic in the frequency domain for better generalization in multiclass detection
of attacks. Multiple statistical and entropy features were extracted to handle the high complexity and non-
linearity in CAN bus traffic. The proposed system allows manufacturers and car owners to contribute to the
training of the models, as their sensitive data is protected. By storing hashes of the models on a blockchain,
the risk of adversaries poisoning the models is reduced and a single point of failure is avoided. We evaluated
the proposed system by conducting experiments on a testbed.We found that the proposed system has efficient
use of memory and CPU resources and that the detection rate of closely related attacks was high.We recorded
the highest model attack detection rate of about 0.981.

INDEX TERMS Blockchain, CAN, federated learning, intrusion detection system, in-vehicle network,
random forest, SDN.

I. INTRODUCTION
In the modern transportation system, In-vehicle communica-
tion systems are managed by controllers know as controller
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area networks (CAN). The CAN facilitates the interaction of
20 to 100 Electronic Control Units (ECU) that coordinate,
monitor and control loads of internal vehicle components
such as engine system, brake system and telematics system
through the exchange of information among the systems [1].
Nevertheless, the exchange of information within the CAN
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bus system has exposed it to external threats which can harm
the vehicle and car users [2], [3]. CANworks by broadcasting
packets to its bus, which means all nodes and ECUs attached
to the bus can receive all transmitted packets. However, nodes
and ECUs have no authentication mechanism for identifying
the legitimacy or source of packets. making them vulnerable
to attacks. When CAN is compromised, one can easily inject
malicious messages to ECUs that can trigger physical action
such as steering and braking, or manipulation of speedometer
display information [3], [4]. The attacks on the In-vehicular
network can be analyzed in terms of attack surface and attack
vector [5]. In the attack surface aspect, the attack is launched
directly through the On-Board Diagnostic II (OBD-II) port
or indirectly through firmware such as the media player. For
example, a case was reported of a successful breach of CAN
through OBD-II port and firmware (MP3) in a car thief and
vehicle control [5], [6]. In terms of attack vector, attacks can
be launched through the vulnerability of the Bluetooth pro-
tocol that supports in-vehicle audio video navigation (AVN)
systems, or remotely by the exploitation of the communica-
tion channel between a telematics module and a smartphone
application [5].

To protect the CAN, the IDS is considered one of the best
solutions due to its simplicity and efficiency in detecting
attacks [7]. Machine learning for the IDS would be adequate
in learning non-linear attack patterns. However, the method
of training the IDS is still a challenge as car manufacturers
and owners are skeptical to share such sensitive information.
Thus, the question remains on how to facilitate collaboration
for the training of the IDS model by car manufacturers and
owners to build a resilient model without risking any harm
to their privacy and security. Besides, efficient Inter-Vehicle
communications (IVC) in modern transportation is essential
as it plays an integral role in enabling vehicles to share
information in an ever-evolving network complexity.

IDS for CAN has been trained using local data samples
(traditional learning, TL), i.e., the method proposed training
of a model for a single car [4], [8], [9]. Even though [10]
proposed continuous cloud service for smart vehicles that
enables IDS for improving quality of service (QoS) and qual-
ity of experience (QoE), the IDS were locally trained on each
vehicle. In contrast, this research addresses the drawback
of training each vehicle’s local model by using federated
learning (FL) instead.

One main challenge of the local model is that local data
samples generated by CAN are owned by each vehicle and
automakers offer limited support for sharing the data with
other automakers’ vehicles. In addition, car owners too may
be reluctant to share information due to privacy concerns.
To keep training data private, Google proposed a federated
learning where each device can exchange its local model
update, i.e., weight and gradient parameters, without shar-
ing a data sample or inferring the data sample from the
local model updates. The federated learning utilizes a cen-
tral server for the aggregation of the local model updates,
yielding a global model update that can then be downloaded

on devices/systems. However, due to the exchanges, tens of
minutes in latency are procured and vulnerable to a single
point of failure as a single server is dedicated for aggregation
[11]. Also, the system is vulnerable to a single point of failure
as a single server is dedicated to aggregate the models. To
address these shortcomings, Hyenum Kim [12] proposed the
integration of blockchain with Federated Learning (BC-FL).
The BC-FL architecture enables the device to exchange their
local model and updates while aggregation is conducted by
each node after downloading the model’s updates from the
blockchain. However, this method is very expensive con-
sidering the size of the parameter being exchanged over
the blockchain as more gas/ether (in Ethereum for instance)
would be needed.

Hence, in this study, we proposed a blockchain-based
federated forest SDN-enabled intrusion detection system
(BFF-IDS) for an in-vehicle network to address the problem
of sharing sensitive CAN data. The federated learning system
creates a random forest model in a distributed manner by
aggregating partially training models. The system provides
a relatively cheaper solution compared to other systems as it
uses IPFS to store the model by the hash of the model location
is store and exchange over the blockchain. In addition, we
proposed SDN to provide the dynamic routing of packets and
model exchanges from IPFS through the blockchain. Since
car manufacturers do not provide information regarding CAN
actual identifiers and data, we utilized the CAN IDs sequence
to detect intrusion [13]. CAN IDs cycle sequences were
extracted and transformed using Fourier transform (FFT)
to decompose the cycle in the frequency domain for better
generalization inmulticlass detection of attacks (fuzzy attack,
DoS attack, Impersonation attack and attack-free state). We
employed multiple statics and entropy features to handle the
high complexity and non-linearity in CAN bus traffic. We
evaluated the system using precision, recall F1-score and
accuracy and compared our proposed system performance
with other works based on accuracy. The main contributions
of the proposed system are summarized as follows:

1. We proposed a blockchain-based federated forest for
SDN-enabled intrusion detection in an In-vehicular network.
To the best of our knowledge, this is the first system to utilize
the integration of blockchain, SDN and federated learning for
an In-vehicle IDS.

2. We created a testbed that enables the training and testing
of the model using the Ethereum blockchain and Mininet
emulator on a local environment.

3. We extracted statistical and entropy features that suc-
cessfully provided distinct features for multiclass intrusion
detection. Our model evaluation results showed a supe-
rior performance against the TL approach and other model
machine learning models.

The remainder of this paper is organized as follows:
In the next section, we discuss the related literature. In
section 3, federated learning and problem formulation is pre-
sented. Section 4 presents the concept of blockchain-based
SDN-enabled IDS, including themethodology, algorithms for
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TABLE 1. Related works on the can IDS.

data preprocessing, feature extraction and FL training and
testing. The results, discussion and conclusion are presented
in sections 5, 6 and 7, respectively.

II. RELATED WORKS
The vulnerability of the in-vehicle network poses a great deal
of threat not only to the driver’s or passengers’ safety but
to the society at large. The surge in urbanization and the
dependence on the intelligent system by society is increasing
the urgency on which we need to act to ensure safety as we
turn to the smart city to drive our societies in the coming era.
Therefore, both industry and academia have been working to
provide solutions to the security threat facing the In-vehicle
network.

Since the use of CAN ID identifiers and data is not an
option due to the security concern by the manufacturers
making them unwilling to share, attack detection using other
means such as CAN ID cycle, unique number of CAN ID,
etc., as against the use of semantic features is the most
effective means. Efforts have been made in the utilization of
the transmission pattern of the ECU in the data link layer
of the CAN bus. Recently, cosine similarity was proposed
for the detection of three forms of an anomaly in CAN bus
[14]. Lightweight feature vectors for real-time detection were
designed and tested on different cars. In addition to CAN ID
fields in the CAN message, the number of messages, sum of
DLC and bandwidth of the CAN bus were used as features.
Deep Convolutional Neural Network (DCNN) was proposed
for the utilization of the CAN ID field to detect attacks
through the analysis of CAN traffic patterns [13]. An opti-
mized model was developed to solve the complexity problem
while achieving a high accuracy rate. A study also proposed
the detection of attacks based on the entropy of CAN bus
traffic to distinguish normal traffic from malicious ones [15].
The proposed method shows significant performance for
different attack scenarios. Similarly, another study utilized
entropy to detect attacks based on the volume of forged CAN
messages [16]. Meanwhile, time intervals of CAN messages

were deployed to detect three forms of message injection
attack [17]. Similarly, [18] used the time interval in detecting
attacks based on the time changes in CAN bus traffic. Using
unsupervisedmethods (ARIMAandZ-score) packet drop and
packet injection attack types were effectively detected using
the time interval. The CAN bus frequency-based methods
have also shown significant results. For instance, another
effort survival analysis of CAN IDs frequency was proposed
for the detection of the three forms of attack against the CAN
bus [5]. The method showed a better detection rate against
CAN IDs with a short cycle. Another paper explored fre-
quencies of packets to detect anomalies by sliding window to
measure the inter-packets timing [19]. In addition, another set
of researchers explored statistical analyses for the detection
of anomalies fromCAN IDs frequencies [20]. Besides, clock-
wise, remote frame, network time protocol (NTP) and ID
sequence based features have also been proposed for intrusion
detection in CAN [21]–[24]. The summary of the related
works is as shown in Table 1.

III. FEDERATED LEARNING AND PROBLEM
FORMULATION
A. DEFINITION OF FEDERATED LEARNING
The idea behind the innovation of the federated learning
concept is to facilitate the building of a model based on a
distributed data set across multiple devices while preventing
data leakage [25]. Given data owners, {N1 . . .Ni}, who wish
to build a strong model by the consolidation of their data
( 1 . . . i), conventionally train the model, MSUM , by com-
bining the data, = ( 1∪. . .∪ i). However, in the fed-
erated learning concept, the owner collaboratively trains the
model, MFL ., in such a way that any data owner Ni does
not reveal its data i to others while ensuring that its per-
formance, PFL , is close to that ofMSUM model performance,
PSUM . Formally, given δ as a non-negative real number, if

|PFL − PSUM | < δ (1)

the federated model is said to have δ -accuracy loss.
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Federated learning can be categorized based on the distri-
bution nature of the data [25]. Let matrix i defines the data
held by owner i with each row in the matrix representing a
sample. Let F, Y, and J denotes feature, label and sample ID
space, respectively. The training dataset is thus constituted
as (F, Y, J). Based on how the data is distributed among the
subsets, the feature and sample ID space, Federated learning
can be classified as horizontal federated learning, vertical fed-
erated learning and federated transfer learning. In horizontal
federated learning, the data sets have the same feature space
but different samples, while in vertical scenario the datasets
have the same sample ID but share different feature space.
On the other hand, federated transfer learning designates a
situation where the dataset differs in both samples and feature
space.

B. PROBLEM FORMULATION
In this work, we focused on the horizontal federated learn-
ing aspect. The dataset was distributed among K parties
N1. . .Nk . Only a subset of the data k ⊆ with Nk samples
are utilized by k th party, where k ∈ [1, k]. We assumed that
the data points in allocated to any distinct parties N1. . .Nk
are disjoint, i.e, 1. . . k are partitions from . The main
goal was to build a detector from the complete dataset while
minimizing δ-accuracy loss.

We employed federated forest i in this study to build an
accurate intrusion detection model. The model built was such
that (1) a partial model forest model was built and held by
each miner Mi, 1 ≤ i ≤ K ; (2) complete model, MFL ,
was aggregated at each user end while minimizing δ-accuracy
loss.

IV. BLOCKCHAIN-BASED SDN-ENABLED IN-VEHICULAR
NETWORK INTRUSION DETECTION SYSTEM
Due to the immense global population growth in the cities, the
architectural design of the network of smart cities is increas-
ingly faced with challenges in terms of latency, scalability,
network bandwidth usage data privacy and security [26].
These challenges need to be addressed for the sustainability
of the smart city networks. Besides, the IoT network, which
is part of the smart city’s composition, is envisioned to pro-
vide an efficient and scalable trust management system with
authentication and authorization based on the centralized
and distributed concept for local and global infrastructure,
respectively [27]. Inspired by [27] and [28], [26] proposed
a hybrid architecture that guarantees scalability in smart city
networks using blockchain and SDN. Meanwhile, connected
vehicles, being one of the entities in the smart city, should
be equipped with IDS that can intercommunicate through the
hybrid system. Hence, we took the advantage of the hybrid
architecture to propose and build a scalable IDS network for
effective collaboration in ensuring resilient federated learning
that benefits from the abundant island of data available across
the transportation ecosystem.

Our proposed hybrid architecture with the scalable IDS
network is as presented in Figure 1. Algorithm 1 is the

implementation of the testbed. The architecture of the net-
work is divided into three planes based on the SDN – the
data plane consisting of the vehicles that host data, the control
plane that manages the communication of the In-vehicle IDS
through blockchain, and the application plane which consist
of the authorities saddle with the system management. In the
data plane, each vehicle is assumed to be a node with gener-
ated data that can be harness to train IDS models. Models
are exchanged over a blockchain network managed by the
SDN. The blockchain network consists of miner nodes with
high computation and storage resources, which are responsi-
ble for creating blocks and verifying proof-of-Authority. We
proposed the use of mobile network infrastructures as the
mining nodes since the infrastructure is in place and has high
computational and storage resources. Considering the cost of
uploading models or model weight over the blockchain, we
proposed the used of IPFS to upload the model while the
hash is exchanged over the blockchain. This way, the only
cost incurred will be for the cost of some bytes to the size
of the hash. Authenticated nodes (users) who wish to use the
model can download the hash to gain access to the models
at the end of the mining process. The models are aggregated
(federated) at the user end. The nodes at the data plane
are SDN controller-enabled to reduce hardware management
costs, and to ease deployment in the network infrastructure
with high agility and security. The application plane consists
of critical stakeholders such as network management agen-
cies, identification/key providers for participants, and threat
intelligent agencies that oversee the identification of attack
trends and policies.

A. BFF-IDS FOR IN-VEHICLE NETWORK
For security reasons, car manufacturers do not provide infor-
mation regarding CAN actual identifiers and data. Thus, the
utilization of CAN IDs sequence pattern is the most effective
way to detect intrusion since semantic features are unavail-
able [13]. Figure 2 presents the overview of the proposed
BFF-IDS. The system consists of five main steps- data pro-
cessing, feature extraction, model training, model exchange
and model aggregation. The detail of each step is illustrated
below.

1) CAN BUS DATASET
The attack scenarios considered in this study include
threats that are capable of manipulating in-vehicle nodes
remotely/physically by the injection of unauthenticated
or malicious messages in the CAN bus. We used the
CAN-intrusion dataset (OTIDS) that is publicly provided by
the Hacking and Countermeasure Research Lab at Korea
University [22]. It was created by logging CAN traffic on a
real vehicle via the OBD-II port of KIA SOULwhile message
injection attacks were conducted. The classes of traffic pro-
vided in the dataset include fuzzy attack, DoS attack, Imper-
sonation attack and attack-free state. DoS attack traffic was
created by injecting messages in a short cycle using ‘0×000’
CAN ID, Fuzzy Attack was generated by injecting messages
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FIGURE 1. The proposed blockchain and federated learning framework for SDN-enabled in-vehicle IDS architecture.

of spoofed random CAN ID and DATA values, while an
impersonation attack was created by injecting messages from
an impersonating node with arbitration ID, ’0×164’. Attack-
free traffic was recorded from normal CAN messages.

These attack types are partly considered in this study
because of the devastating consequence they have on the
CAN. For instance, a simple Fuzzy attack can override nor-
mal functions or reset internal conditions of the vehicle by
filling awhole range of functional CAN identifiers on the bus;
the packet flooding by DoS attack can enable a compromised
node to indefinitely declare dominant status, denying access
to other legitimate nodes; impersonating attack maliciously
takes the role of the target node and cause the vehicle to
display unintended states with no clear causes [22].

2) DATA PREPROCESSING
In the data preprocessing, the CAN IDs sequences are first
extracted and numbered accordingly to extract CAN ID

cycle- A cycle is considered as the interval at which a par-
ticular CAN ID occurred again after its first appearance [5].
The data is then grouped by CAN IDs in order to calculate the
cycle of each unique CAN ID using the assigned sequence
numbers as a feature. The order of the data is then reset to
the original sequence after calculating the cycle as presented
in Algorithm 2. The CAN IDs cycle is used as input for the
feature extraction step.

3) FEATURE EXTRACTION
The packets traffic stream continuously in the CAN bus,
therefore messages are not explicitly segmented into sub-
fragments associated with the transmission pattern of the
CAN ID. Hence, we segment the cycle into several samples
of equal length by sliding a window of fixed length through
the entire traffic. The window is parameterized by window
length, l, and step length, s. Fourier transformation is then
applied to observe the cycle in the frequency domain and
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FIGURE 2. Overview of the federated forest-based intrusion detection scheme.

measure the sequence of occurrence in the traffic pattern
for the various attacks. Very little information is lost when
Fourier transformation is applied to the CAN IDs cycle as
it uses all parts of the cycle waveform to translate it into the
frequency domain [29]. The fast Fourier transformation, y(k),
of length N for the sequence xn of the length, N, is given as:

y(k) =
N−1∑
n−1

xne−2π j
kn
N (2)

Due to the high complexity and nonlinearity of the CAN
bus datasets, we employed various statistical and entropy
measures to reduce the dimensional space of the data. The
combination of several feature extraction measures will pro-
vide the most distinctive and informative feature sets for
effective detection. Algorithm 3 presents the feature extrac-
tion steps adopted in this study.

Statistical features provide the most characteristic values
that define the distribution of the transform cycles. The statis-
tical features extracted include minimum, maximum, mean,
standard deviation and two high-order statistical (HOS) fea-
tures. The HOS-based features (skewness and kurtosis) assist
in quantifying the nonlinear behavior of the random cycle pat-
tern in the CAN dataset [30]. The Skewness feature provides

the normalized third-order moment of a random cycle in each
window’s distribution. It indicates the degree of asymmetry of
the distribution around its mean and the results are given in
terms of positively skewed, negatively skewed or not skewed.
Meanwhile, the Kurtosis offers the normalized fourth-order
moment of a random cycle in each window’s distribution. A
high kurtosis value in a distribution indicates that the data is
heavily tailed (large number of outliers). A low kurtosis value
on the other hand indicates a small number of outliers. In
general, although the first-order and second-order are crucial,
HOS are needed to provide a better characterization of the
CAN IDs cycles. The measures are express as follows:

1. Minimum value in each cycle sub-fragment:

Fmin = min
i∈y

y(k)i (3)

2. Maximum value in each cycle sub-fragment:

Fmax = max
i∈y

y(k)i (4)

3. Mean of the cycle in each window sub-fragment:

Fmean =
1
l

l∑
i=1

y(k)i (5)
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Algorithm 1 BFF-IDS (Testbed)
1 (I) Blockchain Initialization:
2 (a) Network creation:
3 Miner nodes, n1. . . ni and user node n1 . . . nk
4 in the peer-to-peer network
5 (II) SDN Initialization:
6 (a) Create network topology based on the Blockchain
7 network:
8 Function NetworkTopology(number_of_host):
9 for i range of number_of_host do:
10 node [‘‘ ni’’]← addhost( ni)
11 end
12 for i range of number_of_host do:
13 node [‘‘ ni’’]← addhost( ni)
14

15 end
16 for i range of number_of_host do:
17 node [‘‘Swi’’]← addwitch(Swi)
18 end
19 links← [‘‘ ni’’, ‘‘Swi’’]
20

21 links+ =[‘‘ ni’’, ‘‘Swi’’]
22 for pair in links do:
23 addswitch( node[ pair[0]
24 node[ pair[1])
25 end

end
26 (III) IPFS initialization:
27 (a) initialize IPFS nodes
28 (b) bootstrap IPFS nodes
29 (c) start instance of IPFS daemon
30 (d) connect to the instance in (c) via ipfsapi:
31 IPFSinstance ← ipfs.connect()
32 (IV) Federated Forest-Training:
33 (a) Through SDN node: lunch the blockchain nodes created
34 in (I)
35 (b) Build the models with the miners:
36 Using Algorithm 4: Federated Random Forest-Training
37 (miner)
38 (V) Upload Model to IPFS:
39 (a) upload to IPFS the partial forest model, i:
40 IPFS IPFSinstance.add( i)
41 (b) Obtain the model IPFS location ‘‘Hash’’ and
42 ‘‘Name’’:
43

44 hash IPFS [‘‘Hash’’]
45 name IPFS [‘‘Name’’]
46 Repeat hash, name
47 (VI) Federated Random forest-Aggregation:
48 (a) Download the partial federated model path from
49 the blockchain via the SDN user node
50 (b) download the partial models from IPFS;
51 (c) aggregate partial models:
52 Using Algorithm 6: Federated Random Forest-Aggregation

(user)

4. Standard deviation of the cycle in each window sub-
fragment:

Fstd =

√√√√1
l

l∑
i=1

(y(k)i − Fmean)2 (6)

5. Skewness of the cycle in each window sub-fragment:

Fskew =

1
l

l∑
i=1

(y(k)i − Fmean)3

(Fstd )3
(7)

6. Kurtosis of the cycle in each window sub-fragment:

Fkur =

1
l

l∑
i=1

(y(k)i − Fmean)4

(Fstd )2
(8)

Entropy features measure the degree of uncertainty in
the CAN IDs cycles with higher entropy signifying a more
chaotic system. The entropy can also be used in determining
other parameters such as negentropy, mutual information and
KulbackLeibler divergence nongaussianity. The randomness
in various attack types under study differs from attack-free
traffic. But the fact that we are dealing with 3 classes of
attacks with a close association, different entropy measures
are employed, i.e., Shannon, sample and permutation entropy.
Despite the similarities in the entropy algorithms, the theoret-
ical ideas behind them are different. Shanon entropy is based
on the concept of entropy from information theory in which it
quantifies the magnitude of uncertainty (randomness) in the
dataset in a purely mathematical way, without any knowledge
regarding the source of the data; Sample entropy determines
the complexity of a series of data using an alternative statistic
that quantifies the randomness of the series to correct the
problems of bias and lack of relative consistency [31]. Lastly,
permutation entropy offers a method of calculating the com-
plexity of a chaotic system in the presence of dynamical or
observable noise with high speed, simplicity and robustness,
while ensuring invariance regarding nonlinear monotonous
transformation [32]. The entropies are express as follows:

1. Shanon entropy of each window’s sub-segment given
y(k)i ∈ y(k) and p(y(k)i) is the probability associated with
the values, is defined as:

Fshan = −

l∑
i=1

p(y(k)i) log p(y(k)i) (9)

2. Sample entropy of each window’s sub-segment given
embedding dimension i, tolerance r, number of data points l,
and distance function d[y(k)i(a), y(k)i(b)](a 6= b):

Fsamp = − log
A
B
, (10)

where A is the number of having d[y(k)i+1(a), y(k)i+1(b)] <
r , B is the number of having d[y(k)i(a), y(k)i(b)].

3. Permutation entropy of each window’s sub-segment in
normalized form, given D as the embedded dimension, an
ordinal pattern associated with y(k) defined as the permuta-
tion π = r0r1 . . . rD−1, can be express as:

Fperm = −
1

log l!

l!∑
i=1

πi logπi (11)

4) MODEL TRAINING AND AGGREGATION
Partial models are trained and build by a federating unit
identify as a miner. The miner is assumed to have access to
the framework and contain data from which features were
extracted as described in section IV. Each miner creates a
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local random forest model through bootstrap. During the
training, the miner uses some of its datasets for validation.
Once the training and validation are complete, the model is
uploaded to IPFS, which generates hashes and returns them
to the miner. The miner then uploads the hash and its user
name into the smart contract. For the actual mining of the
model hash into Ethereum, we proposed the use of mobile
communication infrastructure as it has the computing capac-
ity to mine. The training algorithms and smart contract are
presented in Algorithm 4 and 5, respectively. The use of IPFS
is to reduce the cost of hosting the model in the Ethereum
network by simply upload the hash.

In the Model aggregation process, users first obtained the
hash of the models uploaded by miners via smart contract,
then use them to download all the models available or as the
user wishes from the IPFS. After the download is complete,
aggregation is now conducted at the user end, eliminating
the cost of conducting the aggregation in Ethereum. The
aggregation of partial models into a complete federated forest
is conducted as described in Algorithm 6. We built the mod-
els using Sklearn python library implementation of random
forest. As indicated in the algorithm, two major parameters:
estimators (the collection of fitted sub-estimators) and the
number of estimators (the number of trees in the forest) of
each of the partial models are aggregated intoMFL .

5) PERFORMANCE EVALUTION
We evaluated the proposed system training and testing using
precision, recall and accuracy. The accuracy of the proposed
model was compared with other TL machine learning meth-
ods as well as other state of art proposed algorithms. The
evaluation metrics are express as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)

Precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

F1 =
2TP

2TP+ FP+ FN
(15)

where TP, TN, FP, FN are the number of true-positive cases,
true-negative cases, false-positive cases, and false-negative
cases, respectively.

V. EXPERIMENTAL RESULTS
A. TESTBED EXPERIMENTAL RESULTS
The testbed was run on a VM host that runs a Linux OS
(Ubuntu). The SDN emulator, Mininet, was configured to
simulate the WAN, CPU and RAM allocated by the VM.
Table 2 presents the environmental parameters. The CPU
and RAM (MEM) performances were investigated based on
traffic between peers of many nodes connected in ‘‘Double’’
bus topology consisting of miner and user node using the
procedure described in [33]. The measurements were taken

Algorithm 2 Data Preprocessing
Input : Dataset,

Data Features, {Timestep,CANID, RTR, Msg}
Output : CAN ID cycle extraction, CycleIDtoSamples,

1 CalculateCycle(id)
2 Function cyclebyID← (groupbyID[‘‘CANID’’]==id,
3 ‘‘indexAsFeature’’).diff(1)
4 Return cyclebyID
5 Drop {Timestep,CANID, RTR, Msg}
6 Insert index as Column
7 [‘‘indexAsFeature’’] index
8 Group groupbyID← (groupby(‘‘CANID’’, ‘‘indexAsFeature’’).sum()
9 Factorize uniqueCANID←groupbyID

10 cycle_dict←{}
11 for id in uniqueCANID do:
12 cycle←CalculateCycle(id)
13 cycle_dict[str(id)]←cycle(id)
14 end
15 Flatten cycle_dict into list and add to the dataset:
16 cycleID←[item for in cycledict for item in cylcedict[k]]
17 [‘‘Cylce_ID’’]←Cycle_ID
18 Sort dataset back to original sequence:
19 Column_names← [‘‘CAN_ID’’,

‘‘indexAsFeature’’,
20 ‘‘Cycle_ID’’].
21 Cylce_ID←groupbyID.sort_values(by=
22 [‘‘indexAsFeature’’])
23 Window over ‘‘Cylce_ID’’ to extract ID cycle into
24 dataset with 1000 features
25 windowsize←1000
26 CylceIDtoSamples←[ ]
27 for window in Cycle_ID[‘‘Cycle_ID’’].rolling
(windowsize) do:

28 CylceIDtoSamples.append((window)[None])
29 end
30 Return CylceIDtoSamples

during block forging operation for a fixed period of 180
seconds.

To test the CPU and RAM usage, transactions to
the blockchain nodes were generated in a round-robin
fashion- 50 transactions per burst. The bursts occurred every
2 seconds (sleep time) and were repeated for all transactions.
This means that if there are 3000 transactions in 200 seconds,
then the TPS load is 15. In real operation, the round-robin
fashion is clients’ behavior and this allows each client to be
connected to a different node at a time.

The volume of traffic on one host is a good estimation
of the volume of traffic experienced by other hosts [33].
Based on this hypothesis, we measured the performance as
follows: read operation on the blockchain node through the
SDN node was generated to fetch the current height of the
blockchain head; polling state was then attained to wait for
the completion of height increase; after which each of the new
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Algorithm 3 Feature Extraction
Input: Dataset,

CAN ID cycle extraction, CycleIDtoSamples
Output: Extraction features, F←{Fmin, Fmax, Fstd,

Fkur, Fskew, Fshan, Fminsamp, Fperm}

1 Function FourierTransform(cycleID):
2 N←sample.size
3 w←blackman(N)
4 ft←blackman(fft(cycleID∗w))
5 Return ft
6 Function CalculateFeatures(tx, attack_type)
7 Fmin←min(tx), Fmax←max(tx), Fstd←std(tx),
8 Fkur←kurtosis(tx), Fskew←skew(tx),
9 Fshannon←shannon_entropy(tx),
10 Fsamp← sample_entropy (tx),
11 Fperm← permutation_entropy (tx)
12 Return Fmin, Fmax, Fstd, Fkur, Fskew, Fshannon, Fsamp, Fperm

13 Function ExtractFeature(data, attack_type)
14 Extracted_features←[]
15 for row in range(data.shape[0]) do:
16 data_fft←FourierTransform(data[row])
17 feature← CalculateFeatures(data_fft,
18 attack_type)
19 Extracted_features.append(feature)
20 End
21 Return
22 dataset← load_dataset( )

Algorithm 4 Federated Random Forest- Training (Miner)
Input: Dataset on miner i, i

Extracted features F←{ Fmin, Fmax, Fstd, Fkur,
Fskew, Fshan, Fminsamp, Fperm }
Label- attacktype,

Output: Partial Federated forest model,Mi
1 Procedure BuildRandomForest( i, F, attack_type)
2 bootstrap sample of size, N, from the i
3 build recursively random tree, Li
4 selectM variable at random
5 pick the best variable/split-point inM
6 split into two daughter node:
7 leftsubtree←BuildRandomForest
8 ( ′i, F

′
i, Yileft attack_type)

9 rightsubtree←BuildRandomForest
10 ( ′i, F

′
i, Yiright attack_type)

11 unit minimum, ηj, is reached
12 Return tree node,{Li}
13 append{Li} to forest, {Mi }
14 Return Partial Federated forest model,Mi

blocks was added to a counter until the actual height of the
blockchain was reached.

Our testbed utilized Geth, the Go official implementation
of Ethereum. To deploy on a private testnet, Puppeth was used

Algorithm 5 Federated Random Smart Contract

1 Procedure Federated Forest Contract
2 structure Model
3 modelPathipfs
4 mineraddress
5 end
6 structure Miner
7 minername
8 mineraddress
9 end
10 event Upload (mineraddress, index):
11 event Download (useraddress, index)
12 //save miner download address, model indexed
13 mapping(address => uint256) miner_model_index
14 //model track all model from user
15 mapping (address => mapping(uint256 =>Model))
16 allmodel
17 Function Upload_model(modelPathipfs, minername)
18 index←miner_model_index[msg.sender]
19 allModel[msg.sender][index]
20 ←Model(modelPathipfs, msg.sender)
21 emit upload (msg.sender, index)
22 Return true
23 Function get_model_path(mineraddress, index)

24 Return allModel[mineraddress][index].modelPathipfs
25 Function get_model_minerName(mineraddress, index)

26 Return minerDetails[mineraddress].minername

Algorithm 6 Federated Random Forest- Aggregation
(User)
Input : Models downloaded by the users,Mi← [M1..

Mi]
Output : Complete aggregated Federated Random

forest,MFL
1 Function FederateRandomForest(M1,M1)
2 M1.estimator_ + =M2.estimator_
3 M1.n_estimator←len(M2.n_estimator)M1.
4 Return
5 mineraddress← [Maddr1. . .Maddri ]
6 modeldownloaded←[ ]
7 For miner in mineraddress do:
8 //from smart contract
9 downloadpath
10 ←contract.get_model_path(Maddr1, index)
11 // from IPFS
12 downloadmodel← IPFS.get(downloadpath, index)
13 modeldownloaded .append(downloadmodel)
14 end
15 MFL←Reduce(FederateRandomForest, modeldownloaded )
16 Return MFL

to create a genesis block and modified thereafter to enable
its usage in any new experiment. Clique Proof of Authority
consensus algorithm was configured to always set h1 and h2
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TABLE 2. Environmental parameters.

as signer nodes. Based on the algorithm, the nodes alternate
in signing blocks. Before swap operations, only 10 nodes can
run at the same time on the VM. As shown in Figure 3, good
CPU and MEM usage can be achieved with more memory or
reliance on swap operation.

B. FEDERATED FOREST MODEL EXPERIMENTAL RESULTS
1) DATA PREPROCESSING AND FEATURE EXTRACTION
The dataset entails CANmessage frames that consist of CAN
ID, DLC and data fields. Since ECU regularly broadcast
messages, understanding the pattern/interval at the ECU

FIGURE 3. The testbed performance for the various number of nodes in
the Double bus topology (a) CPU over time, (b) Main memory over the
same time.

sends a message can provide insight for our model to distin-
guish various forms of attack in the network. Therefore, we
selected the CAN IDfields to extract our features as described
in section IV. Table 3 provides the composition considered for
our testbed.

FIGURE 4. CAN ID cycles for the classes of attack under consideration.
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FIGURE 5. CAN ID cycles decomposed by fourier transform for the classes
of attack under consideration.

As presented in Algorithm 1, we computed the cycle of
occurrence of each ID in each class of the dataset. Figure 4
presents the pattern of the cycle for each attack class under
consideration. From the plot of attack-free and impersonation
attack packets, the IDs’ cycle of occurrence can be grouped
into 3- short, medium and long cycles- of which the short and
long cycles have the most and least occurrence, respectively.
The DoS and Fuzzy attack packets both have a predominantly
short cycle that shows regular message injection to cause a
denial of service. However, DoS shows a higher frequency
in the cycles. Based on the close similarities between the
attack classes, further transformation is needed to help render
it more distinguishable.

We employed time-frequency analysis-Fourier
transformation- to decompose the CAN ID cycle. The packets
traffic stream continuously, therefore, are not explicitly seg-
mented into sub-fragments associated with the transmission
pattern of the CAN ID. Hence, we segment the cycle into
several samples of equal length by sliding a window of fixed
length through the entire traffic. Thewindow is parameterized

TABLE 3. Composition of the training and test sets.

bywindow length l and step length s. Setting these parameters
required a trade-off between accuracy and delay; and since
our main objective is accuracy, we set the window length
for 1000ms and step length to 1ms to effectively capture the
subtle details considering the close association of the attack
patterns. Figure 5 shows the time-frequency decomposition
of the traffic by Fourier transformation. The transformation
packet traffic shows more distinction between the classes of
the packets.

Our dataset now contains a high-dimensional space of
1000 features after the windowing. To reduce the high-
dimensionality of the data space into low-dimensional space
and effectively harness useful insight, the statistics and
entropies were deployed. The statistical and entropy values
extracted include minimum, maximum, mean, skewness, kur-
tosis and Shannon, Sample, Permutation, respectively. Figure
6 presents the distribution of the extracted features. The
extracted features are quite distinct from each other- the
density of the statistical features is less than 1 range while
that of the entropies is greater than 1.

2) FEDERATED FOREST INTRUSION DETECTION MODEL
PERFORMANCE
The federated forest model training and testing performances
are analyzed in this section. We split the dataset into equal
sample sizes based on the number of miners. The number

FIGURE 6. CAN ID cycles for the classes of attack under consideration (see eq 3-10).
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FIGURE 7. Miner nodes best training performances: (a) 5 miners (b) 10 miners (c) 15 miners (d) 20 miners.

of miners considered for the experiment includes 5, 10, 15
and 20 miners. Each miner trains its model on its data.
At each miner, the dataset was split into training, testing
and validation sets. The overall model was evaluated using
10-fold cross-validation. Figure 7 shows the best training
and validation session alongside the model scalability and

overall score for each miners’ set. For the training session,
the models across all the miners’ sets approximately expe-
rience the same learning progress- the performance started
at more than 0.95 accuracy and progressively improved to
about 0.99. However, the validation performance varied, with
5 and 20 miners’ sets reaching an accuracy of more than
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FIGURE 8. Test performance (a) Average testing performance by each miner on its partial model and local test data (b) Federated forest
performance evaluation for different users and miners.

FIGURE 9. Confusion matrix of the overall best BFF-IDS model (5 miners’
set FL model with 40 users).

0.95 and about 0.93 as the best and least performing models,
respectively.

We conducted separate testing on each of the models.
The average performance for each of the miners’ sets in

terms of precision, recall and F1-score was as presented in
Figure 8 (a). 5 miners recorded the best performance with an
average score of about 0.97 across the performance metrics.
The least average performance of between 0.92 and 0.93 was
recorded by the 20 miners. We associated the huge variation
in performance with the size of training samples- 5 miners
have the highest numbers of samples which provides enough
examples for better generalization. Consequently, 20 miners’
set has the least performance due to the smallest size of
sample among the set of miners.

The train models are then uploaded into IPFS and the loca-
tion hashes into the blockchain. The users access the location
hash from the blockchain network and download the models
from the IPFS using the hash. The aggregation of the down-
loaded models into the federated model is done at the user’s
node. Similar to the miners’ training, the testing dataset is
split into equal samples based on the number of users. The
number of users under investigation were 5, 10, 15 and 20
users. The average accuracy performance of each set of users
for each miners’ sets was evaluated as shown in Figure 8 (b).
The federated model from the 5 miners set recorded the
highest performance ranging from 0.9761 to 0.9813. The least
performance ranging between 0.9423 and 0.9457 was scored
by the federated model of 20 miners set. The results reflect
the amount of data used in training the model. The 5 miners

FIGURE 10. Federated Forest model and traditional Learning (TL) model.
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FIGURE 11. Performance evaluation of our proposed system against other detectors and related works in terms of accuracy.

set federated model appears superior to all other models due
to the larger size of data that was used to train the model.
Even though the federated model is the aggregation of the
individual model in a set, the training performance is critical
to how the model performs after aggregation.

Comparing the average accuracy performance of each
model set (TL) and its corresponding federated model (FL),
the federated model comes out superior across all the number
of users. The best performing FL model from 5 miners’
sets outperform the TL model in all cases with an average
accuracy of 0.0073, the least performing FLmodel of 20 min-
ers’ sets outperformed its corresponding TL model with the
average accuracy of 0.0012. Figure 9 presents the confusion
matrix of the overall best model recorded by 5 miners set FL
model with 40 users. From the figure, the highest misclas-
sification comes from 12 fuzzy attack samples being classi-
fied as impersonation. Just 3 sample attacks from DoS and
impersonation attacks were misclassified as fuzzy attacks,
while about 10 attack-free samples were misclassified as
impersonation attacks. Meanwhile, Figure 10 shows the com-
parison between the FL and TL models across all users’
scenarios.

3) THE FEDERATED FOREST MODEL EVALUATION AGAINST
OTHER MODELS
In this section, we evaluated our best model against other
detectors and related works built using the TL method. As
shown in Figure 11, our model outperformed other detec-
tors such as Logistic Regression (LR), K-nearest neighbor

(KNN), and Decision Tree (DT) that were trained using the
TL approach. The LR, DT, K-NN and LR, recorded lower
accuracies of 0.342, 0.969 and 0.568, respectively. Equally,
our BFF-IDS outperformed other models proposed in [13],
[34]–[36], which recorded average accuracies of 0.928,
0.970, (0.974, 0.965) and 0.980, respectively. Although only
[34] used the same set of data as our study, others’ datasets
were equally collected and created from the same source. In
addition, only [36] classified more labels than us with less
accuracy.

The detectors trained using TL have more data during
training when compared to FL where the datasets were splits
among the miners. Despite the result (see figure 8) suggesting
that split data across miners can reduce performance, our
FL model was able to outperform other models and works-
However, in practice, the FL model is expected to have more
datasets than the TL model for training.

VI. DISCUSSION
The testbed provides a resilient network for inter CAN IDs
federation with high security afforded by the blockchain. The
proposed integration of IPFS to host models other than the
blockchain reduces the cost (gas, ether) that may be incurred
when using the blockchain.

The simulation shows that the testbed efficiently uti-
lizes CPU and memory resources and will be adequate in
actual application. Thus, the hybrid architecture leverages
the benefit of SDN in providing network management flex-
ibility, blockchain in providing security and FL learning in
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harnessing the benefits of data available in individual vehi-
cle or manufacturers. This is the first work, to the best of
our knowledge to propose such a hybrid architecture for in-
vehicle network security.

We detected three forms of attacks; fuzzy, DoS, and
Impersonation, from attack-free traffic. Unlike other existing
works, we applied Fourier transformation to observe CAN
IDs cycle in the frequency domain and expose the distinc-
tion between traffic patterns in the attack class. Similarly,
our proposed combination of statistical and entropy features
proved effective in extracting the features and describing
of the subtle difference in the pattern. Meanwhile, the FL
method also proved effective for classifying the attacks with
over 0.98 accuracy.

Comparing with some previous approaches such as [14],
which utilized four features (CANmessages, number of mes-
sages, sum of DLC and bandwidth) from the CAN bus logs,
we employed only the CAN ID cycle.

Although some works have used the CAN IDs field before
as indicated in Table 1, this study applied FFT to transform
the cycle. Similarly, unlike the previous studies, we combine
the statistics and entropies to extract features from the trans-
form data using a window. In addition, this is the first work
that proposed the FL concept for CAN bus IDS.

VII. CONCLUSION
In this study, we proposed a blockchain-based Federated
Forest SDN-enabled IDS that enables the training of models
for IDSs that support the detection of intrusions in CAN in
in-vehicular systems, while protecting the confidentiality of
sensitive data. We used Federated Learning (FL) to create a
random forest model, where manufacturers and car owners
provide partially trained models that are integrated, allowing
them to keep the underlying data confidential. We expect
that this will improve their willingness to participate. We
used blockchain technology to reduce the risk of poisoning
the models. The testbed shows efficient use of memory and
CPU resources for the proposed system. We applied Fourier
transformation to CAN ID cycles and extracted statistical
and entropies features. The extracted features resulted in a
high detection rate of closely related forms of attack. To the
best of our knowledge, this is the first work that proposed
a blockchain-based federated learning framework via SDN
for intrusion detection. In addition to protecting data confi-
dentiality, willingness to participate can be further improved
by providing flexible incentives to reward federating units
based on their contribution to the building of the model. For
sustainability in the market, the model will be on a pay-to-
use basis. Consequently, the proposed system leverages the
benefits of SDN in providing a flexible configuration for
unforeseen network requirements, blockchain in providing
security and FL learning in harnessing the benefits of data
available in individual vehicle or manufacturers. Although
the proposed system performed well in the testbed, more
is needed to address the problem of privacy during training
to ensure that the training data cannot be inferred from the

model before exchange and subsequent federation. Further-
more, future research should focus on further evaluation of
the system in practice.
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