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ABSTRACT Centrality metrics have been studied in the network science research. They have been used
in various networks, such as communication, social, biological, geographic, or contact networks under
different disciplines. In particular, centrality metrics have been used in order to study and analyze targeted
attack behaviors and investigated their effect on network resilience. Although a rich volume of centrality
metrics has been developed from 1940s, only some centrality metrics (e.g., degree, betweenness, or cluster
coefficient) have been commonly in use. This paper aims to introduce various existing centrality metrics
and discusses their applicabilities in various networks. In addition, we conducted extensive simulation study
in order to demonstrate and analyze the network resilience of targeted attacks using the surveyed centrality
metrics under four real network topologies. We also discussed algorithmic complexity of centrality metrics
surveyed in this work. Through the extensive experiments and discussions of the surveyed centrality metrics,
we encourage their use in solving various computing and engineering problems in networks.

INDEX TERMS Centrality, networks, influence, importance, attacks, network resilience, network science.

I. INTRODUCTION

A. MOTIVATION
Identifying central nodes in a network is critical to the design
of a network that is resilient against faults or attacks. How-
ever, identifying which nodes are vital in a network is a
non-trivial task. Centrality has been studied in a fashion since
the beginnings of graph theory, where the degree is central
to Euler’s proof of the impossibility of satisfying the Seven
Bridges of Königsberg problem in the 1700s [1]. A significant
spike of interest in centrality occurred in the late 1940s and
early 1950s [2]–[7] in the social sciences. A more interdis-
ciplinary approach emerged in the late 1990s and the early
2000s in the nomenclature of Network Science [8]. In the
resilience context, there is extensive literature studying the
effect of targeted attacks, or attacks on nodes that have high
centrality [9]–[13]. A typical scenario includes an intelligent
attacker that selects a target node or nodes to disrupt or
compromise the network. Since the 2000s, centrality metrics
have grown in significance in communication networks as
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network resilience and cybersecurity concerns have become
more prominent. The most common centrality metrics are
degree [9], [14], betweenness [15], [16], eigenvector [17],
closeness [18], pagerank [19], and so forth. However, given
the rich volume of existing centrality metrics studied in other
scientific fields for decades, their merits and relevant usages
have been insufficiently appreciated and leveraged in various
communication and network domains. In this survey, we aim
to present this rich volume of centrality metrics and how
they can be used in various network and communication
research. In addition, we demonstrate the performance of
each centrality metric in terms of the effect of targeted attack
based on the metrics on the resilience of several real-world
networks. We hope this work can open a door for researchers
in engineering fields to fully leverage the existing centrality
metrics and their relevancy for network system design and
attack modeling.

B. COMPARISON OF OUR SURVEY PAPER AND EXISTING
CENTRALITY METRICS SURVEY PAPERS
The study of centrality metrics has a history stretching
back nearly a century. In the past two decades, many
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comprehensive surveys have attempted to catalog and under-
stand these metrics. In 2002, Dhyani et al. [20] conducted
a survey on metrics used in Web information networks
to measure graph properties, page importance, page sim-
ilarity, search, retrieval, the characteristics of usage, and
information-theoretic properties. Other fairly recent efforts
surveyed centrality applicable in multiple domains. For
example, Guille et al. [21] surveyed a small set of cen-
trality metrics and tested their impact on information dif-
fusion in terms of topic propagation originating at those
central nodes. This work is limited to the application of
information diffusion with over a dozen well-known central-
ity metrics. Lü et al. [22] conducted a more comprehensive
survey on centrality metrics and demonstrated their perfor-
mance in various network types. The authors considered
biological networks, financial networks, social networks,
and software networks. The authors also studied different
types of networks, such as directed, undirected, bipartite,
and weighted networks. Their performance analysis of appli-
cations included the investigation of centrality on informa-
tion diffusion, identification of scientific influence, detection
of financial risks, prediction of essential proteins, and so
forth. However, network resilience has not been considered
in their analysis, which is a central theme of our paper. More
recently, Das et al. [23] surveyed over a dozen centrality met-
rics applicable in the social networks context, providing a
nice discussion of the linkages between the centralities they
discussed. Ashtiani et al. [24] conducted a comprehensive
survey on centrality metrics to investigate protein-protein
interaction networks. They examined node centrality in yeast
protein-protein interaction networks (PPINs) for the detec-
tion or prediction of influential proteins. However, this work
is also limited to the application of centrality metrics in
biological networks. Lalou et al. [25] reviewed the recent
studies that solved the problem of identifying critical nodes
in a network. This work mainly focused on surveying the-
oretical complexity, exact solving algorithms (not centrality
metrics), approximation schemes, and heuristic approaches.
In particular, the authors proved new complexity results of
algorithms that were improved based on the relationships
between variants.

Unlike these prior surveys [20]–[25], our survey primarily
focuses on the investigation of node centrality, graph central-
ity, and group-selection centrality in the context of the impact
of centrality on network resilience under targeted attacks.

C. KEY CONTRIBUTIONS & SCOPE
Unlike the other state-of-the-art survey papers above, this
survey paper makes the following key contributions:

• We discussed multidisciplinary concepts of centrality
and its historical evolution in the research literature. This
provides insights on how centrality metrics have been
applied in various kinds of networks, in particular their
applicability in communication and social networks of
interest to many engineers.

• We conducted an extensive survey on three types of
centrality metrics, consisting of point centrality metrics,
graph centrality metrics, and group selection metrics,
covering 60 centrality metrics in total.We also described
how each metric is computed and its computational
complexity. This may inform other researchers into what
metric will be more relevant for a particular network or
system design of interest.

• Unlike other conventional survey papers, we conducted
extensive simulation experiments to demonstrate the
performance of the surveyed centrality metrics in terms
of network resilience based on the size of the giant
component where each centrality metric is used to
pick targets to model either non-infectious or infectious
attacks. In addition, we demonstrated the simulation
running time of each centrality metric and analyzed their
algorithmic efficiency. The extensive discussions of the
experimental results from this study will provide a clear
and in-depth understanding of how one metric is more
relevant than others based on a comparative performance
analysis under four different real network topologies.

• Based on the extensive survey and experimental perfor-
mance comparison of the centrality metrics, we shared
what we have learned, providing both insights, limita-
tions as well as promising future research directions.

D. PAPER STRUCTURE
The rest of this paper is organized as follows:

• Section II discusses the multidisciplinary concepts of
centrality that have been studied in various domains
studying networks. We also discuss how centrality met-
rics have been utilized in different disciplines as well as
the evolution of research on centrality over time.

• Sections III–V provide an extensive survey on central-
ity metrics, categorized into three classes: point cen-
trality (Section III) measuring the role of the node in
the network, graph centrality (Section IV) measuring
a characteristic of the graph as a whole, and group
selection metrics (Section V) measuring the distributed
spread of central nodes. We discuss the interpretation
of each metric and describe its computation in the net-
work. In addition, we discuss the algorithmic complex-
ity of each metric, which can provide useful insights
when researchers need to select a relevant centrality
metric depending on the characteristics of the system of
interest.

• Section VI provides an overview of how centrality met-
rics have evolved from prior to the 1970s up to the 2010s.

• Section VII demonstrates the performance of the sur-
veyed centrality metrics in terms of their effect as tar-
geted attacks on network resilience based on the size of
the giant component. We implemented 56 metrics (i.e.,
38 point centrality metrics, 13 graph centrality metrics,
and 5 group selection metrics) and investigated their
effect on network resilience. We used 4 different real
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communication network topologies datasets, 2 directed
networks, and 2 undirected networks, to investigate the
effect of the centrality metrics surveyed in this work.
In addition, we considered two types of targeted attacks,
non-infectious attacks (wherein adjacent nodes of tar-
geted nodes are not impacted) and infectious attacks
(or ‘epidemic attacks,’ wherein adjacent nodes may be
impacted and infected by targeted nodes).

• Section VIII discusses how existing centrality metrics
have been applied to solve various problems in different
types of networks.

• Section IX discusses the limitations of these state-of-
the-art centrality metrics as well as provides insights and
lessons learned from this extensive survey. And then,
we finally conclude this paper with extensive discus-
sions of promising future research directions.

II. MULTIDIMENSIONAL CONCEPTS OF CENTRALITY AND
ITS APPLICATIONS IN DIVERSE DOMAINS
Themultidisciplinary development of network centrality con-
cepts has generated multifaceted interpretations of the sub-
ject. In this section, we discuss the different concepts of
centrality that have been studied in different disciplines and
specifically described their study in the network science con-
text. We finish the section with common notations that are
used in the succeeding sections describing centrality metrics.

A. MULTIDIMENSIONAL CONCEPTS OF CENTRALITY
A fundamental motivation for the study of centrality is the
belief that one’s position in the network impacts their access
to information [4], [26], status [5], power [27], prestige [28],
and influence [29]. We categorize these concepts into three
classes as follows: (1) communication activity based on indi-
vidual characteristics; (2) influence based on both individual
and network characteristics; and (3) communication control
based primarily on network characteristics. Individual char-
acteristics refer to the way an individual node (i.e., user)
interacts with other nodes, such as the frequency of interac-
tions (e.g., posting or sending information in online social
networks, namely OSNs, or sending signals or packets in
communication networks), the amount of information shar-
ing with others, and the quality of the signals (e.g., posted
comments). Network characteristics typically indicate which
nodes are connected with which nodes. It is these character-
istics that can be captured by centrality.

1) COMMUNICATION ACTIVITY
This aspect of centrality covers the amount and type of
activity an individual node participates in as part of its
communications with other nodes. The activity of a node
relative to other nodes can ultimately affect its power or influ-
ence. Klein et al. [30] demonstrated a connection between
the communication activity and the influence of a user in
an OSN. In OSNs, influential users tend to more easily
spread information they choose to communicate. However,
such well-connected users are less likely to disseminate

information received from their extensive network. Hence,
this characteristic in terms of frequency or type of interac-
tions of information sharing is a critical factor related to
centrality [31].

2) INFLUENCE
Influence has been used to represent the capability to affect
other nodes. A number of terms are used to characterize and
study the ‘influence’ of a node as follows:

• Power: Friedkin [29] examined the relationships
between network centrality and the mutual influence of
members in a group. An individual member’s centrality
affects other members’ opinions and informs a dynamic
process of updating their opinions.

• Status: Katz [5] proposed the idea that a member’s
centrality within a network depends upon not only
the number of adjacent neighbors but also the status
of each neighbor, i.e., the highest-status member who
obtains the majority of votes from other nodes in a
network becomes the most influential. Katz introduced
an advanced metric to calculate the status of each mem-
ber in a network based on the total number of votes,
implying the edges in a directed graph, toward each
member via a single step up to multiple steps that entail
attenuation in a connection of a series [32].

• Prestige: In a social network, a person’s prestige, which
is often measured by ‘in-degree’, indicates the extent
to which other people reach out to the person [33].
A person with high prestige refers to an influencer as the
object of communication, rather than the source of com-
munication [34]. Bonacich [27] and Katz [5] defined a
vertex’s prestige in a network based on its neighbors.
For example, eigenvector centrality is used to derive the
prestige of each vertex [28].

• Resources: How much resource one can obtain from
their network has been discussed within the context of
an exchange network [35]. In an exchange network, con-
sisting of a set of members exchanging opportunities,
each member needs to decide whether to connect with
others to increase their opportunities or resources even
when unaware of members outside of its own set of
exchanging opportunities [36]. This feature facilitates
the analysis of the power distribution as related to the
position in the network [35], [36]. In exchange net-
works, a node’s power is not necessarily aligned with the
number of connections [35]. Centrality metrics that are
more relevant to quick-spreading or mitigating influence
(e.g., information diffusion or disease transmission) are
more reliant on the number of direct or indirect con-
nections with other nodes. Bonacich [27] reflected this
belief in his eigenvector-type centrality where a node’s
power is measured based on the power of its neighbors.
Laumann and Pappi [37] discussed a community elite,
a set of necessary members in exchange networks in
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which their position and other attributes determine the
structure of influence.

• Bridging: Saito et al. [38] introduced the concept of
super-mediators as the set of nodes that transfer infor-
mation between nodes. The capability of a certain node
to receive information from numerous nodes and prop-
agate this information to others indicates their influ-
ence [4], [26]. Betweenness [13], [39] is an example
representing a bridging role in a network where the
node with high betweenness can connect other nodes as
a key mediator. This concept of a broker in sociology
is commonly described as a node with high between-
ness that can play a key role in bridging two separate
groups, which is often explained as a key factor in social
capital [13].

3) COMMUNICATION CONTROL
A node’s communication control describes how the node
can control communications with others, which can naturally
affect the node’s centrality. The common two factors affecting
this communication control are:

• Commnicability:With respect to group performance and
individual behavioral patterns, Leavitt [4] stressed the
importance of a network topology because it determines
information accessibility that can affect successful task
executions.

• Network size: A network can be viewed as a resource
as each individual gathers information via connections
within networks [40]. A node’s network size is a typical
measure of the node’s centrality in terms of the resources
available to it, including both the quality and the quantity
of information in its network [41].

B. CENTRALITY METRICS RESEARCH IN VARIOUS
DISCIPLINES
The study of centrality metrics has a long history from
1940s and has been conducted in various disciplines: math-
ematics [42], chemistry [43]–[45], anthropology [2], [6],
[46], [47], physics [8], [13], geography [48], [49], eco-
nomics [50], [51], psychology [52]–[54], sociology [27],
[55]–[60], biology [61]–[63], management [64]–[66], com-
puter science [67]–[70], political science [71]–[73], and psy-
chiatry [72]–[75].

Fig. 1 summarizes the evolution of centrality across
diverse disciplines along with the emergence of the Net-
work Science discipline. The origin of developing central-
ity metrics is linked with the birth of graph theory [42].
Although many fields have used centrality metrics for a
variety of purposes, high visibility of the usefulness of these
metrics has been much increased as the Network Science
field has officially formed in 2000s. In particular, in 2006,
US National Research Council (NRC) defined Network Sci-
ence as an academic field [8]. In 2009, The Department
of Defense (DoD) initiated a research effort on Network
Science for developing battlefield platforms with advanced

technology reflecting the theme of network-centric warfare.
The US Army Research Laboratory (US-ARL) initiated a
collaborative research program, the Network Science Collab-
orative Technology Alliance (NS CTA), in order to encourage
the development of advanced network science-based tech-
nologies to support ground soldiers in network-centric war-
fare [76], which has further triggered the advancement and
maturity of network science research.

C. MEASURES OF NETWORK RESILIENCE IN NETWORK
SCIENCE
Colbourn [77] defined the concept of ‘network resilience’
as ‘‘the expected number of node pairs which can commu-
nicate’’ in the presence of failed nodes. That is, the mea-
sure of network resilience is the probability of an operating
path existing between two nodes. Najjar and Gaudiot [78]
defined network resilience as the ‘‘maximum number of node
failures that can be sustained while the network remains
connected’’ when the failure rate is given. The concept of
network resilience in the network science domain is very
well aligned with these two definitions. Network science
researchers often interchangeably use network resilience with
network robustness. Most network science studies commonly
use the size of the giant component, which indicates the size
of a largest network component in a given network after
attacks are applied. Hence, the measure of network resilience
using the size of the giant component estimates the extent of
‘fault-tolerance’ based on the amount of topological connec-
tivities in the given network [79].

Network resilience has been measured differently depend-
ing on different contexts. In particular, Rueda et al. [80]
surveyed various metrics to measure structural robustness,
which can indicate the ability to provide continuous operation
in the presence of failures. Santos et al. [81] considered
connectivity-based network resilience for software-defined
networks aiming to solve a controller deployment problem.
The network resilience or robustness metrics suggested by
these two works [80], [81] are well aligned in that a resilient
(or robust) network should be able to provide continuous
network connectivity. Since the scope of this paper is to
provide general trends of network resilience for various cen-
trality metrics, we chose the conventional metric of network
resilience, which is the size of the giant component for the net-
work resilience analysis in Section VII. We also analyze the
algorithmic complexity of the centrality metrics we surveyed
in Section VII.

D. NOTATIONS
Before introducing various centrality metrics, we first present
some common notations. We represent a network using a
graph G = (V, E), where V is a set of n vertices representing
the nodes in the network and E is the set of m edges rep-
resenting connections (links or relationships) between pairs
of nodes. All the graphs considered in this work are simple,
meaning there are no pairs of nodes with multiple edges
between them and there are no nodes that have self-loops
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FIGURE 1. Evolution of network centrality metrics across multiple disciplines.

(no nodes with an edge to themselves). This graph can be
represented in a matrix form using an adjacency matrix A,
where Auv 6= 0 means there exists an edge between u and
v (and the suffix uv of the matrix indicates the row entry
corresponds to the node u and the column entry corresponds
to the node v). For a simple, undirected graph, this value is
1 and the adjacency matrix is symmetric, i.e., Auv = Avu.
For a weighted graph, the value of the adjacency entries
corresponds to the weight. For a directed graph, the Auv
corresponds to the directed edge from u to v, and the matrix
may not be symmetric. The Laplacian of a simple, undi-
rected (and unweighted) graph is L = D − A, where here
D is a diagonal matrix with the ith diagonal entry equal
to the sum of the ith row of A. Many approaches rely on
the principal eigenvector of the adjacency matrix or another
matrix, so we denote e1(M) to be this eigenvector of the
matrix M. The trace of a matrix M, denoted Tr(M), is the
sum of the diagonal elements of M. We also use I and
1 to represent the identity matrix and a vector of ones,
respectively.

Two key notions in many of the metrics are the distance
between two vertices and the neighbors of a vertex. A path
in the graph is any sequence of vertices such that an edge
exists between successive vertices in the sequence. The dis-
tance between two vertices v and u, which we denote as
d(u, v), is the number of edges on the shortest path between
the two vertices. The set of all nodes that are a distance 1
from a vertex v, denoted N (v), is its neighbor set (or its

adjacent nodes). The size of this set is denoted d(v) = |N (v)|
and is the degree of v. This concept can be extended for
arbitrary distances, e.g., Nh(v) = {u : d(u, v) ≤ h} and
dh(v) = |Nh(v)|. For directed graphs, we distinguish between
neighbors based on the direction of the edge; neighbors with
directed edges from v are in the set N out(v) and neighbors
with directed edges to v are in the set N in(v). We denote
the average degree in the graph as 〈k〉. Other notations are
defined in the context of the centrality for which they are
used.

Now we discuss a variety of centrality metrics that have
been proposed in various disciplines. We categorize the types
of centrality metrics into three classes: point centrality met-
rics, graph centrality metrics, and group selection centrality
metrics. Sections III-V below address these three classes of
centrality metrics.

III. POINT CENTRALITY METRICS
We classify point centrality metrics in terms of three classes:
local centrality metrics, iterative centrality metrics, and
global centrality metrics.

A. MEASURES OF LOCAL CENTRALITY
Local centrality metrics measure the centrality of a node
based on its local neighborhood topology. These met-
rics are variations of the degree of a node, sometimes in
combination with the degree of other nodes in its local
neighborhood.
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1) DEGREE CENTRALITY
The simplest and most well-known centrality metric is the
node degree or the number of links or edges incident to the
node. The degree of vertex v is defined, mathematically, by1:

Cdeg(v) = # of edges incident to v

=

∑
u∈V

Avu =
∑
u∈V

Auv. (1)

In the social network context, the degree indicates the
number of relations of the actor [82], [83]. These relation-
ships may be friendships [84], [85] or interactions [86] or
other activities. Hanneman and Riddle [87] describe the
degree as measuring the opportunities and alternatives for
the actor. In social, communication, and computer networks,
degree represents a measure of the number of channels for
information or product exchange (i.e., sending and receiving
data) [13], [88]. This information exchange can be messages
in a radio network [89] or messages passed over the inter-
net [90]. An example of a product exchange can be current
in a power grid [91]. A standardization or normalization of
degree is given by Cdeg(v)/(n − 1). This form is useful for
comparison across networks [82]. Nodes with a high degree
are called hubs. In a directed network, the in-degree and
the out-degree of the node may be unequal, so the adja-
cency matrix is not symmetric. For in-degree, Cin-deg(v) =
# edges directed toward v =

∑
u∈V Auv, with the out-degree

defined analogously based on non-zero entries in the row
of the adjacency matrix corresponding to node v. A node
with significantly higher in-degree than out-degree or higher
in-degree on average compared with other nodes is con-
sidered to have prestige [83]. A popular example exists in
citation networks where the directed edges correspond to
one document citing another. Documents with many citations
have high in-degree. Other modified examples corresponding
to in-degree in citations include the number of citations of a
given author [92] and journal impact factor [93].

2) SEMI-LOCAL CENTRALITY
While a hub node has immediate access to a large number
of neighbors, the hub may exist on the periphery or far from
the center of the network where most of those neighbors
have little to no access to the rest of the network. Hence,
the degree alone may not be the ideal measure of influence or
the capability of spreading (information or disease) with effi-
cacy. Seeking a middle ground between hub nodes and nodes
that have high betweenness (see Eq. (26)), Chen et al. [94]
developed semi-local centrality, sometimes called local cen-
trality, as a low-complexity approach that takes into account
neighbor degrees of the node. The semi-local centrality of a
node v is defined as:

Csemi-local(v) =
∑
u∈N (v)

Q(u), (2)

1In this instance, we shall abuse our notation by having two representa-
tions of degree of the node v, i.e., Cdeg(v) = d(v).

where Q(u) =
∑

w∈N (u) d2(w). This metric compares favor-
ably to ranks generated from a susceptible-infected-removed
(SIR) process [13].

3) HYBRID DEGREE CENTRALITY
In the context of spreading processes, whether it be for infor-
mation sharing or disease transmission, the spreading prob-
ability p can determine the difference between the influence
of the local and near-local neighborhood topology. A small p
would intuitively favor a measure like degree centrality, while
a larger pwould favor amore globalmeasure.Ma andMa [95]
incorporated the influence of the scale of p into centrality by
adapting degree centrality and semi-local centrality [94] to
create the hybrid degree centrality of node v, defined as:

Chybrid(v) = (β − p) · α · Cdeg(v)+ p · Cm-local(v), (3)

where p is the spreading probability, Cm-local is the modi-
fied local centrality, α is a normalizing factor to scale the
degree centrality to the magnitude of the modified local
centrality, and β is an optimization parameter controlling
the ratio between the degree and the modified local cen-
trality. For the datasets considered in [95], the values of
α = 1000 and β near 0.1 seemed to return favorable results.
The modified local centrality is defined as Cm-local(v) =∑

u∈N (v)
∑

w∈N (u) d2(w)− 2
∑

u∈N (v) d(u). This modification
removes the nearest neighbor influence from the local cen-
trality measure, which is presumably captured somewhat by
the degree centrality.

4) VOLUME CENTRALITY
If the spreading process dies out, has a limited reach from
its initial source, or has a time out component, then it
makes sense that this might be entirely captured by the
topology in the local neighborhood of the source node.
Kim and Yoneki [96] defined the volume centrality of the
node for a given radius h as:

Cvolume(v) =
∑

u∈Nh(v)

d(u). (4)

This is actually a slight modification of the original defini-
tion by Wehmuth and Ziviani [97] that uses the set Ñh(v) =
Nh(v)∪ {v}. With this latter definition, then when h = 0, vol-
ume centrality is degree centrality. However, this is already
captured when calculating the degrees of nodes in N1(v).
Kim and Yoneki showed that larger h correlates well with
closeness centrality (see Eq. (32)). However, as h increases,
the complexity of the method will increase. Wehmuth and
Ziviani demonstrated that h = 2 results in a good trade-off
between identifying nodes that diffuse information well and
the cost of calculating volume centrality.

5) CLUSTERING COEFFICIENT
One of the characterizations of small-world networks is the
increased likelihood of neighbors of a node to be connected.
Social networks tend to exhibit this property and an early
characterization of this high clustering property is the density
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of an ego network (i.e., as described in [98], the network of
the neighbors of a given node excluding that node). Watts and
Strogatz [99] proposed the same metric independently as a
way to quantify the clustering of nodes in a given graph and
characterize the position of the graph within the spectrum of
random to small-world graphs. Their definition has proven
incredibly popular. It is expressed by:

Cclustering(v) =
1

d(v) · (d(v)− 1)

∑
r,s∈N (v)

Ars. (5)

Note that each edge will be counted twice in an undirected
graph in the summation and the number of such unique edges
is normalized by

(d(v)
2

)
, which is the number of possible edges

between the neighbors of v. For a directed network, there are
twice as many possible directed edges as the undirected case
since the adjacency matrix is no longer symmetric, i.e., Ars
may not equal Asr and the set N out(v) of neighbors v links to
is used. This measure is often called the local clustering coef-
ficient to distinguish it from a global measure of transitivity.

6) REDUNDANCY
Burt [98] introduced the notion of redundancy in social net-
works to describe the concept of neighborhood overlap of a
node and its neighbors within the node’s ego network. Burt
demonstrated redundancy’s detriment to social capitalwithin
socio-economic networks. This is defined as:

Credundancy(v) =
∑
r∈N (v)

∑
s∈N (r)∩N (v)

pvsmrs, (6)

where

pvs =
Avs + Asv∑

r∈N (v) Avr + Arv
,

mrs =
Ars + Asr

maxt∈N (r)∩N (v) Art + Atr
.

Burt uses redundancy to calculate the effective size (or
degree) of a node’s ego (or neighborhood) network tak-
ing redundancy into account as Cdegree(v) − Credundancy(v).
Borgatti [57] reformulated these expressions to show that
for a simple undirected graph, the redundancy is simply
Credundancy(v) = 2e/Cdegree(v), where e is the number of
links between the neighbors of v, and the effective size of
v is Cdegree(v) − 2e/Cdegree(v). The effective size can be
expressed in terms of the degree and clustering coefficient,
i.e., Cdegree(v)− (Cdegree(v)− 1) · Cclustering(v).

7) ENTROPY-BASED MEASURES
In the thermodynamics context, entropy is a measure of
the disorder of systems. In the information theory context,
entropy measures the amount of information absent in a
given process. These concepts of entropy have been used in
networks, either in characterizing systems or processes [100].
Nie et al. [101] adapted the concept of entropy to centrality.
They constructed two variants to measure the entropy, local
entropy as the contribution of the node to network entropy
and mapping entropy to incorporate a consideration of the

neighbors of the node, defined by:

Clocal-entropy(v) = −
∑
u∈N (v)

d(u) log d(u),

Cmapping-entropy(v) = −d(v)
∑
u∈N (v)

log d(u). (7)

8) CLUSTERRANK
As noted with the redundancy measure, high clustering can
have an adverse effect on information propagation or spread.
With this insight, Chen et al. [102] proposed ClusterRank,
incorporating both the degree as well as the interactions
among the neighbors via the clustering coefficient [99]. The
ClusterRank of node v is defined as:

Cclusterrank(v) = f (Cclustering(v))
∑

u∈N out(v)

(Cout-deg(u)+ 1),

(8)

where Chen et al. [102] choose the function f (x) = 10−x

and Cclustering(v) refers to the local clustering coefficient
defined for directed networks. The summation also adds the
out-degree of the node v in the unity term. The coefficient acts
as a damping weight where higher clustering is penalized for
having fewer unique links to different parts of the network.
This damping weight is mitigated if many of the neighbors of
v have large numbers of additional neighbors.

9) H-INDEX
Hirsch [92] introduced the h-index to measure the impact of
the scientific output of a researcher. A researcher has index
h if h is the largest integer ` such that the researcher has at
least ` papers each having at least ` citations. Korn et al. [103]
adapted h-index (calling it the lobby index) to discover impor-
tant nodes in networks. A node has index h if the node has
at least h neighbors, each having at least degree h, with the
rest of the neighbors having at most degree h. Extending this
concept, Lü et al. [104] defined the H operator that, for any
node v, takes the degrees of the set of its neighbors as an input
and returns the maximum number h such that h inputs have
value at least h. This can be expressed as:

Ch-index(v) = h(v) = H
(
d(u1), d(u2), . . . , d(ud(v))

)
, (9)

where u1, u2, . . . , ud(v) ∈ N (v). If the zero-order h-index
of node v is its degree, i.e., h(0)(v) = d(v), then the
value in Eq. (9) can be called the first-order h-index.
Then the k-order h-index is defined as h(k)(v) =

H
(
h(k−1)(u1), h(k−1)(u2), . . . , h(k−1)(ud(v))

)
; this sequence

converges to the coreness, discussed in Section III-B1, as the
order increases, i.e., ci = limk→∞ h(k)(v).

10) CURVATURE
The success of hyperbolic models for networks [105], [106]
in reproducing observations from real networks has spurred
some interest in measuring the intrinsic geometry of complex
networks. Curvature in networks is a particularly interesting
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aspect to measure since the models typically presume a con-
stant curvature but the reality (and data) is rarely that conve-
nient. There are several competing approaches for curvature.
Eckmann and Moses [107] derived a curvature formulation
that is equivalent to the local clustering coefficient of Watts
and Strogatz [99] and is used to reveal a connection between
high curvature and common topics in the World Wide Web.
A popular approach is derived from a Gaussian curvature
on planar graphs [108], [109], that has been generalized for
complex networks [110] as:

CGauss-curv(v) =
∑
k≥0

(−1)k
sk+1v

k + 1
, (10)

where skv is the number of k-cliques incident to v. A truncated
version of this is used in [111] to compare a network model
with data. A third approach of recent interest adapts a notion
of Ricci curvature to networks via the transfer of amass distri-
bution from one vertex to another, and hence can be defined
on an edge [112], [113] as κ(u, v) = 1 − W (mu,mv) and
W (mu,mv) is the optimal mass transport cost and the mass is
typically a unit weight distributed proportionally by an edge
weight to the neighbors of the vertices. The curvature at a
vertex v is then aweighted sum of the curvature of the incident
edges to v, CRicci-curv(v) = 1

Cdeg(v)

∑
u∈N (v) κ(u, v). Curvature

has been shown to have relevance to network fragility [114]
and network congestion [115]. An alternate adaptation of
Ricci curvature [116], [117] based on the degrees of the
vertices has also received some interest due to its simplicity.
One very simple version of this Forman-Ricci curvature can
be expressed for an edge as κ(u, v) = 2− Cdeg(u)− Cdeg(v)
and for a node as a weighted sum of the curvature of the
incident edges.

11) ASYMPTOTIC COMPLEXITY OF LOCAL CENTRALITY
METRICS
We summarized the asymptotic complexity using big-O nota-
tion of the local centrality metrics surveyed in this section
in Table 1. We observe that the centrality of a node is derived
from its influence in a given network in terms of influence
(e.g., impact or popularity), resourcefulness (e.g., usefulness
like social capital), or relationships between neighbors of a
node. Local centrality metrics are generally the most eas-
ily understood and easiest to compute (with the exception
of curvature). The number of neighbors of a node (degree)
is inherent to the definition of what a network or graph
is. Aggregations of this simple notion, extensions of the
neighbors-of-neighbors concept (e.g., semi-local and vol-
ume) or aggregations of functions of degree (e.g., entropy
and H-index) are also prevalent among local metrics. Another
inherent network feature is the network density (fraction of
the number of edges to the number of possible edges); these
are captured locally by the density of the network of neigh-
bors of a node (e.g., clustering coefficient, ClusterRank, and
redundancy). The complexity of many of the metrics (e.g.,
semi-local, hybrid degree, volume, clustering coefficient, and

redundancy) depend on the mean degree in the network. This
is because these metrics typically measure the influence of
the neighbors of the node to compute the centrality. In the
worst case, when the network is dense, the mean degree can
be on the order of the network size and the complexity of
calculation of many of these metrics is cubic with respect
to the network size. In many real networks, i.e., in prac-
tice, the degree distribution is such that the vast majority
of nodes have small degree and the computation of their
local centrality is significantly easier. The ‘local’ in local
centrality implies that the extent of the measure is limited to
its neighborhood. While the relevance of a local centrality is
derived from this inherent nature, their simplicity can also fail
to capture more complex interactions over long time periods
(e.g., information spreading and epidemics).

B. MEASURES OF ITERATIVE CENTRALITY
Iterative centrality metrics rely on iterative processes to
calculate the centrality value of each node. In some cases,
the number of iterations is fixed and determined by a char-
acteristic of the network (e.g., maximum degree), and these
metrics still incorporate mostly local information of the net-
work. In most cases, the number of iterations depends on the
convergence rate of values at each node. Global information
is incorporated into the metric at the node via these iterative
processes.

1) k-SHELL INDEX OR CORENESS
The most efficient spreaders have been found to reside in the
core of the network [118], which can be determined by
the process of assigning each node an index (or a positive
integer) value derived from the k-shell decomposition. The
decomposition and assignment work as follows: Nodes with
degree k = 1 are successively removed from the network
until all remaining nodes have a degree strictly greater than 1.
All the removed nodes at this stage are assigned to be part of
the k-shell of the network with index kS = 1 or the 1-shell.
This is repeated with the increment of k to assign each node
to distinct k-shells. The k-shell index of node v is:

Ck-shell(v) = max{k|v ∈ Hk ⊂ G}, (11)

whereHk is the maximal subgraph ofGwith all nodes having
degree at least k in Hk . The coreness and k-shell of networks
have been used to characterize network structure, determine
network degeneracy, and identify clusters [83].

2) MIXED DEGREE DECOMPOSITION
Zeng and Zhang [119] sought to increase themonotonicity (or
the ordering with minimal ties) of the ranking of nodes within
each k-shell. They developed a mixed degree decomposition
that retains elements of the degree mixed with the k-shell
index. For node v, this metric is given by:

Cmixed-deg(v) = k (r)(v)+ λ · k (e)(v), (12)

where each node starts with mixed degree equal to the resid-
ual degree k (r)(v) (i.e., the k-shell index) and the nodes
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TABLE 1. Meanings, computations, and complexities of local point centrality metrics.

with smallest mixed degrees (M ) are removed and assigned
to the M -shell. The mixed degrees of the remaining nodes
are updated by the current residual degree k (r)(v) and the
exhausted degree k (e)(v) (i.e., removed edges from v due to
the nodes in the M -shell) and nodes with updated mixed
degree not larger than M are also removed and assigned to
the M -shell. This is repeated iteratively for the next smallest
remaining mixed degree to determine each node’s mixed
degree. The parameter λ is a value between 0 and 1 that
determines the input from the k-shell approach versus the
degree approach. When λ = 0, then mixed degree is simply
the k-shell index. On the other hand, when λ = 1, then mixed
degree is simply the degree.

3) NEIGHBORHOOD CORENESS
The core of a network consists of nodes with high k-shell
index.Many nodes will have the same high k-shell index. Bae
and Kim [120] introduce more diversity by considering the k-
shell of neighbors in an approach similar to that of semi-local
centrality in Section III-A2. The neighborhood coreness and
the extended neighborhood coreness are defined as:

Cnc(v) =
∑
u∈N (v)

Ck-shell(u) & Cnc+(v) =
∑
u∈N (v)

Cnc(u). (13)

These metrics introduce more distinguishable monotonic-
ity than using the k-shell.

4) EIGENVECTOR CENTRALITY
This metric is occasionally called Bonacich’s degree central-
ity [27], [55], [87]. Bonacich supported a claim of Cook [35]
that centrality is not the same as power and a node with
high centrality (e.g., degree) is not necessarily powerful or
influential. Accordingly, Bonacich developed an eigenvector
centrality, which incorporates notions of both centrality and
power. The centrality of a node is determined from its direct
connections with other nodes and its power is derived from
the centralities of these neighbors directly and other nodes
in the network indirectly. This latter definition is inspired by
the power method (or power iteration), which is an iterative
algorithm to attain the principal eigenvalue and eigenvector.

The eigenvector centrality of node v is defined as [55]:

Ceigenvector(v) =
1
λ

∑
u∈N (v)

Ceigenvector(u)

=
1
λ

∑
u∈V

AuvCeigenvector(u), (14)

where λ is an eigenvalue associated with the principal eigen-
vector. Note that the iterative approach to attain this cen-
trality requires positive values at initialization to guarantee
convergence to the eigenvector corresponding to the maxi-
mum eigenvalue, which has non-negative values. Note that
the second equalitymakes clear that the ranking of centralities
is determined by the eigenvector of the adjacency matrix.

5) KATZ CENTRALITY
Katz [5] proposed a new status measure by considering the
number of direct connections to a node and the statuses of
nodes connected to such node. The Katz centrality is defined
in [13] as:

Ckatz(v) = α
∑
u∈V

AuvCkatz(u)+ β, (15)

where α is a weight that determines the relative influence of
the centrality of the node’s neighbors to other nodes in the
network by their distances and β is a ‘free part’ represent-
ing a constant extra credit all nodes receive. Katz centrality
resolves the problem of zero-valued eigenvector centralities
of nodes that do not reside in the strongly connected compo-
nents of directed graphs [13].

6) AUTHORITY AND HUB CENTRALITIES
Kleinberg [121] introduced an iterative process in the con-
text of hyperlinked web pages to determine which pages
are authoritative and which pages are hubs to authoritative
pages to assist in web search queries. This approach is often
referred to as Hyperlink-Induced Topic Search (HITS) in the
literature [122]. In this process, each page v is assigned two
non-negative weights, one corresponding to its relevance as
an authority xv and another corresponding to its relevance as
a hub yv. Each set of weights are normalized so that the sum
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of their squares is unity, i.e.,
∑
x2v = 1 and

∑
y2v = 1.

The update process is given by xv ←
∑

u:(u,v)∈E yu and
yv ←

∑
u:(v,u)∈E xu subject to the normalization invariance.

A page’s authority depends on the hub weights of the pages
linking to it. Similarly, a page’s hub weight is determined
by the authority weights of the pages it links to. In matrix
terms, where x and y are vector collections of the authority
and hub weights of the nodes, respectively, then the update
equations can be expressed as x ← Ay/(yTAAT y) and
y ← AT x/(xTATAx). Some simple linear algebra can be
used to show that these converge to the principal eigenvec-
tors of the matrices ATA and AAT , respectively, so long as
the initial weights in the process are not orthogonal to the
principal eigenvectors. Thus, the authority and hub centrality
of the node v is given by:

Cauth(v) = [e1(ATA)]v, Chub(v) = [e1(AAT )]v, (16)

where e1(·)v is the vth element of the principal eigenvector.
Kleinberg proposed stopping the process after 10, 000 itera-
tions, as convergence may be slow for large networks.

7) PAGERANK
PageRank is a modern-day variant of Katz centrality that was
developed by Brin and Page [123], the founders of Google.
PageRank measures the importance of websites by the num-
ber of links to the website and is defined in [13] as:

Cpagerank(v, α, β) = α
∑

u∈V,u6=v
Auv

Cpagerank(u, α, β)
max(Cout-deg(u), 1)

+ β,

(17)

where Cout-deg(u) refers to the out-degree of node u. The
interpretations of α and β are similar to the ones described
for the Katz centrality in that α is a weight damping the
influence of nodes further away from v, while β represents
a weight for a free part or credit that each node receives.
The key difference is the relative weighting of links to v
by the out-degree of the nodes linking to v. In vector form,
PageRank can be expressed, with β = 1, asCpagerank(α, β) =
(I − αAD−1)−11 = D(D − αA)−11, where D is a diagonal
matrix with entries Duu = max(Cout-deg(u), 1).

8) CONTRIBUTION CENTRALITY
Alvarez-Socorro et al. [124] refined the eigenvector centrality
to account the similarity of the neighbors that link to a node.
The concept presumes that nodes with greater dissimilarity,
in the sense of Jaccard [125], should have a greater contri-
bution weight than similar nodes. Nodes that are dissimilar
may provide different information than similar nodes. This
contribution centrality is given by:

Ccontribution(v) =
1
λ

∑
u∈N (v)

Wu,vCcontribution(u), (18)

where Wu,v = Au,vDisu,v is the contribution of node u to node
v and Disu,v = 1 − |N (v)∩N (u)|

|N (v)∪N (u)| is a dissimilarity coefficient.

This measure can also be considered as the eigenvector cen-
trality of a weighted network, where the weights are informed
by the structural dissimilarity coefficient. The weighted adja-
cency matrix can be expressed as W = A

⊙
Dis, where

⊙
is the Hadamard or element-wise product. The λ in Eq. (18)
is the maximum eigenvalue ofW.

9) DIFFUSION CENTRALITY
Banerjee et al. [126] approximate communication centrality
(i.e., the fraction of the number of nodes that choose to
participate in the purchase of a product after being informed
versus the total number of nodes that were informed of the
product). Their diffusion centrality can be expressed in vector
form as:

Cdiffusion(q,T ) :=
T∑
t=1

(qA)t1, (19)

where q is the passing probability and T is the number
of iterations. This centrality captures a number of different
measures depending on the value of T or the number of iter-
ations of information sharing or passing. When T = 1, then
diffusion centrality will be proportional to degree centrality.
When T → ∞, A is diagonalizable (this is always true for
real symmetric matrices, thus true for undirected network
adjacency matrices), and q ≥ 1

λ
(where λ is the maximum

eigenvalue of A), then diffusion centrality is proportional to
eigenvector centrality. But when q < 1

λ
, this is a type of

Katz-Bonacich centrality.

10) SUBGRAPH CENTRALITY
Subgraph centralitymeasures the weighted sum of the closed
paths incident to v in the network, including both cyclic and
acyclic paths (i.e., a path that backtracks on itself), where the
contribution or weight of each path in the sum decreases as
the path length increases [127]. Thus, this metric measures
the inclusion of the node in all connected subgraphs of the
network and is characterized significantly by the inclusion
of the node in motifs or small subgraph patterns. Subgraph
centrality is given by:

Csubgraph(v) =
∞∑
k=0

µk (v)
k!
=

N∑
j=1

(uvj )
2eλj , (20)

where µk (v) = (Ak )vv, λj is the jth eigenvalue of A and
uj is its corresponding eigenvector (uvj is the vth element of
this vector). Inclusion in smaller subgraphs (closed walks)
is given more significance due to the scaling, which is also
necessary for convergence of the sum. The measure is useful
to distinguish between nodes with equivalent values of degree
centrality, betweenness, closeness, or eigenvector centrality.
The authors conjecture that if the subgraph centrality is iden-
tical for all nodes, then these other measures will also be
identical. Note that the average centrality of all the nodes is
trivial to determine to be 〈Csubgraph〉 =

1
N

∑N
i=1 e

λj .
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11) LEADERRANK
Lü et al. [128] proposed LeaderRank to find prominent mem-
bers, or leaders, and thereby rank them in terms of their
influence, particularly in a social network context. Given a
leadership network or a directed graph with leaders and fans,
where a directed edge existing signifies the subscription from
a fan to a leader, LeaderRank generates a supplemental net-
work, created via the addition of ground node g with bidirec-
tional edges between all the nodes in the leadership network.
This ensures a strongly connected graph with n + 1 nodes
and m + 2n directed edges containing the subgraph of the
original leadership network of n nodes and m directed edges.
Each node, except the ground node, is assigned an initial unit
score. In each unit of time or iteration, the current score of
each node is equi-distributed to the neighbors the node is
linked to, until equilibrium. The proportion of score allocated
from node u to node v in one unit of time is Auv/Cout-deg(u).
At time t , the amount of score allocated at node v is sv(t+1) =∑n+1

u∈N in(v)
1

Cout-deg(u)
su(t), where sv(0) = 1 for all non-ground

nodes and sg(0) = 0. At the equilibrium time te, the score of
the ground node is equi-distributed to the other nodes, which
ensures no loss of value in the distribution scheme for the
leadership network. Hence, the final LeaderRank score of
node v is:

CLeaderRank(v) = sv(te)+
sg(te)
n

. (21)

12) DYNAMICAL INFLUENCE
Klemm et al. [129] proposed the concept of dynamic influ-
ence as a centrality measure that can quantify the influence
of a node’s dynamic state on the collective system behavior
based on the interplay between dynamics and structure in
complex networks. Given systems with n time-dependent real
variables, x = [x1, · · · , xN ] associated with linear dynamics
denoted by an n × n real matrix, M, we have the update
function ẋ = Mx. The largest eigenvalue µmax for M is
considered to obtain a first classification of dynamics. When
µmax is negative, x(t) converges to a null vector as a stable,
fixed solution. When µmax is positive, x(t) will grow indefi-
nitely from the initial state x(0). Assuming that there exists a
non-degenerate µmax forM, we define a scalar product φc =
c · x as a conserved quality where c is a left eigenvector ofM
forµmax governed by

dφc
dt = c·Px(t) = [cM]·Px(t) = 0.When

the conserved quality exists, the final state can be calculated
from the initial state x(0) by:

Cdynamic-influence := x(∞) = lim
t→∞

x(t) =
c · x(0)
c · e

e, (22)

where e refers to a right eigenvector of M for µmax. The
above equationmeans thatCdynamic-influence is projected based
on x(0) where ci represents the effect of x(0) on the final
state x(∞).

13) CUMULATIVE NOMINATION
Poulin et al. [130] introduced cumulative nomination
whereby the reputation of a node is derived from the

nominations of its neighbors and, hence, a node located more
centrally in the network is nominated more frequently than
a node located on the periphery. Initially, a unit of nomi-
nation is provided to each node in the network. Then for
each nomination round or iteration, the nomination value of
each node is updated as the sum of the nominations from its
neighbors, i.e., for node v, the nomination update is deter-
mined from p′nv = p′n−1v +

∑
u∈N (v) p

′n−1
u , where p′0v = 1.

It is convenient to normalize this process at each step:

pnv =
pn−1v +

∑
u∈N (v) p

n−1
u∑

w∈V

[
pn−1w +

∑
u∈N (w) p

n−1
u

] . At equilibrium, the cumula-

tive nomination of node v is given by:

Ccumulative-nomination(v) = lim
n→∞

pnv . (23)

This metric is analogous to the one proposed by
Bonacich [55], but it is empirically proven to be faster in
convergence to the steady state [130].

14) SALSA
Lempel and Moran [131] developed a Stochastic Approach
for Link Structure Analysis (or SALSA) as an alternative to
the hubs and authorities approach of [121] for web links.
The given directed graph G = (V, E) is converted into an
undirected bipartite graph G̃ = (Ṽ , Ẽ) between a hub side
Vh ⊂ Ṽ and an authority side Va ⊂ Ṽ . Each node v in V
is represented by two nodes in Ṽ , one on the hub side vh
and one on the authority side va. Each directed edge from
v to u in E is represented by an undirected edge between
vh and ua in Ẽ . Two random walks, starting from either
side of Ṽ , of path length two, construct Markov chains that
reveal a ranking of nodes as hubs and authorities in the
network. The transition matrices of these Markov chains can
be defined by a hub matrix H̃, with element entries H̃u,v =∑

x∈V |(uh,xa),(vh,xa)∈Ẽ
1

d(uh)
·

1
d(xa)

, and an authority matrix Ã,
with entries Ãu,v =

∑
x∈V |(xh,ua),(xh,va)∈Ẽ

1
d(ua)
·

1
d(xh)

, where
the degree is in G̃. The updates for these transition matrices
are hn = H̃hn−1 and an = Ãan−1, where the initial value
assigned for each node is 1. As with the mutual reinforcement
approach of Kleinberg’s hubs and authorities, the principal
eigenvectors of the transition matrices are the convergent
points of the iterations, i.e.,

CSALSA-hub(v) = [e1(H̃)]v, and

CSALSA-auth(v) = [e1(Ã)]v. (24)

15) ASYMPTOTIC COMPLEXITY OF ITERATIVE CENTRALITY
METRICS
We summarized the iterative point centrality metrics, their
meanings, and Eqs. numbers, asymptotic complexity using
big-O notation, and the corresponding sources in Table 2. The
key advantage of iterative centrality metrics lies in their abil-
ity to capture influences of nodes beyond their local neighbor-
hoods yet still based on local interactions (calculations). This
enables these metrics to capture more complex dynamical
relationships since a node’s influence is determined by the
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TABLE 2. Meanings, computations, and complexities of iterative point centrality metrics.

influence of its neighbors. This, of course, requires a number
of iterations from a suitable initialization so that the update
defining this dependence on the neighbors converges. The
most prevalent of these are the eigenvector-type centralities
(e.g., eigenvector, Katz, authorities and hubs, pagerank, salsa,
subgraph, etc.). These centralities are essentially solutions
to the primary eigenvector for some weighted variant of the
adjacency matrix. Other iterative approaches capture more
structural features (e.g., k-shell, neighborhood coreness, etc.)
with a finite number of iterations determined by the maxi-
mum degree. This set of centralities are relevant for notions of
influence since they capture nodes that have many neighbors
that themselves have many neighbors. Regarding the asymp-
totic complexity of these iterative point centrality metrics,
there are several trends distinct from the local point cen-
trality metrics. Generally, but certainly for sparse networks,
the eigenvector-based iterative centralities are more compu-
tationally expensive to compute. This is because the mean
degree that is prominent in many local centrality complexities
typically satisfies 〈k〉 � n. However, the k-shell-based iter-
ative centralities can be computationally cheap to compute.
This is because the number of iterations is fixed based on
the maximum degree (and for some metrics the size of their
k-shell). One approach that helps ease the computational bur-
den of the eigenvector-based iterative centralities is suggested
in the solution used for the authorities and hubs centrality
(or HITS algorithm). This is to stop the update before con-
vergence after some large, but fixed number of iterations.
This still ensures that the influence of nodes beyond the local
neighborhood and can be treated as an approximation of the
desired centrality determined by the given update function.

C. MEASURES OF GLOBAL CENTRALITY
Global centrality metrics require a measurement using pos-
sibly the entire network topology. These approaches involve

the measurement of path lengths between nodes that are sepa-
rated (non-adjacent) in the network. The calculations of short-
est paths often do not scale well with network size; hence,
these metrics are generally more computationally expensive.
We describe 17 graph centrality metrics in the following
sections.

1) IMPROVED METHOD OR k-SHELL DISTANCE
Liu et al. [132] introduced an improved method or k-shell
distance as an alternative approach to distinguish these intra-
k-shell nodes, whereby each node in the kS core is further
ranked by θ (v|kS) = (kmax

S −kS+1)
∑

u∈J d(v, u), where k
max
S

is the largest k-shell index in the network and J is the network
core (nodes in the subset with the largest k-shell index). This
centrality can be considered as a two element vector:

Cimproved-method(v) = (ks, θ(v|ks)), (25)

where nodes are sorted first by ks from largest to smallest
and then, for the same ks, by θ (v|ks) from smallest to largest.
Essentially, nodes within the same k-shell are distinguished
by how close the nodes are to all other nodes in the network
core.

2) BETWEENNESS CENTRALITY
One early concept of centrality capturing the notion of
betweenness, learned from studies on human interactions in
a laboratory setting [2], [4], was derived from the observa-
tion of certain nodes having control on the communication
between a pair of other nodes based on their position in the
network. The ability of a node to control this communication
grants it a position of influence as a broker or enabler. Locally,
a node with high degree has potential for fulfilling such a
role, depending on the level of clustering (links) between
the neighbors of the node, but this would be true only for
its immediate neighbors. It does not capture the control the
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node has on the communication between a pair of nodes
that are distant from each other. This concept was finally
encapsulated as betweenness centrality in [39]. For a node
v, its betweenness is given by:

Cbet(v) =
∑

s,t|s6=v6=t

σst (v)
σst

, (26)

where σst is the number of shortest paths between s and t
and σst (v) is the number of shortest paths between s and
t that include v. For comparing the relative betweenness
between nodes in different networks, the centrality can be
scaled or normalized [82] by

(n−1
2

)
, which is the number

of possible pairs of shortest paths node v can be between.
This extreme example only occurs for the center node in a
star network. Betweenness centrality has received significant
interest in applications in information flow [133], network
resilience [15], or network classification [134]. A variant of
this centrality adapted for edges is popularly used to detect
community structure [135]. This interest has led to efforts
to improve the computation of betweenness [59], although
for large and dense networks, the measure can still become
computationally prohibitive.

3) L-BETWEENNESS CENTRALITY
Ercsey-Ravasz and Toroczkai [136] formalized a notion of
betweenness, called L-betweenness, to reduce the compu-
tational costs of its calculation. This centrality originally
described by [56], considering shortest paths of length at
most L, i.e.,

CL-bet(v) =
∑

s,t|s6=v6=t,d(s,t)≤L

σst (v)
σst

. (27)

If L is at least the diameter of the network, then
L-betweenness is equivalent to betweenness centrality.
Ercsey-Ravasz and Toroczkai [136] explicitly express this
quantity in terms of the summation of betweenness cen-
tralities at each vertex for shortest paths of fixed length `
over the range ` = 1, . . . ,L. That construction is particu-
larly useful for their analysis demonstrating a scaling factor
with respect to L and that for relatively small values of
L, the L-betweenness centrality is a good indicator of the
true betweenness centrality in terms of ranking the nodes.
For small L, this metric straddles the boundary between the
classes of global and local centrality metrics.

4) FLOW BETWEENNESS CENTRALITY
Freeman et al. [60] proposed a variant of betweenness to
capture the capacity of information that can flow in a valued
or weighted graph. The concept borrows from maximum
flow-minimum cut theory [137]. Given the maximum flow
mrs between vertices r and s, denote by mrs(v) the portion of
this flow that passes through node v. Then the flow between-
ness for node v is given by:

Cflow-bet(v) =
∑

s,t|s6=v6=t

mst (v). (28)

This expression can be normalized by replacing each sum-
mand mst (v) with

mst (v)
mst

. This metric can be used to estimate
the mean difference between the highest centrality and the
centralities of the other nodes as a graph centrality metric,
as discussed in Section IV-A4.

5) RANDOM-WALK BETWEENNESS CENTRALITY
Like flow betweenness, this also captures a notion of
betweenness beyond shortest paths. Newman [138] intro-
duced random-walk betweenness to incorporate the contribu-
tion from all paths (short and long) with more weights given
to shorter paths. Actually, Newman first defined the measure
via a current flow analogy and showed it is equivalent to
random walks. Formally, this measure is defined by:

Crandom-walk-bet(v) =

∑
s,t|s<t I

(st)
v

1
2n(n− 1)

, (29)

where I (st)v =
1
2

∑
u Avu|Tvs − Tvt − Tus + Tut | and T is the

matrix (Dw − Aw)−1 where Dw − Aw is the Laplacian with
the w-th row and column removed (e.g., the last column and
row). Note I (st)s = I (st)t = 1.

6) LOAD CENTRALITY
In the context of the transportation of data over a network,
high centrality nodes encounter a heavy load in terms of
the data packets that may be transmitted over shortest paths.
Goh et al. [139] defined the load centrality of node v as the
total quantity of data packets traversing over node v after
every node in the network sends a single packet to every other
node along a shortest path. For the scenario where more than
one shortest path exists between two nodes, the quantity is
divided at each branching point evenly. Explicitly,

Cload(v) =
∑

s,t|s6=v6=t

θst (v), (30)

where θst (v) is the amount of the unit quantity that passed
through node v from node s to node t such that the quantity
is split uniformly at each branch encountered in a shortest
paths from s to t . There has been some confusion that this
load centrality is equivalent to the betweenness centrality
(even in the original paper [139]). However, the quantity in
betweenness is split evenly along each shortest path and not
at the branching points. For this reason, it is often the case
that even in simple graphs the load due to a pair of vertices is
not symmetric at every vertex, i.e., θst (v) 6= θts(v). A simple
algorithm for the calculation of load is provided in [140].

7) ROUTING BETWEENNESS CENTRALITY
Dolev et al. [141] defined a variant of betweenness based on
the particular routing strategy that considers the effect of the
potential traffic load on the network. This routing between-
ness centrality measures the expected number of packets
passing through a given vertex. For the vertex v, the routing
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betweenness is calculated by:

Crouting-bet(v) =
∑
s,t∈V

σst (v) · T (s, t), (31)

where σst (v) is the probability that a packet will go through v
when it is sent from s to t , and T (s, t) is the total number
of paths from s to t . This probability is dependent on the
particular routing protocol.

8) CLOSENESS CENTRALITY
Bavelas [3] was interested in distinguishing between different
positions in small group networks. His approach was close-
ness centrality, defined as the reciprocal of farness, or the
inverse proportion of the average distance to all other nodes
in the network. Formally, this can be expressed as:

Ccloseness(v) =
1∑

u∈V d(v, u)
. (32)

Often, this quantity is normalized for comparisons across
networks by multiplying by n − 1 (or n for large networks).
Another approach to compare the relative position of nodes
with the same farness in different structure groups is given
by [3], Cbavelas(v) =

∑
s,t∈V d(s,t)∑
u∈V d(v,u) , which is equivalent to

Ccloseness(v)/
∑

u∈V Ccloseness(u).

9) INFORMATION CENTRALITY
Stephenson and Zelen [26] developed a centrality measure
that uses all paths between pairs of nodes to incorporate
the notion of the potential transmission of information. This
information centrality borrows from the statistical estimation
perspective that there is noise from a signal transmission
captured by the variance of the signal passing through a path
so that the information decreases as the distance between
nodes grows. Treating this variance as unity for each link,
the information for node v is then defined as the harmonic
mean of the information between v and every other node, that
is,

Cinformation(v) =
n∑

u∈V
1
Iuv

, (33)

where Iuv is the information along all paths from u to
v, weighted by the length of each path. This quantity is
ultimately given by Iuv = 1/(Cuu + Cvv−2 Cuv), where
C = D − A + 11T , D is a diagonal matrix of node degrees
and 1 is a vector of ones. Hence, the information centrality
can be rewritten as Cinformation(v) = (Cvv +

tr(C)
n −

2
n2
)−1.

10) CURRENT-FLOW BETWEENNESS AND CLOSENESS
An alternative notion of flow, similar to the max-flow-
min-cut approach for flow betweenness, is to model infor-
mation spread over a network as an electric current [142].
Current-flow betweenness is defined as:

Ccurrent-bet(v) =
1

(n− 1)(n− 2)

∑
s,t∈V

τst (v), (34)

where τst (v) is the electrical current that passes through
node v given a supply entering the source node s and
exiting the terminus node t . More formally, τst (v) =
1
2

(
−|b(v)| +

∑
e:v∈e |x(

−→e )|
)
. Here, b is a vector defining

the current supply, where current enters and exits at nodes
s and t , respectively, i.e., b(s) = 1, b(t) = −1, and b is zero
elsewhere. The current over each edge in the network is given
by the vector x such that it satisfies Kirchhoff’s Current and
Potential Laws. This is equivalent to random-walk between-
ness [138]. This approach with current can be extended
to other path-based centralities. For example, current-flow
closeness is defined as:

Ccurrent-closeness(v) =
n− 1∑

w6=v pvw(w)− pvw(w)
, (35)

where p(−→e ) = x(−→e )/c(e) by Ohm’s Law, and where the
conductance c(e) is the inverse of the resistance r(e) or length
of an edge. This variant of closeness has been shown to be
equivalent to information centrality [26].

11) RESIDUAL CLOSENESS
Dangalchev [143] developed residual closeness to determine
the vulnerability of the graph (of becoming disconnected with
the removal of a few nodes or edges) using a variation of
closeness. This is defined by:

Cresidual-closeness(v) =
∑
u6=v

(
1
2

)d(v,u)
. (36)

Rather than taking the reciprocal of the sum of distances,
residual closeness uses a weighting scheme. A generalization
of this idea already exists in the literature [144], although
it was not explicitly expressed as a centrality metric until
later [145]. Jackson [145] calls this metric decay centrality,
expressed as Cdecay(v) =

∑
u6=v δ

d(v,u), where 0 < δ < 1
is the decay rate. Recently, Tsakas [146] has shown that the
maximum decay centrality often coincides with the maxi-
mum degree centrality when δ > 1

2 and with the maximum
closeness centrality when δ < 1

2 , at least on Erdös-Rényi
graphs.

12) STRAIGHTNESS CENTRALITY
In spatial networks, the distance between neighbors is not
uniform (or unweighted). Crucitti et al. [147] applied and
developed generalizations of some common metrics that
account for the network’s embedding in space. Closeness
and betweenness centralities are identical to their weighted
distance versions [83], i.e., the distance between two nodes
is the true distance (or weight) from one node to the other.
The new metric developed by [147] is straightness centrality,
which is given for node v by:

Cstraightness(v) =
1

n− 1

∑
u∈V,u6=v

dEuclidean(u, v)
d(u, v)

, (37)

where dEuclidean(u, v) is the Euclidean distance in the real or
embedded space. Straightness centrality measures the effi-
ciency of the route between two nodes using node v.
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13) AHP-BASED CENTRALITY
Bian et al. [148] developed the Analytic Hierarchy Process
(AHP) as a decision making process adapted to identify influ-
ential nodes. The steps to compute it are as follows:
1) Calculate centrality values (e.g., degree, betweenness,

closeness) for each node and combine in an n× 3 matrix.
2) Calculate weights. Bian et al. [148] appended another

vector to the above matrix derived from results of a
Susceptible-Infected (SI) process run on the nodes [149].
This produces the matrix D = [CD,CB,CC,F(t)], where
D is an n × 4 matrix, CD, CB, and CC are vectors for
degree, betweenness, and closeness centralities, respec-
tively, and F(t) is a vector of results of the SI process.
The matrix is normalized and weights are determined
by matching the attributes to the SI column, i.e., rij =

Dij∑n
i=1 Dij

, for i = 1, . . . , n; j = 1, . . . , 4, vij = 1
|rij−ri4|

for i = 1, . . . , n; j = 1, 2, 3, ej =
∑n

i=1 vij, and finally
wj =

ej∑3
j=1 ej

, for j = 1, 2, 3. w is a 3 × 1 vector that

represent the weight for three metrics.
3) Calculate the matrix of option scores using the AHP,

i.e., B(j)ik =
Dij
Dkj

for i = 1, . . . , n; k = 1, . . . , n; j = 1, 2, 3,

where B(j) is an n × n matrix. Then the option scores are
sj = λ × B(j), for j = 1, 2, 3, where λ is the largest
eigenvalue of matrix B(j).

4) The nodes are then ranks using the so called Analytical
Hierarchy Process (APT) by:

CAHP = s× wT , (38)

where s is n × 3 matrix with columns sj for j = 1, 2, 3 and
wT is a transpose vector of w, which is a vector of weights wj
for j = 1, 2, 3, respectively.
The presumption is that the SI scores in the above process
are based on short time horizons, whereas the results of the
AHP may have value for longer time horizons. Thus, AHP
combines three classic centrality metrics and weights them
via a short-run epidemic compartmental model process.

14) GENERALIZED DEGREE AND SHORTEST PATHS (GDSP)
For weighted networks, extensions to the usual centrality
measures already exist for degree [150], closeness [151],
and betweenness [59]. In incorporating weights, the mea-
sures ignore the number of ties or intermediaries. Opsahl
et al. [152] sought to remedy this with the creation of gen-
eralized measures that also encompass both the traditional
measures and the weighted versions:

Cw
gen-deg(v, α) = Cdeg(v)(1−α) · Cw

deg(v)
α,

Cw
gen-closeness(v, α) =

[∑
u

dw(v, u, α)

]−1
,

Cw
gen-bet(v, α) =

∑
s,t

σwst (v, α)
σwst

, (39)

where the shortest path weighted distances given by
dw(u, v) = min

(
1

wui1
+ · · · +

1
wik v

)
are replaced with

dw(u, v, α) = min
(

1
(wui1 )

α + · · · +
1

(wik v)
α

)
for the shortest

path u, i1, . . . , ik , v. For each generalization, α is a tuning
parameter depending on the research or application setting.
When α = 0, the measures are the usual (unweighted)
centrality measures; when α = 1, the measures are the
common weighted measures. When α ∈ (0, 1), having many
weak ties correlates with higher generalized centrality; and
when α > 1, having fewer weak ties correlates with higher
generalized centrality.

15) WEIGHT NEIGHBORHOOD CENTRALITY
Wang et al. [153] included a notion of the diffusion impor-
tance of links based on the power-law property found in
the distribution of observed centrality values (e.g., degree,
betweenness) in real networks. Their weight neighborhood
centrality is defined as:

Cweight-nbhd(v, φ) = φv +
∑
u∈N (v)

wuv
〈w〉
· φu, (40)

where the weights are given by wuv = (Cdeg(u) · Cdeg(v))α

and φ is the benchmark centrality (e.g., degree, betweenness,
k-shell), α is a tunable parameter between 0 and 1, and 〈w〉 is
average weight for edges.

16) PERCOLATION CENTRALITY
Piraveenan et al. [154] developed percolation centrality to
capture the dynamic changes of a network topology based on
the percolation process. Typically, the percolation state of a
node v at time t might be denoted by xv(t) and has a discrete
value corresponding to current state, either percolated (on)
or not percolated (off), where a 0 value indicates v is not
percolated (e.g., infected) at time t and a value of 1 indicates
it is percolated. When 0 < xv(t) < 1, then v might be said
to be is in the process (or probability) of being percolated.
Hence, a higher value of xv(t) implies that v is closer to (has
a greater chance of) being percolated. Piraveenan et al. [154]
defined this percolation centrality as the proportion of per-
colated paths passing through a node, which for node v is
measured by:

Cpercolation(v, t)

=
1

n− 2

∑
r 6=v6=s

σrs(v)
σrs

xr (t)
[
∑

u∈V xu(t)]− xv(t)
, (41)

where σrs is the total number of shortest paths between r and
s and σrs(v) is the total number of shortest paths between r
and s passing through v. When only a single source node
is (partially) percolated, then the average of the percolation
centrality for every node over all possible sources (excluding
itself) is proportional to betweenness centrality (see Eq. (26))
as xr (t)/([

∑
u∈V xu(v)] − xv(t)) = 1 when only when xr

is the source, thereby contributing a 1/(n − 1) factor. If all
nodes are (partially) percolated at the same level, all shortest
paths are percolated paths, leading to the state that percolation
centrality is proportional to betweenness centrality.

VOLUME 9, 2021 104787



Z. Wan et al.: Survey on Centrality Metrics and Their Network Resilience Analysis

17) ECCENTRICITY
Based on the idea that the centrality of a node depends
on the distance, i.e., the shortest path, between other nodes
in networks, Per and Frank [155] introduced the concept
of eccentricity, which is the maximum distance between a
node and any other node in the network. Lower eccentric-
ity indicates higher centrality. Eccentricity centrality can be
mathematically expressed as:

Ceccentricity(v) =
1

max {d(v, u)|u ∈ V }
. (42)

18) ASYMPTOTIC COMPLEXITY OF GLOBAL CENTRALITY
METRICS
In Table 3, we summarized the meanings, equations, asymp-
totic complexity in big-O notation of the global point central-
ity metrics surveyed in this section. Global centrality metrics
have the benefit of capturing the global connectivity of the
entire network. These centralities are typically derived by
notions of distance between all pairs of vertices in the net-
work (e.g., betweenness, load, closeness, etc.). As such, they
provide more information about clustering between parts of a
network. Global centralities help identify the key nodes that
interact between different parts of the network revealing very
different features than notions of degree (e.g., community
structure, brokerage, and control). Unfortunately, these met-
rics are also significantly more burdensome to calculate due
to the nontrivial task of determining the distance or shortest
path for each node pair. Every distance or path must be found
to determine its contribution to the value for every node.
This dependence on calculating paths is reflected in Table 3,
where we can observe that the complexity for many of the
centralities is the function of the number of edgesm. This also
means that the denser the network becomes the more costly
the computation for these metrics. This is, in part, because
there are more potential paths to consider in finding the short-
est paths. Comparing to the iterative point centrality metrics
in Table 2, we observe that the global centrality metrics are
more costly, since the number of edges is at least the order
of n for the network to be connected. The ideal approach to
limit this complexity cost is restricting the length of the paths
considered, as done in the L-betweennessmetric. The tradeoff
is having to learn what the appropriate maximum length L
should be considered to achieve a good approximation of the
desired centrality while limiting the cost significantly enough
to make the exercise worthwhile.

D. DISCUSSIONS: POINT CENTRALITY METRICS
In Section III, we extensively surveyed three types of point
centrality metrics: local, iterative, and global. We discussed
the meaning of each metric and described how to compute
it. In addition, we analyzed their asymptotic complexity in
big-O in order to discuss how efficient each metric is and to
have better insights on how to utilize them under different
environmental conditions in terms of network and node den-
sity, network dynamics, the presence of attacks, or resource

constraints. Since the key aspect of point centrality metrics is
to measure a node’s centrality in terms of its power, influence,
or importance, depending on the size of a given network,
computational overhead to estimate the node’s centrality
is heavily affected. Particularly under resource-constrained
environments or when a given network’s topology is only
partially observable, we can think of how to determine a
node’s ego network which can be considered to determine
its centrality, rather than assuming that all nodes have global
views of the entire network. Indeed, it is not realistic to
assume guaranteeing to maintain a global, synchronized view
available to all nodes. In order for a variety of point centrality
metrics to be more relevantly used in diverse applications,
we need to think of approximation methods to take advantage
of various point centrality metrics without introducing high
inaccuracy due to the reduced size of a network each node to
consider for the estimation of its centrality value.

IV. GRAPH CENTRALITY METRICS
In Section III, we surveyed an individual node’s centrality.
Now we look into the centrality of a given graph, which
characterizes the centrality of all nodes in an entire network,
not just points (or vertices). Hence, graph centrality can be
used as an indicator to represent how nodes in a network are
connected as a whole. We discuss 15 graph centrality (GC)
metrics in this section.

A. MEASURES OF GRAPH CENTRALITY
1) DISTANCE-BASED GC
This measures the distances between all pairs of vertices
in order to measure the compactness of a network. The
distance-based GC is defined in [82] as:

Cdistance-GC(G) =
∑
u∈V

∑
v∈V

d(u, v), (43)

Shimbel [7] earlier developed this metric, calling it disper-
sion and interpreting it as measuring a vertex’s accessibility to
the graph G. The average shortest path [99] is a similar metric
in order to compare the breadth of a network at different
scales.

2) DEGREE-BASED GC
This metric measures the relative dominance of a single
vertex in a network. Nieminen [158] defined this metric as:

Cdeg-GC(G) =
∑
v∈V

(
1+ d∗ − d(v)

2

)
, (44)

where d∗ denotes the maximum degree in the graph G. The
maximum sum of the differences between the largest cen-
trality and all other centralities can be derived as follows:
The maximum possible degree in a graph with n nodes is
n − 1. So this metric can be normalized by scaling by the
maximum degree-based GC, or (n − 1)

(n−1
2

)
. Freeman [39]

proposed an alternative normalization based on differences
of the degrees (as opposed to the binomial of differences),
expressed as Cnorm-deg-GC(G) =

∑
v∈V [d(v∗)−d(v)]
n2−3n+2

.
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TABLE 3. Meanings, computations, and complexities of global point centrality metrics.

3) BETWEENNESS-BASED GC
This metric is calculated by the mean difference between
the maximum betweenness and all other betweennesses [39],
expressed as:

Cbet-GC(G) =
∑

v∈V [C
′

bet(v
∗)− C ′bet(v)]

n− 1

=

∑
v∈V [Cbet(v∗)− Cbet(v)]
n3 − 4n2 + 5n− 2

, (45)

where v∗ is the node with maximum betweenness and C ′bet(·)
is the normalized betweenness [82].

4) FLOW BETWEENNESS-BASED GC
This metric determines the centrality of a weighted (or val-
ued) graph based on the difference between the greatest max-
imum flow in the network and the maximum flow of all other
nodes. This is computed by [60] as:

Cflow-bet-GC(G) =
∑

v∈V [C
′

flow-bet(v
∗)− C ′flow-bet(v)]

n− 1
, (46)

where v∗ is the vertex with maximum flow betweenness and
C ′flow-bet(·) refers to the normalized flow centrality based on
Eq. (28).

5) CLOSENESS-BASED GC
Freeman [82] generalized the closeness-based graph central-
itymeasure based on the previous trials [4], [156]. Thismetric
can be simply derived based on the normalized closeness
metric, (n− 1)Ccloseness(v), from Eq. (32) by:

Cclose-GC(G) =
∑

v∈V [C
′

closeness(v
∗)− C ′closeness(v)]

max
∑

v∈V [C
′

closeness(v
∗)− C ′closeness(v)]

=

∑
v∈V [C

′

closeness(v
∗)− C ′closeness(v)]

(n2 − 3n+ 2)/(2n− 3)
, (47)

where v∗ is the vertex with the largest closeness centrality.

6) RECIPROCITY
Newman et al. [13], [14] defined network reciprocity based
on the number of bidirectional edges between two nodes over
the total number of edges in a network. In directed networks,
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for an edge from node i to node j, if there is an edge from
node j to node i, it is said the edge from node i to node j
is reciprocated, which is also called co-links in the World
Wide Web context [107]. Formally put, the reciprocity can
be denoted by:

Creciprocity =

∑
ij AijAji
m

=
Tr(A2)
m

, (48)

where the number of edges m, in this case, refers to the
sum of the number of bidirectional edges and the number of
unidirectional edges.

7) k-COMPONENT
This metric refers to a maximal subset of nodes where each
node can reach from each of other nodes based on minimum
k paths that are vertex-independent. Note that two paths are
said to be vertex-independent if they do not share any of
the same vertices [13]. A variant of the k-component can
be identified based on edge-independent paths, implying that
removing less than k edges cannot make the component
disconnected [13].

8) k-CLIQUE
A clique refers to a maximum subset consisting of vertices
in an undirected network where each member of the subset is
directly connected to each other [159], [160]. If the size of the
clique is large, it represents a highly cohesive network with
close connectedness between each other [13].

9) k-PLEX
This metric relaxes the condition of the clique as we cannot
find a perfect clique in reality. A k-plex refers to the maxi-
mum size of the subset of n vertices in a network where each
vertex is connected with at least n − k other vertices [159].
The 1-plex is indeed a clique.

10) k-CORE
This metric is a very close concept to the k-plex. It refers to
the maximum size of a subset consisting of vertices that have
minimum k connections with other vertices in the subset.
In this sense, the k-core is a (n − k)-plex. But given a k
value, the set of all k-cores is not the same as that of all
k-plexes because n is different for a different k-core. Further,
different from k-plexes, each k-core is distinct because when
two k-cores share one or more vertices, a single, larger-sized
k-core can be formed [13], [159].

11) AVERAGE CLUSTERING COEFFICIENT
Based on the mean of (local) clustering coefficient for a
given graph, Watts and Strogatz [99] also defined the average
clustering coefficient (ACC) as:

ACC(G) =
∑

v∈V Cclustering(v)
n

, (49)

where Cclustering(v) is the local clustering coefficient of
node v [99]. An alternative global clustering coefficient based

on connected triplets of vertices determines the transitivity of
the network [13], [161]. This metric is based on the ratio of
the 3-cycles in the graph to the number of connected triples
and is defined as GCC(G) = Tr(A3)∑

v∈V d(v)(d(v)−1) .

12) DEGREE ASSORTATIVITY
Newman [162] first defined the assortativity of a network
as a graph measure to represent to what extent nodes are
associated with other nodes in terms of network structural
characteristics, such as degree, betweenness, node weight,
node coreness as well as node characteristics, according to
some context such as ethnic, language, and/or culture. Degree
assortativity can be simply defined based on the linear corre-
lation coefficient between two nodes’ excess degrees where a
node’s excess degree is its degree minus 1 (i.e., d(v)−1), also
known as the remaining degree of the node and the excess
degrees are random variables. The degree assortativity, ρD,
is given by:

ρD =

∑
jk jk(ejk − qjqk )

σ 2
q

, (50)

where ejk refers to the joint excess degree probability for
nodes with excess degrees j and k . qk is a normalized dis-
tribution of a randomly selected node, given by qk =

(k+1)pk∑
j jpj

,
where σq is the standard deviation of the distribution qk .
Newman extended the definition of degree assortativity in

unweighted, directed networks, as ρD =
∑

jk jk(ejk−q
in
j q

out
k )

σinσout
,

where ejk indicates the probability that a nodewith out-degree
k and a node with in-degree j is connected for k, j ∈ N,
qinj =

(j+1)pinj+1∑
j jp

in
j
=

(j+1)Pr[Din=j+1]
E[Din]

is the normalized excess

in-degree distribution where Din is the in-degree for a ran-
domly selected node, qoutk is defined similarly, and σin and
σout are the standard deviations of qinj and qoutk , respectively.
Noldus and Van Mieghem [163] discussed multi-layered
assortativity to be applied in directed networks, including:
(1) in-degree assortivity measuring the tendency of a partic-
ular in-degree node that is connected to the same in-degree
or different in-degree nodes; (2) out-degree assortativity
estimating the trend of a particular out-degree node’s con-
nectedness with the same out-degree or different out-degree
nodes; and (3) overall assortativity calculated based on both
in-degree assortativity and out-degree assortativity.

13) LOCAL ASSORTATIVITY
Piraveenan et al. [165] defined local assortativity to measure
an individual node’s assortativity based on its degree and its
neighbors’ degree. The local assortativity is measured by:

ρ(v) =
(j+ 1)(jk̄ − µ2

q)

2mσ 2
q

, (51)

where j is the excess degree of node v (i.e., d(v) − 1), k̄
is the average excess degree of node v’s neighbors (i.e.,
[
∑

u∈N (v)(d(u) − 1)]/d(v)), σq is the standard deviation of
the distribution of excess degree j over all nodes in the
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TABLE 4. Meanings, computations, and complexities of graph centrality metrics.

network, and µq is the average excess degree. Note that the
sum of all local assortativities is the network assortativity,
ρ =

∑
v∈V ρ(v).

14) GRAPH CURVATURE
One hypothesis to explain the phenomenon observed in many
large networks of traffic congestion occurring at a core set
of nodes in the network is that the network as a whole
is negatively curved. Evidence supporting this hypothesis
includes the ease in embedding networks in hyperbolic space
or deriving various properties using hyperbolic network mod-
els [105]. If the network is negatively curved, then routing
paths influenced by shortest path selection are somewhat
forced to traverse this core, leading to congestion. Point
centralities are useful in potentially identifying this core set,
but they do not measure the network curvature of the graph as
a whole. To address this problem, Narayan and Saniee [166]
developed a large-scale curvature measure by adapting to
graphs the ‘‘δ-thin triangle condition’’ [167] that defines
negative curvature. For any triple of nodes i, j, k , we define
the distance function from any other node h to the triangle of
nodes by D(h; i, j, k) = max{d(h; i, j), d(h; i, k), d(h; j, k)}
where d(h; u, v) is the minimum distance from the node h
to the geodesic between u and v. Then, the curvature of a
network with respect to the triple, δi,j,k , can be defined as:

δi,j,k = min
h
D(h; i, j, k). (52)

An infinite network is negatively curved (hyperbolic),
if δ = maxi,j,k δi,j,k < ∞. Obviously, finite networks would
not satisfy this condition, hence comparing δ to the perimeter
length of the triangle formed from the geodesics among the
triple (i, j, k). This ratio does not exceed 3/2 for constant
non-positively curved Riemannian manifolds [168]. To relax
the constraint that every triple satisfies this condition and for
computational reasons, Narayan and Saniee [166] considered
a random sampling of triples and determine if the ratio δ1/`
converges for large ` = min{d(i, j), d(i, k), d(j, k)}.

15) ASYMPTOTIC COMPLEXITY OF GRAPH CENTRALITY
METRICS
In Table 4, we summarized the meanings, equations, and
asymptotic complexity in big-O of the graph centrality met-
rics surveyed in our paper. We can observe the majority of
GC metrics have their asymptotic complexity from O(n2)
to O(n4). Most of the GC metrics are measured based on
the distances between two nodes or the difference between
certain centrality values of two nodes. Therefore, GC metrics
represent how a network is clustered based on certain criteria
to represent the relationships between nodes in the network.

B. DISCUSSIONS: GRAPH CENTRALITY METRICS
Recall that a graph centrality (GC) can represent how nodes
in a network are connected to each other with a single value
metric. Due to this merit, we can use GC metrics to indicate
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a certain level of system performance or conditions if we
can identify some relationships between a given GC and
system conditions. For example, if we can observe higher
vulnerability to epidemic attacks in a network with higher
betweenness-based GC, then we can use the GC as a metric
to indicate the extent of network vulnerability to the net-
work. We further discussed this through our experiments in
Section VII. The experimental results in Tables 8 and 9 (see
Section VII) showed that higher network vulnerability due to
either non-infectious or infections attacks is observed when
a network shows lower GC because high network connec-
tivity introduces network vulnerability due to the nature of
interconnectivity, resulting in cascading failures, as discussed
in [12].

V. GROUP CENTRALITY METRICS
When a group of nodes is selected formany of the problems in
the application space (e.g., influence maximization, network
destruction), simply selecting the top-K ranked nodes is a
naïve approach. Many networks exhibit assortativity, with
respect to degree or another centrality, or redundant cluster-
ing. A simple example demonstrating the problem with top-
K selection strategy is the observation of the importance of
the k-shell (certainly for influence maximization), as the top-
K nodes all may reside in the same k-shell and be neigh-
bors. k-shell based centrality approaches would only push
the selected nodes to the edge of the top k-shell, which
may be highly localized instead of distributed throughout the
network.

One approach to resolving this issue to iteratively select
a single node and recalculate the centrality measure for
the remaining network excluding the selected node(s). This
strategy has been studied for network robustness [15] and
the recalculation can be trivial for certain measures (e.g.,
degree, coreness). For other measures, this recalculation may
be expensive. Hence less costly approaches have been devel-
oped, seeking to discover a more close-to-optimal set of k
nodes.

A. MEASURES OF GROUP CENTRALITY
1) DEGREEDISTANCE
Sheikhahmadi et al. [169] introduced a degree-distance met-
ric to ensure the selected nodes are well-dispersed in the
network. The strategy first computes the degree of each node
and selects the node with the highest degree. It then excludes
the selection of all nodes within a chosen threshold distance
ttd from any of the previously selected nodes and selects the
node with the highest degree. Given a current set of selected
seed nodes S (e.g., selected at random), the next selected node
is chosen to be

v = argmax
u∈V |d(u,w)≥ttd∀w∈S

d(u). (53)

Since this threshold distance can omit from the potential
selection of high degree nodes that are within the threshold
distance but have limited common neighbors (or neighbors

of neighbors) with the previously selected nodes, the authors
introduced two improvements to DegreeDistance. The first
improvement of DegreeDistance (FIDD) does not exclude a
node v within the threshold distance, provided the number of
common neighbors and common neighbors of neighbors with
previously selected nodes in S is below a chosen threshold θ .
The second improvement of DegreeDistance (SIDD) adds
another check to determine an influence score P(u, v) +∑

w∈N (u)∩N (v)(P(u,w) · P(w, v)), where P(u, v) is the acti-
vation probability that u will influence v. Nodes within the
threshold distance with influence above some threshold β are
excluded from being selected for inclusion in S even when
the common neighbors are below the threshold θ . Essentially,
sufficient pathways exist for the node to be affected by a seed
node indirectly.

2) SINGLEDISCOUNT
This is essentially the iterative recalculation of degree.
Chen et al. [170] used this basic heuristic to compare against
several greedy approaches to estimate the cascade models
of Kempe et al. [171]. The node with maximum degree is
selected for the seed set S (ties broken randomly). Each
neighbor of a selected node has a unit value reduction in its
degree. This selection can be represented by:

v = argmax
u∈V\S

d(u)− |N (u) ∪ S|, (54)

where d(u)− |N (u)∪ S| = |N (u)| − |N (u)∪ S| is the degree
of node u excluding the current links to the seed set S.

3) DEGREEDISCOUNT
The SingleDiscount approach ignores the probability that
a node may be affected by a neighbor in the seed set.
Chen et al. [170] constructed an alternate heuristic to account
for this and better match the independent cascade model of
Kempe et al. [171]. Given a small propagation probability
of p, we assume that tv neighbors of v are already in the
seed set, and that d(v) = O(1/p) and tv − O(1/p). Then,
the expected number of additional vertices in N (v) that will
be influenced by the selection of v can be shown to be
1+ (d(v)− 2 tv − (d(v)− tv)tvp+ o(tv)) · p. This is derived
via the probability (1 − p)tv that v would not be influenced
by nodes already in the seed set and the expected number
of vertices 1 + (d(v) − tv) · p that v influences its neighbors
that are not in the seed set. This ignores indirect influences,
which would be expected to be minimal for small p. Hence,
the selection criteria, using an appropriate DegreeDiscount is

v = argmax
v∈V\S

d(v)− 2tv − (d(v)− tv)tv · p, (55)

where S is the current seed set.

4) DEGREEPUNISHMENT
To account for indirect influence from nodes in the seed
set, Wang et al. [172] introduced a strategy that punishes
nodes near the seed set. The punishment is determined by
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TABLE 5. Meanings, computations, and complexities of group centrality metrics.

how many shortest paths the node is on, the penalty is more
severe if the node is closer to a seed and, consequently,
closer to the seed on the paths. This punishment is pu→v =

d(u)
∑r−1

h=1(A
h)uvωh, where ω is a weaken factor (typically

assigned to be the propagation probability) and r is the radius
of influence or length of the considered paths. Then given the
current seed set S, theDegreePunishment selection of the next
node is given by:

v = argmax
v∈V\S

d(v)−
∑
u∈S

pu→v. (56)

The complexity of this process grows with the radius r of
the paths from the seed set, so Wang et al. [172] limited the
radius to r = 2 in their simulations.

5) COLLECTIVE INFLUENCE
Morone and Makse [173] introduced a scheme to capture the
collective influence (CI) of a set of nodes using the concept
of optimal percolation. The influence of a single node is
determined by its corona, defined in a similar manner as
volume centrality (see Eq. (4)). This influence of a node v
is Ccollective-inf(v, `) = (Cdeg(v) − 1)

∑
u∈B(v,`)(Cdeg(u) − 1),

where B(v, `) is the set of nodes within the distance of ` from
node v. Hence, given the current seed set S, the next node
selected is

v = argmax
v∈V ′=V\S

Ccollective-inf(v, `), (57)

where the collective influence is measured based on the
remaining graph consisting of nodes where nodes in S are
removed. Morone et al. [174] also provided a stopping cri-
teria for their approach by updating an estimate of a lower
bound on the minimum eigenvalue of the non-backtracking
matrix when a fraction of q nodes are removed. This esti-

mate is given by λ(`; q) =
(∑

v Ccollective-inf(v,`)
n〈k〉

)1/(`+1)
,

where 〈k〉 is the mean degree of the original net-
work. When λ(`; q) = 1, the selection process is
finished.

6) ASYMPTOTIC COMPLEXITY OF GROUP CENTRALITY
METRICS
In Table 5, we summarized the meanings, equations, and
asymptotic complexity in the big-O notation of the group
centrality metrics surveyed in this section. When the range
of the number of edges m is considered as n − 1 ≤ m ≤ n2,
the complexity can range fromO(n) toO(n3). Unsurprisingly,
the base centrality for any group centrality will be less than
that for the group centrality. The literature in this area cur-
rently focuses on selecting a set of optimal nodes based on the
degree and tries to limit the case where neighboring nodes are
selected. Any of these approaches can be extendable to other
local point centrality metrics in a similar manner.

B. DISCUSSIONS: GROUP CENTRALITY METRICS
The core idea of group centrality metrics is how to select a set
of nodes with high influence without making them localized
in a certain region. That is, the group centrality metrics want
to select a set of nodes with high influence that are distributed
in a given network by excluding the overlapped influence
between nodes. To do this, group centrality metrics select
a set of nodes as the seed nodes (which is often selected
based on the extent of its centrality, such as a node’s degree)
and use them to estimate the penalty based on the distance
between the node and a seed (i.e., a closer distance leads
to a higher penalty). This implies that how to select a set
of seed nodes is critical in selecting a set of nodes as a
group. Group centrality metrics are more efficient than point
centrality metrics when an application is to select a set of
nodes based on the importance in a given network topology.

VI. EVOLUTION OF CENTRALITY METRICS
To observe the overall trends of how centrality metrics have
evolved over time, we showed the number of publications
studying the three types of centrality metrics (i.e., point,
graph, and group selection centrality metrics) from the 1960s
or earlier until the 2010s in Fig. 2. From the figure, we can
clearly notice that various types of centrality metrics have
been significantly studied since the 2000s and more actively
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FIGURE 2. Centrality metrics developed under each category from the
most recent five decades and before.

in the 2010s. More noticeably, most studies are more inter-
ested in developing point centrality metrics. Although we
can observe the dominant trends of studying point centrality
metrics across all times, in the 1970s, it is interesting to
observe that more graph centrality metrics are developed than
other types of centrality metrics.

For the easy reference of each metric discussed in
Sections III-V, we summarized the list in Table 6 based on
publication year in order to capture the evolution of centrality
metrics. The most common centrality metrics used in the
literature (e.g., degree, betweenness, closeness, eigenvector
centrality) were proposed before the 1990s and a large vol-
ume of new point centrality metrics have been studied in the
2000s and 2010s. To take advantage of those various types
of centrality metrics that are recently proposed, we hope that
more studies consider various centrality metrics proposed in
the literature through our survey paper.

VII. NETWORK RESILIENCE ANALYSIS OF THE SURVEYED
CENTRALITY METRICS
A. EXPERIMENTAL SETUP
This section explains the experimental setup used for evalu-
ating the performance of each centrality metric surveyed in
this work in terms of the size of the giant component as the
indicator of network resilience. To be specific, we provide
datasets, metrics, and attack scenarios used for evaluating the
surveyed centrality metrics in this work.

1) DATASETS
We selected the following real datasets for network topolo-
gies used in the performance demonstration of the surveyed
centrality metrics:
• Directed Network Topologies: (1) The UCI Social Net-
work2 [178] is a collection of interactions from pri-
vate messages sent over an online social network at
The University of California, Irvine. (2) The Rocket-
fuel Network3 [179] is a snapshot of router connections
on an Internet Service Provider (ISP) topology from
measurements.

2https://snap.stanford.edu/data/CollegeMsg.html
3http://networkrepository.com/tech-routers-rf.php

• Undirected Network Topologies: (1) The URV Email
Network4 [180] captures the email communication for
the Universitat Rovira i Virgili in Spain. (2) The EU
Email Network5 [181] captures the internal (or core)
email communication for a large European research
institution.

In Fig. 3, we described the topologies and degree distribu-
tions of all four datasets used in this work for readers to better
understand the characteristics of the networks.

2) METRICS
Weuse the followingmetrics to evaluate the centralitymetrics
discussed in this work:
• Size of the Giant Component: This metric measures the
fraction of nodes in the giant component. This metric is a
common indicator of network resilience in the Network
Science [12].

• Mean Fraction of Infected Nodes: This metric measures
the mean number of infected nodes by an initial attacker.

• Running Time:Thismeasures the simulation time in sec-
onds to calculate the centrality metrics in the given
datasets.

For graph centrality metrics, we surveyed 15 metrics in
Section IV. Since the range of each metric varies, we cannot
compare their maximum values. However, we can at least
investigate whether the value of each metric increases or
decreases depending on how many nodes are removed at
random and accordingly the size of the giant component.
In order to easily observe this, we devised a metric called the
relative graph centrality (RGC) value, which is computed by:

RGC =
GC − GC ′

GC
, (58)

where GC is the value of a given graph centrality (GC) from
the original network with the size of the giant component
being 1 and GC ′ is the value of a given GC after removing a
certain percentage of nodes being removed at random. If we
observe the RGC value increases under a smaller size of the
giant component, Sg, it implies that the GC value decreases
under the smaller Sg. On the other hand, if the RGC value
decreases under a small Sg, this means the GC value increases
under a smaller Sg. Therefore, the RGC can be used to easily
detect whether a given GC can be used as ametric to represent
the state of network connectivity in the given network as a
whole.

3) ATTACK SCENARIOS
We consider the two attack types as:
• Non-Infectious Attacks: This attack type reflects node
failures without infecting the node’s neighbors. The
practical examples include partial physical destruction
of a system [182], non-critical nodes that are not func-
tioning due to denial-of-service (DoS) attacks [183], or a

4http://networkrepository.com/ia-email-univ.php
5https://snap.stanford.edu/data/email-Eu-core-temporal.html

104794 VOLUME 9, 2021



Z. Wan et al.: Survey on Centrality Metrics and Their Network Resilience Analysis

TABLE 6. Evolution of centrality metrics from the 1960s or earlier to the 2010s.

TABLE 7. Characteristics of the used datasets.

node accessed by an unauthorized party aiming to ille-
gally obtain credentials [183]. The fraction of removed
nodes, φ, is the same as the number of attackers without
propagating infections.

• Infectious Attacks Unlike the above non-infectious
attack, this attack propagates infections towards other
nodes. The common examples are malware or virus
spreads. Botnets can propagate malware or viruses
through mobile devices, which can use mobile mal-
ware such as a Trojan horse, which acts as a bot

client to obtain a command and control from a remote
server [183]. We model these infectious attacks by
selecting the initial attackers with φ, a fraction of nodes
being selected as initial seeding attackers. We assume
that the infectious attackers follow the Susceptible-
Infected-Removed (SIR) epidemic model [13]. Nodes
in the susceptible state (S) refer to healthy nodes, not
being infected by the attackers yet. Nodes in the infected
state (I) are the compromised nodes, becoming an inside
attacker, which can also replicate infections to their
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FIGURE 3. Network topologies and degree distributions for the datasets used.

neighboring nodes. Nodes in the removed state (R) are
the nodes detected and isolated from the network by
cutting all edges of the detected node. The compromised
and detected nodes are treated as failed nodes. A suscep-
tible node (S) can become infected (I) and later recover
or be removed (R).When the size of the giant component
is captured, we only consider healthy nodes, which are
still in the S state. We consider the probability that a
susceptible node can be infected by an infected node as
the infection rate, β.

4) EXPERIMENT ENVIRONMENT SETTINGS
The experiment is performed using Matlab_R2019b in Cen-
tOS Linux 7.4 under x86_64. For the volume and flow
betweenness centrality metrics, we used the number of hops
(h) set to 2. Note that a hop in a network is defined as an edge
between two connected nodes. In the group selection metrics,
we used dtd = 4 in the degree distance metric and each
group is defined with 10 nodes. Due to the high complexity
of some metric computations (i.e., even one simulation run
was expensive), we excluded the following point central-
ity metrics: random-walk betweenness, routing betweenness,
dynamical influence, load centrality, and curvature. In the
point centrality metrics, we did not show communicability

centrality as it is the same as subgraph centrality when it
is used to measure node centrality. In the graph centrality
metrics, since reciprocity was the only metric that can be
measured in a directed network, we excluded it.

B. NETWORK RESILIENCE ANALYSIS UNDER
NON-INFECTIOUS ATTACKS
1) UNDER POINT CENTRALITY-BASED TARGETED,
NON-INFECTIOUS ATTACKS
Effect of Varying the Fraction of Attackers on the Size of the
Giant Component:We show the size of the giant component
in the undirected URV Email Network and directed UCI
Social Network in Fig. 4 and in the undirected EU Email Net-
work and directed Rocketfuel Network in Fig. 5 when varying
the fraction of removed nodes (i.e., attacked nodes), which
does not infect other adjacent nodes (i.e., non-infectious
attacks) selected via different point centrality metrics. This
experiment shows how a targeted, non-infectious attack based
on the given point centrality metric affects the size of the giant
component. In Figs. 4 and 5, we observed very similar trends
and obtained the following key findings:
• Most targeted attacks are stronger than random attacks
(notated as ‘random’ in black), showing a significantly
lower size of the giant component.
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FIGURE 4. The size of the giant component after removing the initial non-infectious attacker nodes based on the point
centrality metrics in the undirected URV Email Network and the directed UCI Social Network where the random node removal is
included as a baseline model. (a)-(c) are for local point centrality metrics, (d)-(f) are for iterative point centrality metrica, and
(g)-(h) are for global point centrality metrics. The star notation(*) in the legend indicates the result was obtained with only a
single simulation run due to too slow running time. Otherwise, 100 simulation runs are used to obtain the mean size of the
giant component.
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FIGURE 5. The size of the giant component after removing the initial non-infectious attacker nodes based on the point
centrality metrics in the undirected EU Email Network and the directed Rocketfuel Social Network where the random node
removal is included as a baseline model. (a)-(c) are for local point centrality metrics, (d)-(f) are for iterative point centrality
metrica, and (g)-(h) are for global point centrality metrics. The star notation(*) in the legend indicates the result was obtained
with only a single simulation run due to too slow running time. Otherwise, 100 simulation runs are used to obtain the mean
size of the giant component.
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• Betweenness in (g) and GDSP betweenness in (h) show
the best performance (i.e., in the sense of reducing the
size of the giant component) with the network dissolved
after a little more than 40% of the nodes are removed.

• Although most targeted attacks with given point cen-
trality metrics outperform a random attack, the attack
with clustering coefficient in (a) performs close to
the random attack without showing a higher impact
in disconnecting a given network. This is because the
clustering coefficient measures the number of triangle
relationships among a node’s adjacent nodes, removing
a node with high clustering coefficient still allows neigh-
boring nodes to remain connected.

• The impact of removing a node is lessened if the selec-
tion criteria (or centrality) has a more local, rather
than a global, scope. Therefore, removing a node with
high clustering coefficient does not introduce a dramatic
effect in reducing the size of the giant component.

Effect of Removing the Top 50% of Nodes Based on aGiven
Point Centrality Metric: Fig. 6 shows the size of the giant
component after the top 50 percent of the nodes, ranked based
on each point centrality, are removed. Note that this attack is
not infectious so an attacked node cannot compromise adja-
cent nodes. From Fig. 6, we observed the following trends:

• In Fig. 6 (a) that shows the size of the giant com-
ponent when non-infectious, targeted attacks are per-
formed based on local point centrality metrics, except
redundancy centrality, we observe a larger size of the
giant component under the URV Email Network than
the EU Email Network where both the URV and EU
Email Networks are undirected graphs. For the clus-
terrank which is applied under directed networks (i.e.,
UCI and Rocketfuel Networks), the size of the giant
component is substantially small. Recall that the EU
network is denser than the URV network. The volume
centrality-based attacks seem less impactful under a
sparser network (i.e., URV network) while the redun-
dancy centrality-based attacks are less impactful under a
denser network (i.e., EU network) showing a larger size
of the giant component.

• In Fig. 6 (b) that shows the size of the giant component
when non-infectious, targeted attacks are performed
based on iterative point centrality metrics, the diffusion
centrality-based attacks performed the worst showing
the highest sizes of the giant components under both
undirected networks (EU and URV networks). For the
iterative centrality metrics applied in directed networks,
they performed worse under a sparser network (i.e.,
Rocketfuel network) than under a denser network (i.e.,
UCI network).

• In Fig. 6 (c) that shows the size of the giant component
when non-infectious, targeted attacks are performed
based on global point centrality metrics, the percola-
tion and eccentricity centrality metrics performed the
worst under both the EU andURVnetworks. In addition,

TABLE 8. Relative Graph Centrality (RGC) values of 10 GC metrics under
non-infectious attacks in the undirected network datasets (EU email
network, URV email network).

we can easily notice that some of global point cen-
trality metrics, such as improved method (based on
k-shell), closeness, residual closeness, GDSP closeness,
and weight neighborhood, showed significantly higher
sizes of the giant components under the URV network,
which is sparser than the EU network. This would be
because lack of connectivity may limit the impact of
removing nodes with high centrality.

• The effect of the point centrality on the size of the giant
component depends also on the network topology. For
example, for the volume centrality in (a), node removals
in the EU network result in a significantly larger size
of the giant component than node removals in the URV
network. In addition, most point centrality metrics show
a larger size of the giant component under the URV
network, which is sparser than the EU network.

• In themetrics evaluated under the directed networks (see
cyan and yellow bars in (a) and (b) of Fig. 6), we can
clearly notice poor performance of authorities, SALSA
hubs, and SALSA authorities on a sparse network as the
Rocketfuel Network.

2) UNDER GRAPH CENTRALITY-BASED TARGETED,
NON-INFECTIOUS ATTACKS
For the validation of group selection centrality (GC) metrics,
we considered two sets of random attacks with 30% and 70%
removal of nodes in two undirected network datasets, which
are the EU Email Network and URV Email Network. Since
we considered random attacks in this case to investigate how
the GC values are affected under two different scenarios,
we observed that the size of the giant component was similar
with approximately 0.3 and 0.7 for the respective cases. Since
k-plex, k-clique, and k-core return a set and reciprocity needs
to be applied in a directed network, we omitted the discus-
sions of those metrics. In Table 8, we summarized the RGC
values.

From Table 8, we made the following observations:

• Overall the size of giant components under different GC
metrics is similar because the attacks are random.

• The effects of random attacks on the extent of GC values
are different depending on each GC metric.
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FIGURE 6. The size of the giant component after removing the top 50 percent of the non-infectious attackers selected based on the given point
centrality metrics in both undirected networks (i.e., EU Email Network and URV Email Network) and directed networks (i.e., UCI Social Network and
RocketfuelNetwork).

• We found that increasing the number of initial attack-
ers reduces the GC value in the following graph cen-
trality metrics: distance-based GC, degree-based GC,
k-component, degree assortativity, local assortativity,
and average clustering.

• We observed greater GC when increasing the num-
ber of attackers in the following GC metrics:
betweenness-based GC, closeness-based GC, and graph
curvature.

• The reason of showing different trends under different
metrics can be explained as follows. If the GC metric
measures how the node is locally connected with its
close neighbors, then the GC value decreases due to the
breakdown of local connections when random attacks
are performed. However, if the GCmetric estimates how

the node is globally connectedwith other nodes, its value
can increase as the normalization of the GC calculation
depends on the size of the network. Therefore, we cannot
simply rely on whether a network is dense or sparse
based on the GCmetric because a higher GCmetric does
not always necessarily imply a denser network.

3) UNDER GROUP SELECTION CENTRALITY-BASED
TARGETED, NON-INFECTIOUS ATTACKS
Fig. 7 shows sizes of the giant component in both undirected
networks, including the EU Email Network and URV Email
Network, as the indicator of network resilience when a set
of groups (where a group is defined as 10 nodes) chosen
based on a given group selection metric are removed as
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FIGURE 7. The size of the giant component after removing a set of either non-infectious, initial attackers based a
given group selection metrics in the two undirected network datasets, which are the EU Email Network and URV
Email Network.

targeted, non-infectious attacks. Overall we found that attacks
on denser networks (with more edges) in the EU Email Net-
work are less severe when degree punishment is the selection
criteria while attacks on larger networks (with more nodes)
are less severe with degree distance.

C. NETWORK RESILIENCE UNDER INFECTIOUS ATTACKS
1) UNDER POINT CENTRALITY-BASED TARGETED,
INFECTIOUS ATTACKS
We also evaluated the performance of point centrality metrics
surveyed in this work under infectious attacks. As discussed
in Section VII-A3, an seeded attacker can infect neighboring
nodes with an infection probability β = 0.05. Figs. 8 and 9
show the size of the giant component under targeted attacks
of the URV Email Network and the UCI Social Network and
the EU Email Network and Rocketfuel Network for the point
centrality metrics, respectively. We varied the fraction of the
initial attackers by an increment of 0.01 from 0.01 to 0.1.
A node is immune to the attack if the node is attacked but
is not infected based on the given infection probability, β.
Note that we report results over a smaller fraction of initial
attackers because of the stronger impact of infectious attacks
on the size of the giant component.

From Figs. 8 and 9, we observed the following:

• Overall the size of the giant component linearly
decreases when targeted, infections attacks are applied.
Most targeted attacks reduce the size of the giant com-
ponent compared to random attacks.

• Three point centralitymetrics tested in this work resulted
in a comparable or larger size of the giant component
than random attacks. These are clustering coefficient,
flow betweenness, and redundancy.

• For the clustering coefficient in (a), removing a node
with high clustering coefficient has a limited effect on its
local network due to high connectivity. More generally,
when local neighborhoods are well connected, which
is the case for nodes with high clustering coefficient,
the reduction of the network is tempered.

• Similarly, since redundancy in (b) captures the over-
lap of a node’s neighborhood with that of other nodes,

the network is less likely to be dismantled because the
nodes in the neighborhood remain connected.

• Note that volume centrality in (a) is estimated based on
a given hop h which is set to 3 in our work. This means
that even when a node with high volume centrality is
removed, an infectious propagation of the attack may
be limited in scope depending on the immunity of the
contact or nearest neighbors.

• Lastly, the performances of betweenness in (g), pager-
ank in (d), and GDSP betweenness in (h) are impres-
sive compared to other centrality metrics, resulting in
a significantly smaller size of the giant component for
the undirected URV Email Network. In addition, in the
(directed) UCI Social Network, clusterrank in (c), lead-
errank in (f), hubs in (f), and SALSA authorities in
(f) are quite impressive in their performance, resulting
in a significantly smaller size of the giant component,
compared to other centrality metrics.

• Although the performance of Fig. 9 is very similar to
that of Fig. 8, we also found some distinctive trends as
follows.
– Seeding attackers based on flow betweenness in Fig. 9

g) performs better in the EU Email Network as
the fraction of initial infectious attackers increases
whereas in the URV Email Network, selection based
on flow betweenness performed no better than ran-
dom selection, as shown in Fig. 8 (g).

– Volume centrality-based seeding did not perform as
well in the EU Email Network (Fig. 9 (a)) compared
to the URV Email Network (Fig. 8 (a)). This could be
because of the reason discussed earlier regarding the
clustering coefficient, which also did not perform bet-
ter compared to the random attack. That is, removing
a node with high volume centrality may only collapse
the local network of the node. This means that under
dense networks, the removal of nodes with a highly
connected local neighborhood does little to separate
the network into smaller components.

– We found that the network topology really affects
the performance of centrality metrics. In particu-
lar, the key difference between these two datasets
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FIGURE 8. The size of the giant component after removing the initial infectious attacker nodes based on the point centrality
metrics in the undirected URV Email Network and the directed UCI Social Network where the random node removal is included
as a baseline model. (a)-(c) are for local point centrality metrics, (d)-(f) are for iterative point centrality metrica, and (g)-(h) are
for global point centrality metrics. All results are based on 100 simulation runs to obtain the mean size of the giant component.
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FIGURE 9. The size of the giant component after removing the initial infectious attacker nodes based on the point centrality
metrics in the undirected EU Email Network and the directed Rocketfuel Social Network where the random node removal is
included as a baseline model. (a)-(c) are for local point centrality metrics, (d)-(f) are for iterative point centrality metrics, and
(g)-(h) are for global point centrality metrics. All results are based on 100 simulation runs to obtain the mean size of the giant
component.
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(i.e., the URV Email Network in Fig. 8 and the
EU Email Network in Fig. 9) is that the EU Email
Network is a denser network than the URV Email
Network. This can explain why flow betweenness
in (g) can significantly perform better than random
in the EU Email Network, compared to its perfor-
mance in the URV Email Network. That is, since
a higher network density (with more edges) can
increase the impact of infectious attacks, the flow
betweenness-based attacks can take an advantage of
the network density to increase its effect in compro-
mising other nodes in the network. In addition, higher
network density (with more nodes) can also make
the performance of targeted attacks less distinctive
because the opportunities for infection are more rel-
evant than the marginal benefits of optimizing the
selection of initial attackers.

Effect of Removing the Single Top-Ranked Node: Fig. 10
shows the effect of point centrality-based targeted attacks
in the undirected networks (i.e., EU Email Network and
URV Email Network) and directed networks (i.e., UCI Social
Network and Rocketfuel Network) in terms of the size of the
giant component as an indicator of the network resilience
when the single top-ranked node based on a given metric
is selected as an infectious attacker. The trends are very
similar to Fig. 10 in terms of the performance under different
networks. Repeating the trends observed in Fig. 10, the effect
of targeted attacks based on point centrality metrics is greater
(i.e., smaller size of the giant component) in the sparse URV
Email Network than in the dense EU Email Network. It is
not surprising that the dense network can absorb the impact
of removing nodes and better maintain a connected network.
However, interestingly, in directed networks, the sparsity of
the directed Rocketfuel Network can mitigate the infection
process, leading to a larger size of the giant component while
the higher density of the UCI Social Network allows attacks
to more easily spread.
Effect of Varying the Fraction of Initial, Infectious Attack-

ers on the Mean Fraction of Nodes Infected by a Single,
Initial Attacker: Figs. 11 and 12 show the mean fraction of
nodes infected by a single, initial attacker when the fraction
of initial attackers vary from 0.001 to 0.01 with an increment
of 0.01 using 38 point centrality metrics to determine the
initial selection under the undirected EU Email Network and
the directed Rocketfuel Network. Note that ‘themean fraction
of infected nodes’ is to measure the attack impact introduced
by an initial attacker. This will allow us to investigate how
many other nodes a single initial attacker has compromised
on average.

Most metrics evaluated in this work showed higher rates of
infection spread per initial attacker. However, some metrics,
such as flow betweenness, clustering coefficient, diffusion
centrality, mixed degree decomposition, and SALSA author-
ities, showed lower rates per initial attacker. Note that an
attack resulting in a smaller size of the giant component

TABLE 9. Relative Graph Centrality (RGC) values of 10 GC metrics under
infectious attacks in the undirected network datasets (i.e., EU email
network and URV email network).

does not necessarily mean there are more infected nodes
because there may exist many uninfected nodes in smaller
components. Conversely, lower infection rates due to a given
centrality-based selection does not imply that the network is
resilient to that particular attack.

2) UNDER GRAPH CENTRALITY-BASED TARGETED,
INFECTIOUS ATTACKS
Table 9 shows the RGC values of the graph centrality (GC)
metrics when random infectious attacks are performed.
Again, the network is seeded with 30% or 70% of infected
nodes and the results are for the two undirected networks,
including the EU Email Network and URV Email Network.
Due to the infectious nature of this attack, the size of the
giant component is observed to be smaller compared to that
under non-infectious attacks. But similar to what we observed
in Table 8, some GC metrics (e.g., the top 6 GC metrics
in Table 8) show a similar tendency with decreasing GC
under a graph with a smaller size of the giant component.
However, other GC metrics (e.g., the bottom 4 GC metrics
in Table 8) do not show a consistent trend. For example, for
degree assortativity, the size of GC decreases in the dense EU
Email Network while it increases in the sparse URV Email
Network. In addition, GC does not always keep increasing
or decreasing depending on the size of the giant component
even for the same network, as observed in the closeness-based
metric. Therefore, the scale of some GC metrics can be used
to predict the size of the giant component.

3) UNDER GROUP SELECTION CENTRALITY-BASED
TARGETED, INFECTIOUS ATTACKS
Fig. 13 shows the sizes of the giant component in both
undirected networks (EU Email Network and URV Email
Network) when a set of groups (i.e., a set of 10 nodes)
selected based on a given group selection metric are removed
as targeted, infectious attacks. Compared to the results
under non-infectious attacks in Fig. 7, under infectious
attacks, the results are more interesting. For a less dense
network like the URV network, the effect of the four met-
rics on the size of the giant component is similar although
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FIGURE 10. The size of the giant component after removing a single top-ranked node as an initial infectious attacker based on the given centrality
metric in both undirected networks (i.e., EU Email Network and URV Email Network) and directed networks (i.e., UCI Social Network and Rocketfuel
Network).

the degree discount seems to be the best selection strategy.
However, under the denser network like the EU Email Net-
work, the degree punishment strategy outperforms the others
because high network density mitigates the effect of the
penalty. From this observation, we found that under infectious
attacks, higher network density can significantly mitigate the
effect of the targeted attacks. If a network is not sufficiently
dense, regardless of what metric is used to select targets
to attack, the network can more easily collapse. Thus, it is
more important to select the right group selection metric for
developing more powerful attacks under dense networks than
under sparse networks.

D. RUNNING TIME ANALYSIS
1) RUNNING TIME OF POINT CENTRALITY METRICS
Fig. 14 shows the running time in log10 sec. to show the
efficiency of the point centrality metrics surveyed in this
work using the undirected URV Email Network and the UCI
Social Network and undirected EU Email Network and the

Rocketfuel Network, respectively. From Fig. 14, we made the
following observations:

• Degree, pagerank, and GDSP degree exhibit the best
efficiency in local, iterative, and global centrality
metrics, respectively. This explains well why simple
degree-based or similar centrality metrics have been
dominantly used in practice based on their efficiency in
calculation.

• We observed relatively slow running times in cluster-
rank, hybrid degree, neighborhood coreness, SALSA
hubs, SASA authorities, and percolation centrality met-
rics. Although these metrics offer certain useful features
in capturing insightful centrality concepts in terms of
power or influence, their slow running time may not be
attractive particularly in sizable or resource-constrained,
distributed environments.

• When we compare the performance of each central-
ity metric under those two sets of network topologies
(i.e., URV/UCI and EU/Rocketfuel networks), we found
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FIGURE 11. Mean fraction of infected nodes after infectious, initial targeted attackers are selected from 0.001 to 0.01 with the
increment of 0.01 based on the centrality metrics in the undirected URV Email Network and the directed UCI Social Network. All
results are shown based on 100 simulation runs to obtain the mean size of the giant component.
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FIGURE 12. Mean fraction of infected nodes after infectious, initial targeted attackers are selected from 0.001 to 0.01 with the
increment of 0.01 based on the centrality metrics in the undirected EU Email Network and the directed Rocketfuel Social
Network. All results are shown based on 100 simulation runs to obtain the mean size of the giant component.
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FIGURE 13. The size of the giant component after removing a set of infectious initial attackers based a given group
selection metrics in the two undirected network datasets, which are the EU Email Network URV Email Network.

there are only slight differences in the performance
order. This is because the characteristics of a network
dataset affect each centrality metric’s running time.
However, the trends are similar since the performance
order is still dependent on the inherent complexity of
each metric.

2) RUNNING TIME OF GRAPH CENTRALITY METRICS
Fig 15 shows the running time of the graph centrality (GC)
metrics per simulation run on the undirected URV and EU
Email Networks. We found most k-metrics, except k-core,
are fairly slow while common metrics such as degree-based
metrics are faster, which could be a reason of its pop-
ular utilization in various domain applications. However,
there is no clear relationship between algorithmic complex-
ity and the nature of the GC metrics, such as local or
global metrics, in the process of their calculation. Com-
pared to the results in the URV Email network (see (a),
(c), and (e), the results under undirected EU Email Network
(see (b), (d), and (f) show a slightly different performance
order. However, the overall trend is similar. We observed
that there is no relationship between algorithmic com-
plexity and local or global centrality nature in the GC
metrics.

3) RUNNING TIME OF GROUP SELECTION CENTRALITY
METRICS
Fig. 16 shows the running time of the group selection metrics
per simulation round. We found that the degree distance is
more expensive than other metrics that are the enhanced ver-
sions to improve the complexity of the degree distance using
heuristic methods. We also observed that there is a longer
running time for calculating the metrics using the URV Email
Network than using the EU Email Network. Even though
the URV Email Network has more nodes than the EU Email
Network, the EU Email Network has five times higher net-
work density (i.e., more edges) than the URVEmail Network.
This implies that the complexity of a group selection cen-
trality is more affected by node density rather than network
density.

VIII. APPLICATIONS OF CENTRALITY METRICS IN
VARIOUS NETWORK TYPES
In this section, we give an overview of how centrality metrics
have been applied in various types of networks, including
social networks, contact networks, communication networks,
geographic networks, and biological networks.

A. SOCIAL NETWORKS
1) INFORMATION DIFFUSION
This problem involves determining the initial set of nodes that
efficiently propagates information throughout the network.
Kim and Yoneki [96] and Kim et al. [184] investigated this
selection process under different information diffusion strate-
gies. They found that when the initial set of seed propagators
are high-degree nodes, then the choice of neighboring nodes
to spread the information does not affect the long-term prop-
agation significantly.

Network structure features, such as network topology, node
in-degree, out-degree, edge weight, and clustering coeffi-
cient, have also been considered in studies of false infor-
mation propagation [185]–[188]. Cho et al. [185] built an
uncertainty-based subjective opinion model using a belief
model, called Subjective Logic. They developed different
types of agents that can propagate false information inten-
tionally (i.e., disinformers) and mistakenly (i.e., misinform-
ers), where true information is also propagated to counter
the false information. The authors investigated the effect
of different types of centrality metrics used in the selec-
tion of sources propagating the false or true information.
Kumar et al. [186] developed feature sets including network
features to identify hoaxes in Wikipedia, including the net-
work centrality measures to represent the relation between
the references of the article in the Wikipedia hyperlink
network. Ratkiewicz et al. [187] built a ‘Truthy’ system to
enable the detection of ‘astroturfing’ (fake grass root cam-
paigning with hidden sponsors) on Twitter. Wu et al. [188]
summarized false information spreader detection based on
different network topologies. The authors examined how the
so-called ‘forceful’ individuals (not changing their opinions)
can affect information diffusion depending on how they are
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FIGURE 14. Simulation running time (in log10 sec.) of the point centrality metrics applied to the undirected networks (i.e., URV and EU Email
Networks) and the directed networks (i.e., UCI and Rocketfuel Networks). Note that centrality metrics that can be only shown in directed
networks are indicated with *.

connected with other individuals or when they bridge multi-
ple communities.

Kimura et al. [189], [190] considered the problem of
identifying the most influential nodes in a large-scale social
network as a combinatorial optimization problem. The
authors proposed an efficient greedy algorithm based on
bond percolation and graph theory and demonstrated its
superior performance over conventional methods in terms
of computational cost. Tang et al. [191] investigated an

email dataset as a dynamic, social network in order to study
dynamic interactions using a proposed ‘temporal centrality
metric.’ Particularly, the authors measured information dis-
semination using the centrality metric and examined the role
of ‘information mediators’ to better understand the dynamics
of the social network and accurately identify central peo-
ple compared to only using conventional, static centrality
metrics. Kandhway and Kuri [192] used an epidemic model
to maximize information diffusion for a certain period of
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FIGURE 15. Simulation running time in sec. (in log scale) for the graph centrality metrics applied to the undirected URV and EU Email
Networks.

campaign running in a social network. The authors proposed
an optimal control framework that can maximize the infor-
mation diffusion using controls (i.e., advertisement) over
the campaign period. They examined the effect of various
types of centrality metrics for initial spreaders on information
diffusion.

2) INFLUENCE MAXIMIZATION
Bae and Kim [120] focused on classifying the ability of
influential nodes in order, avoiding the assignment of mul-
tiple nodes to the same order, using neighborhood coreness
centrality. This measure is closely related to epidemic models
in that higher influence implies a broader scope of epidemic
spreading. Bian et al. [148] adopted the SI (Susceptible-
Infected) model to identify influential nodes spreading dis-
ease in complex networks by using the Analytical Hierarchy
Process (AHP) decision making strategy that combines dif-
ferent centrality metrics which typically include degree,
closeness, and betweenness. Chen et al. [94] introduced a
semi-local centrality metric and used a modified version of
the SIR model to verify its correctness. The difference com-
pared to the original SIR model is that not every neighbor of
an infected nodewill be infectedwith a particular propagation
probability but rather one neighbor is chosen randomly and
infected with certainty. Bavelas et al. [3] indicated that a cen-
trality position in small groups influences the perceptions of
leadership (as well as morale). Newman [138] demonstrated
how random-walk betweenness is a better measure than the
degree in the Florentine families intermarriage network [193].
Mochalova and Nanopoulos [194] examined the relation-
ships between the influence of key members and the atti-
tude the remaining members have towards information and
how the relationship impacts information diffusion and its
outcome.

A key goal in marketing or information diffusion
research is to identify influentials, a small set of nodes
that can significantly affect a large portion of their

network. Watts and Dodds [195] questioned this hypothe-
sis and studied if the size of influence cascades is truly
caused by the information propagated from the influen-
tials. Saito et al. [196] studied the identification of super-
mediators, nodes playing a significant role in receiving or
passing information between other nodes in social networks.
Goya et al. [197] studied a fundamental problem in terms
of where or how the input parameters to study an influence
model in social networks can be obtained.

Identifying influential nodes in complex networks has been
substantially studied by improving existing centrality metrics
or taking more comprehensive approaches. Liu et al. [198]
proposed a generalized weighted gravity model, called gen-
eralized mechanics model (GMM), by considering global
information and local information. Wen et al. [199] proposed
multi-local dimension (MLD) based on the fractal property
to identify vital spreaders in complex networks. MLD is
considered as a more general method, such as some existing
centrality metrics. Unlike classical centrality metrics, lower
MLD indicates higher influence. Li et al. [200] also proposed
a generalized gravity model measuring local information
from both the local clustering coefficient and the degree of
each node to identify influential nodes in complex networks.
In order to improve the existing centrality-based approach to
identify vital nodes in complex networks, Zhao et al. [201]
adopted the Kullback-Leibler divergence to measure the
structural similarity of nodes and updated the PageRank of
nodes based on similarity.

3) INFLUENCE MINIMIZATION
Kimura et al. [202] solved an influence minimization prob-
lem by blocking a limited number of links that spread false
information or rumors, where betweenness and out-degrees
are used to identify links or nodes to remove. This study
found that removing high out-degree nodes is not neces-
sarily effective compared to blocking a limited number of
links to maximize the containment. Dey and Roy [203] also
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FIGURE 16. Simulation running time in sec. (in log scale) for the group
selection metrics applied to the two undirected URV Email Network and
EU Email Network. We used dtd = 4 for the degree distance metric.

studied what nodes to block in order to minimize information
propagation. This work used betweenness, edge betweenness,
degree, and closeness to block influential nodes. Similarly,
Yao et al. [204] solved the same problem but by blocking a
limited number of nodes where the centrality metrics con-
sidered are out-degree and betweenness. Luo et al. [205]
proposed an algorithm that identifies a set of critical nodes
to minimize disinformation in time-varying online social net-
works. The authors conducted a comparative performance
analysis and demonstrated that their proposed algorithm out-
performs a centrality-based heuristic counterpart, particularly
using degree and closeness.

4) BEHAVIOR ADOPTION FOR MARKETING
Centrality metrics have been also studied as a way to identify
initial target populations as a marketing strategy. In adopt-
ing technological innovations or purchasing some products,
word-of-mouth processes are also modeled using information
diffusion models [206]. In particular, as marketing tools,
what population to focus on advertising is a major concern,
wherein centrality metrics are adopted to identify the target
populations [171]. Many marketing applications aimed to
leverage social networks or media by targeting populations
using simple centrality metrics, such as degrees [207], [208],
betweenness [208], [209], or closeness [209], [210].

To study the spreading process of technology adoption,
various information maximization algorithms have been
proposed and applied to investigate the effect of word
of mouth in markets, or game-theoretic strategies [171].
Kempe et al. [171] showed that the influence maximization
problem is NP-hard andmany heuristics or greedy algorithms
to solve this problem can provably guarantee a solution to
within 63% of the optimal solution, with performance guar-
antees close to 1− 1/e.

5) COMMUNITY DETECTION
Nikolaev et al. [211] developed a variant of entropy cen-
trality to understand ‘the entropy of flow destination’ in
networks and showcased how the new entropy centrality is

more effective for community detection applications than
the original entropy centrality. Jiang et al. [212] proposed
an efficient centrality measure, called K -rank, designed for
selecting the top-K nodes with the highest centrality. The top
K nodes are used as the initial seeding nodes and updated
based on K -means iterations. The authors applied the K -rank
to derive a directed, weighted network for detecting overlap-
ping communities.

B. CONTACT NETWORKS
Christley et al. [213] identified the risk of disease infec-
tion of nodes using centrality metrics, such as degree,
random-walk betweenness, shortest-path betweenness, and
farness. Dekker [214] also used six different centrality met-
rics, including degree, betweenness, two types of close-
ness, distance-based centrality, and eigenvector centrality in
order to identify the super spreaders of infectious diseases.
Bell et al. [215] investigated the co-relationships between
various types of centrality metrics and their variants, such as
degree, betweenness, closeness, eigenvector centrality, infor-
mation centrality, and power prestige. Gomez et al. [216]
studied high-risk hosts for emerging infectious diseases based
on various centrality metrics (e.g., strength, degree, between-
ness, closeness, eigenvector centrality) for their control and
surveillance.

C. COMMUNICATION NETWORKS
Centrality metrics have also been used to make decisions
to solve various problems in communication networks. Cen-
trality metrics have been used to select critical nodes to
prevent or mitigate computer virus or malware spreads.
Newman et al. [14] conducted an empirical study investi-
gating the email network structure to examine what nodes
can significantly contribute to spreading computer viruses.
Kim [17] measured the risk of websites exposing security
vulnerability (e.g., malware, fake infectious sites) based on
degree, betweenness, eigenvector, and closeness.

Albert et al. [9] showed scale-free networks, following a
power-law degree distribution, are highly robust to random
attacks while highly vulnerable to targeted attacks on high
degree nodes. Holme et al. [15] also investigated the network
resilience in complex networks when targeted attacks are
applied based on degree or betweenness. Yoon et al. [16]
developed a scalable centrality-based traffic measurement
based on software-defined networking functionalities.

D. GEOGRAPHIC NETWORKS
Crucitti et al. [147] analyzed spatial networks based on differ-
ent centrality metrics to characterize the geographic proper-
ties of cities as networks. Substituting an undirected graph for
urban streets of a city and measuring the different centralities,
they presented a spatial distribution of centralities that show
the main structures of the city, centric areas, andmajor routes,
depending on the type of measures. Gao et al. [217] used
betweenness to measure urban traffic flow with GPS-enabled
taxi trajectory information in Qingdao, China. This study
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TABLE 10. Applications of centrality metrics.

demonstrated that betweenness is not necessarily a good
metric to measure the traffic flow distributions. The authors
suggested combining a network structure with other informa-
tion, such as different patterns of human activities depending
on location, power law distance-decay, and human mobility
patterns. Porta et al. [218] developed a ‘Multiple Centrality
Assessment (MCA)’ framework that uses centrality metrics
to understand why the current design features of a city do
not attract more people or increase social life. This work
used closeness, betweenness, straightness (or degree), and
information centrality to understand the current attractiveness
of the city. Guimera et al. [219] examined the impact of a
city’s global role based on degree and betweenness. They
found that a city’s betweenness is more closely related to the
city’s global role with intercommunity and intracommunity
connections than the city’s degree centrality. Li et al. [220]
examined how the centrality of each shipping area, with
25 geographical areas, plays a key role in changing the cen-
trality of the global shipping networks (GSNs) during the
years 2011-2012. This study used degree, betweenness, and
closeness as centrality metrics to analyze the dynamics of
the GSNs.

E. BIOLOGICAL NETWORKS
Estrada et al. [127] used centrality to study the removal of
proteins from the yeast S. cereviciae. The lethality of pro-
tein removal has been shown to correlate with the degree
of the protein. Jeong et al. [221] conducted an experiment
of arranging proteins in order of the degree they have and
testing the robustness of a network after each protein has
been removed. Koschützki1 and Schreiber [62] analyzed the
structure of gene regulatory networks based on the ranks
of nodes, which are measured by centrality metrics. They
used degree, betweenness, integration, radiality, Katz status

index, PageRank, and various types of motif-based central-
ities. Karabekmez and Kirdar [61] proposed a new cen-
trality metric called the weighted sum of loads eigenvector
centrality (WSL-EC) in order to identify critical nodes in
biological networks. The examples are to identify central
nodes, such as pathogen-interacting, cancer, aging, HIV-1 or
disease-related proteins, proteins involved in immune system
processes, and auto-immune diseases in the human interac-
tome. Mistry et al. [63] developed a new centrality metric to
predict central and critical genes and proteins based on a
protein-protein interaction network. The proposed centrality
metric considers both the amount of a protein’s interaction
and the gene coexpression values of genes.

In Table 10, we summarized what centrality metrics have
been used in various network types based on our discussions
in this work. Although our discussions on the applicability of
centrality metrics are limited, this table shows a trend of what
centrality metrics have been substantially utilized in contact
and biological networks compared to other network domains.
Despite a large volume of centrality metrics studied in the
literature (see Sections III, IV, and V), we can clearly observe
that the uses of centrality metrics have been mostly limited to
several common centrality metrics, such as degree (includ-
ing in/out-degree), betweenness, closeness, and eigenvector
centrality.

IX. CONCLUDING REMARKS
In this section, we discuss what we learned from this
present study and how to improve the limitations of the
existing centrality metrics by suggesting future research
directions.

In particular, we surveyed 60 centrality metrics in this
work in terms of point, graph, and group selection centrality
metrics. We implemented 56 centrality metrics and analyzed
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their effect on network resilience based on the size of the
giant component when each centrality metric is used to model
targeted attacks.We evaluated the performance of eachmetric
under two undirected real network datasets and two directed
real network datasets. In this section, we also discuss some
insights learned from the findings obtained from the extensive
experimental results.

A. LIMITATIONS, INSIGHTS, AND LESSONS LEARNED
We found limitations of the existing centrality metrics sur-
veyed in this work, learned lessons, and obtained the insights
from them as follows:

• The meaning of centrality is not only limited to how a
node is connected to other nodes, but also implies how
actively the node communicates to each other and how
it can control or influence other nodes in their central-
ity or vulnerability. In brief, node centrality determines
influence in terms of connectivity, communicability, and
controllability in a given network. However, node con-
nectivity is not commonly aligned with the capacity to
deal with traffic (e.g., communicability) because nodes
with high connectivity are often congested.

• Centrality metrics can be applied in various disciplines
with different purposes. In addition, there is a rich
volume of centrality metrics available and usable for
various design goals. For example, we may want to
investigate how to balance traffic loads, how to set edges
between nodes tomake a network robust against faults or
attacks, what types of targeted attacks to develop, how to
identify vital nodes based on various criteria, or what is
the most least) influential or vulnerable node in a given
network.

• We investigated the effect of each centrality metric on
network resilience in terms of the size of the giant com-
ponent. We found that if a centrality metric measures
how well a node is connected with its close neigh-
borhood (i.e., locally well connected), its impact upon
removing the node with high centrality tends to be lim-
ited. For example, removing nodes with high clustering
coefficient or volume centrality is not as severe as the
random removal of nodes in network resilience (i.e.,
the size of the giant component). However, if the cen-
trality metric refers to how well the node is globally
linked with other nodes which may belong to another
cluster of the network (e.g., another community), when
the node fails, the network is highly impacted by the
node’s failure.

• We found that when an attack using a given centrality
metric is non-infectious, what metric to choose is highly
critical because the effect of a different centrality metric
can be vastly different. However, when the attack is
infectious, using different centrality metrics does not
introduce a significantly different impact on network
resilience as the infectious attack itself may be powerful.
In addition, we found how a node is connected in a given

network (i.e., network topology characteristics such as
network density) is the most important factor that can
influence the network resilience (i.e., a smaller size of
the giant component).

• Although a large volume of centrality metrics has been
developed so far, only common centrality metrics have
been used, such as degree, betweenness, closeness, clus-
tering coefficient, and pagerank, which has been devel-
oped several decades ago. Although the degree is a
simple metric, other metrics, such as betweenness or
clustering coefficient, require high complexity with slow
running time. Even if there have been many centrality
metrics developed in the 2010s, not many of them have
been used in the existing network applications while the
metrics developed from the 1970s to the 1990s have
commonly been used in the literature.

• Unlike centrality metrics that are applicable in undi-
rected networks, centrality metrics in directed networks
may not be appropriate to study their effect on net-
work resilience. This is because even a node’s failure
with high centrality (e.g., hub, authority, or leaderrank)
in sparse networks may not introduce any significant
impact where centrality is mainly measured based on in-
degree, not out-degree.

• We used the size of the giant component as an indicator
to represent network resilience. The size of the giant
component is a conventional network resilience metric
in the Network Science domain. However, it does not
necessarily indicate how many nodes are compromised
as a metric to measure system vulnerability in terms of
a cybersecurity perspective. Even if the size of the giant
component is small, it does not necessarily imply that
the network has more compromised nodes because there
could be healthy nodes in smaller components of the
network.

• We investigated the running time of all centrality metrics
surveyed in this work. The overall trend is that centrality
metrics tested under directed networks (e.g., SALSA
authorities, SALSA hubs, leaderrank, clusterrank) tend
to show higher running time than centrality metrics
tested under undirected networks. This may be because
undirected networks innately have higher connectivity
than directed networks. Recall that many centrality met-
rics rely on a (shortest) path distance between two nodes
as part of the metric calculation.

• The running time of each metric is mainly influenced
by network size or network/node density. In addition,
in some metrics, we optimized the code to expedite the
running time while others may not. Therefore, there may
be an inaccuracy introduced in the running times of
centrality metrics demonstrated in this work. However,
we believe that this imperfect code optimization will
not significantly affect the order of running time perfor-
mance of centrality metrics compared in this work.

• Most point centrality metrics are extensions from the
notions of the degree of the node or its neighbors
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(e.g. semi-local, k-shell, h-index), connections between
the neighbors of the node (e.g., Burt’s redundancy, clus-
tering coefficient), pathfinding processes involving the
node (e.g., betweenness, closeness), or iterative pro-
cesses between the node and its neighbors (e.g., eigen-
vector, pagerank). The extensions attempt to capture
something missing or ignored in a fundamental met-
ric (e.g., the degree of the node by itself ignores the
degree of its neighbors) whereas semi-local centrality
aggregates that information and both k-shell and h-index
consider threshold effects on that information. New cen-
trality metrics can be considered by supplementing an
existing approach with missing information that may be
relevant to the particular problem criteria.

• For an insightful comparison of network resilience
under infectious attack using different centrality met-
rics, the infection rate variability is highly dependent
on the characteristic of the network (e.g., network or
node density or network topology). Infection is spread
more easily in a dense network wherein all the nodes
are more easily accessible. On the other hand, a sparse
network has structural insulation protecting itself from
an infectious attack.

B. FUTURE RESEARCH DIRECTIONS
• More Efficient Centrality Metrics are Needed: Since
there are many centrality metrics that suffice tomeet cer-
tain tasks but require less complexity (i.e., low running
time), we can leverage these or perhaps modify them to
enhance their effectiveness for the task (e.g., increasing
the effect of removing a node with high centrality) or
efficiency (e.g., running time). Some metrics are rep-
resentatives of a broader meaning of centrality, such as
communicability or controllability (e.g., load centrality
in Eq. (30)), in addition to simple connectivity. However,
their high complexity hinders applicability in various
domains.

• More Meaningful Metrics are Needed to Measure Net-
work Resilience: The size of the giant component, as a
common metric to measure network resilience, does
not reflect a broader concept of network resilience.
Network resilience can be defined in terms of how
adaptable a network is to deal with sudden changes
or attacks/failures (i.e., adaptability), how tolerant the
network is to prevent its failure against attacks or fail-
ures (i.e., fault tolerance), and how easily recoverable
the network is from attacks or failures (i.e., recover-
ability) [222]. As a future work direction, we need to
develop metrics that can measure network resilience
embracing adaptability, fault tolerance, and recoverabil-
ity, or other properties based on system requirements.

• Graph Centrality Metrics Can be Enhanced as a
Novel Measure of Network Resilience: Graph central-
ity metrics measure certain characteristics of a given
network, such as the distances between nodes, connec-
tions between neighbors, or redundant paths between

nodes. However, as we observed in Tables 8-9, it is
not necessarily correlated to the size of the giant com-
ponent, which is a conventional metric measuring net-
work resilience in some graph centrality metrics.We can
improve the existing graph centrality metrics or invent
ones that can be used as indicators related to the key
properties of network resilience. For example, when a
certain graph centrality value is high, it may indicate the
network has the ability to easily recover from attacks or
failures.

• Centrality Metrics Embracing a Broader Concept of
Influence Need to beDeveloped:Although a rich volume
of centrality metrics has been explored in the literature,
most of them rely on the concept of centrality based on
connectivity. However, in reality, being connected with
less critical nodes does not introduce a high impact on
network resilience, as long as a small set of critical nodes
are still kept safe and operating in a reliable manner.
In addition, although controllability is one of the key
centrality concepts as discussed in Section II-A, not
many centrality metrics are developed without explicitly
considering a node’s controllability over a given net-
work. There should be more efforts to develop centrality
metrics that can fully consider its ability to control the
network.

• Enhancement of the Infection Process for Modeling
Infectious Attacks: In the infection process considered
in this work, a node is infected with a given prob-
ability. If the node is not infected with the proba-
bility, we simply assumed that it is immune to the
attack and is not infected again. However, in real-world
scenarios, various types of attacks are spread out in
a network and there is the possibility that a node
can be attacked by multiple or different types of
attackers, which allows the same node to be infected
multiple times easily. Hence, as a future research
direction, a more realistic infection process can be
considered where an infected node can recover and be
reinfected.

• In-Depth Analysis of Network Resilience Under Vari-
ous Network Conditions is Important: Due to the space
constraint, we have not demonstrated more sensitivity
analyses to investigate the effect of using a different
centrality metric under various network conditions in
terms of network density (i.e., the number of edges),
node density (i.e., the number of nodes in a given area),
or the variance in the number of degrees (e.g., for a
scale-free network or a random graph). We can take
another in-depth analysis of network resilience by using
a different centrality metric in order to identify what
metric would be more powerful under what network
conditions. In addition, more comprehensive, diverse,
larger, and real network topologies can be considered to
obtain more meaningful findings to provide generaliz-
able guidelines for selecting useful centrality metrics in
a given application.
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