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ABSTRACT We performed machine learning for text-independent speaker identification using speech
recorded during the day, evening, and night, from subjects undergoing 25 hours of prolonged wakefulness.
Subjects answered casual questions lasting approximately 3 minutes and described pictures presented to
them for 0.5 minutes. We extracted 12,515 vocal features using OpenSmile software. For generalization of
the training scheme, we segmented the 20 subjects into training and testing sets (10 subjects for each) and
repeated testing four times with different subsets. Specifically, we used one set of 10 subjects to find the
best feature-sets and the optimal machine-learning method, and the other set of 10 subjects was used to test
the trained model. With trained machine-learning models using three speech sessions recorded throughout
the day for speaker identification, we obtained 95% and 98.8% for balanced accuracies for daytime and
evening speech, respectively, but 84.2% for nighttime-testing speech. With training data from all times of
day—daytime, evening, and nighttime—we obtained 97.5%, 98.8%, and 98.1% for balanced accuracies
for test data from daytime, evening, and nighttime speech, respectively; the overall accuracy was 98.1%.
Prolonged wakefulness deteriorates the performance of machine-learning based speaker identification. This
work suggests that machine-learning based speaker identification should be trained using speech data from
both daytime and nighttime speech sessions for better overall accuracy. Machine learning can potentially be
used for identifying a speaker’s voice even when it is affected by tiredness and fatigue which are frequently
encountered in scenarios such as the emergency rooms and long-duration repetitive task operations.

INDEX TERMS Prolonged wakefulness, sleep deprivation, speaker identification, speaker recognition,
machine learning.

I. INTRODUCTION
Speaker identification is relevant for applications such as mil-
itary operations, forensic speaker recognition, and phone cus-
tomer service, among others [1], [2]. For these applications,
speaker identification must be independent of the text being
spoken, and there can be no reliance on emotional or situa-
tional context. This makes speech identification challenging,
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because external factors like stress, emotions, and fatigue
can affect human speech [3]–[5]. [6], [7]. Some studies have
already reported accuracies of 90% or more [8]–[12], how-
ever, no speaker identification models have been developed
and tested using speech recorded while subjects underwent
sleep deprivation.

Speaker identification is a category of speech recogni-
tion, defined as a method that identifies a speaker amongst
a set of speakers [13]. The set of speakers can be either
open- or closed-set depending on the purpose of the system.
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Closed-set systems have a fixed number of speakers, while
open-set systems can have a greater number of speakers than
registered (or trained) speakers [14]. Speaker identification
can also be either text-dependent or text-independent. Unlike
text-dependent systems, text-independent speaker identifica-
tion does not require speakers to state specific phrases or
words, therefore, it can be used for a wider set of appli-
cations such as military operations, criminal investigations
(e.g., forensic speaker identification), and phone customer
service [1], [2]. Unfortunately, given its vast practical applica-
tions, text-independent recognition is known to be more chal-
lenging than text-dependent [15]. In this work, we developed
a closed-set text-independent speaker identification method.

Machine learning is a set of statistical approaches which
perform regression, clustering, or classification of unseen
data based on a training dataset [16]. As speaker identification
is a classification problem, various machine learningmethods
have been applied to vocal features [8]–[12]. A study involv-
ing 30 subjects used both support vector machine (SVM)
and multi-layer perceptron (MLP) with a 15th-order linear
predictive analysis, and obtained accuracy values of 91.4 and
90.8%, respectively [9]. Mamyrbayev et al. performed five
different machine-learning approaches on data collected from
20 subjects, including extra-tree, K-nearest-neighbors, and
MLP with Mel-frequency cepstral coefficient features, and
obtained up to 90% accuracy [10]. Chauhan et al. tested var-
ious machine-learning methods including MLP, SVM with
dynamic time warping, linear predictive coding, and Mel-
frequency cepstral coefficients features, and their highest
accuracy was 93.1% [8]. Akhsanta and Suyanto developed
a text-independent speaker identification system using prin-
cipal component analysis and SVM with Mel-frequency
cepstral coefficients (MFCC) [11]. They obtained 88.97%
and 70.93% accuracies for the low- and high-noise lev-
els from 19 subjects, respectively. Chauhan et al. trained
a feedforward artificial neural network (ANN) and SVM
models for text-independent speaker recognition with MFCC
and linear predictive coding, and perceptual linear predic-
tion features, and obtained 100% of accuracies for both
SVM and ANN classifiers from 23 subjects [12]. In general,
the machine-learning approaches have shown robust results
for text-independent speaker identification.

However, speaker identification can fail when confronted
with confounding external factors such as stress and emo-
tions [3]–[5]. Wu et al. improved the performance of
their speaker-identification model by 22% with the addition
of 14 types of emotional information, including anger and
sadness [4]. Raja and Dandapat showed that stressed condi-
tions (e.g., anger, the Lombard effect with noisy backgrounds,
and answering difficult questions) caused poorer perfor-
mance of text-independent speaker identification methods
than resulted from non-stressed conditions [5]. Their method
showed more than 80% performance accuracy with neutral
conditions but less than 61% accuracy for stressed conditions
involving 32 speakers. Speech is also known to be affected
by sleep deprivation, which impairs fluency, intonation, and

pitch [6], [7]. Moreover, changes in vocal parameters (sever-
ity, roughness, breathiness, strain, pitch, and loudness) have
been observed throughout a day [17], [18]. Testing of speaker
identification methods with consideration of voice changes
across a day and with sleep deprivation has not yet been
performed.

Thus, in this work, we recorded text-independent speech
from 20 subjects during 25-hour sleep deprivation and per-
formed various machine-learning methods to compare the
identification results for daytime, evening, and nighttime
speech.We hypothesized that diversifying the training speech
data by including data from different times of the day would
lead to better performance in speaker identification during
25 hours of sleep deprivation.

II. METHODS
A. STUDY PROTOCOL
A total of 20 healthy participants were recruited, between
19 and 32 years old (13 males and 7 females). Consent forms
were collected on the days of experiments, and screening
questionnaires were used for examining the medical back-
ground of each volunteer. Volunteers were asked to keep con-
sistent sleep schedules for a week before their experimental
day, and were told to avoid food or drink containing stimu-
lants such as caffeine for two days prior to their experimental
day. The experimenters were present throughout the experi-
ment to ensure volunteers were awake for the entire 25 hours
and avoided stimulating food and drink. Volunteers were
asked to wake up at 6:00 am and arrive at the location within 4
hours. The speech protocol consisted of two text-independent
speech samples, which included 1) answering four random
questions per session from a library of 54 questions, and
2) describing a provided random picture per session from a
pool of 13 photos. Speech samples were recorded using a
built-in microphone from Tobii Pro Glasses 2 wearable eye
tracker [19]. The protocol took approximately 2-3 minutes
for answering four questions and half a minute for describing
a picture. The protocol was conducted every two hours for a
total of 13 sessions during the 25 hours of sleep deprivation.
The Institutional ReviewBoard of theUniversity of Connecti-
cut approved the study protocol.

B. DATA COLLECTION AND VOCAL FEATURE EXTRACTION
We extracted voice recordings from video files (including
audio and eye-tracking video) with MP4 format obtained
using Tobii Pro Glasses 2. We then segmented the voice
recordings of each subject answering the four random ques-
tions into 30-second windows with 20 seconds of overlap.
The sampling frequency of the audio files was 24,000 Hz.
We extracted a total of 12,515 non-duplicated vocal fea-
tures per speech using OpenSmile software with its built-in
feature sets consisting of: the Interspeech 2009 emotion
challenge (IS09), the Interspeech 2010 Paralinguistic chal-
lenge (IS2010), the Interspeech 2011 Speaker State (IS2011),
the Interspeech 2012 Speaker Trait Challenge (IS2012), and
the Interspeech 2013 ComParE (IS2013) [20].
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FIGURE 1. Flow chart of our training and testing scheme for machine learning.

C. MACHINE LEARNING
From the vocal features extracted using OpenSmile, we next
performed a two-step approach for the closed-set text-
independent speaker identification. First, we performed
machine learning on 10 subjects with three different
feature-selection methods and six classifiers. However,
we noticed that these feature selection methods could be
biased due to the large amount of features (more than 10,000).
Thus, the second step was to test the best feature sets and
the classifiers derived from the training data sets from the
first ten subjects and then use them to test on the remaining
10 subjects, as shown in Figure 1. This strategy was repeated
four times (a total of 4 folds), using the stratified sampling
method to avoid training bias of subjects. The four questions
and the picture-describing speech were used for both testing
and validation.

We compared three different decision-tree-based feature-
selection methods: gradient boosting, decision tree, and ran-
dom forests, in terms of their numerical feature importance
values [21]. Due to the imbalanced dataset caused by data
loss, class weights (determined based on the inverse of the
number of samples per class) were applied to the feature-
selection methods. In addition, three feature-selection meth-
ods needed to be set with the maximum depth of the trees for
regularization. To obtain the best maximum depth, we per-
formed the grid-search technique with a stratified 5-fold
cross-validation method to find the best parameters between
4 and 10. Based on the numerical importance values provided
from these methods, a feature was selected if its value was
greater than the average of all features’ importance values.

Three feature sets (derived from gradient boosting, deci-
sion tree, and random forest) were tested with six dif-
ferent classifiers. We tested logistic regression (LR, with
L2 penalty) [22], K-nearest-neighbors (K=5) [23], ran-
dom forest [24], gradient boosting [25], decision tree [26],
MLP [27], linear SVM(L-SVM), the radial basis function
(R-SVM), and 3rd order polynomial kernels (P-SVM) [28].
SVM parameters were set to C= 1.0 and gamma= 1 divided

by the number of features. These parameters were optimally
chosen by a trial and error approach. MLP parameters were
set to 3 layers with 100 hidden units, 0.001 learning rate,
200 maximum iterations, the rectifier-linear-unit activation
function for regularization [29], and the Adam optimizer
which is purported to be computationally efficient, effective,
and practical [30]. Class weights based on the inverse of the
number of samples per class were applied to account for the
imbalance of the training datasets.

Except for the decision-tree-based classification methods,
data were standardized with zero mean and unit variance.
Finally, a bagging classifier was performed with following
parameters: 50 classifiers and 80% of the maximum samples.
The random forest was not performed with a bagging classi-
fier, as it is already based on the bagging approach. We eval-
uated the performance of the machine learning methods by
calculating the balanced accuracy as follows:

Balanced accuracy =
1

Nclass

∑Nclass

i

TPi
TPi + FPi

,

where N_class, TP, and FP represent the number of classes,
true positive, and false positive, respectively.

Although the best option to train models is to use speech
from all sessions (i.e., all 25 hours), it is more practically
feasible to have a smaller number of training datasets. There-
fore, to examine this, we trained machine-learning methods
using a different number of speech data samples (proto-
cols 1-3) from various times of the day (day, evening, and
night). Note that the protocols in toto involved data from
all 13 picture-describing speech samples (1 per session),
as shown in Table 1. In this paper, we defined daytime,
evening, and nighttime as 10 am-6 pm, 8-10 pm, and 2-6 am,
respectively. Protocol 1 consisted of only one session, which
occurred in only one of the 3 times: daytime, evening,
or nighttime. Protocol 2 consisted of two sessions and up to
two times, and protocol 3 used 3 sessions and up to 3 session
times. The combinations of times used for training, per pro-
tocol, are provided in Table 1. These different protocols were
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TABLE 1. Number of daytime, evening, nighttime, and test speech
samples for training.

TABLE 2. An example of the protocol index 3-4.

designed to examine the effects of the number of training data
sessions andwhich time combinations weremost effective for
training. The first, last, and 12 am sessions were excluded for
training but they were used for testing.

Table 2 shows an example of an experimental protocol con-
figuration for the index 3-4 (two daytime and one nighttime
speech samples). Speech samples from the three randomly
chosen sessions (two from daytime and one from nighttime)
were used for training, while speech samples from all 13 ses-
sions were used to validate and test the machine-learning
methods.

III. RESULTS
A. MACHINE-LEARNING PERFORMANCE
Table 3 shows the testing results of protocol 1 (only 1 speech
session) based on the selected feature-set. A set of ten subjects

TABLE 3. Balanced accuracies of Protocol 1 (10 subjects).

were used for training and the remaining ten subjects were
used for testing. Protocol 1-1 (daytime only) exhibited more
than 94% balanced accuracy in folds 2 to 4; however, fold
1 showed only 23.8% balanced accuracy. On the other hand,
protocol 1-2 (evening) and 1-3 (nighttime) showed more
consistent balanced accuracies among folds 1-4 with average
balanced accuracies of 86.2 and 85.3%, respectively. Training
using either evening or nighttime speech resulted in higher
balanced accuracies of 91.3% and 90.8% for the evening
and nighttime, respectively. For each fold, the best feature
selection method and the classifier (determined based on the
balanced accuracies) are provided in the last two columns of
Table 3, respectively.

Table 4 shows the testing results of protocol 2, which used
speech data from two sessions within the daytime, evening,
or nighttime or all possible combinations of these three time
zones to make up two sessions. By using two sessions for
training the machine learning methods, all test sets showed
more than 90% balanced accuracies. Training using two
speech samples from the evening and nighttime showed the
highest balanced accuracy of 95.6% (protocol index 2-6), fol-
lowed by 94.8% for protocol index 2-2 (two speech samples
from the evening). As shown in protocol 1, training using
samples from either evening or nighttime resulted in the high-
est balanced accuracies of 98.8% and 95.0%, respectively.
Also, training with only daytime or evening sessions’ data
showed poorer performance on the nighttime speech speaker
identification, as the accuracies were only 81.7% and 80.8%
for protocol 2-1 and 2-4, respectively.

Table 5 shows the results of protocol 3, which used
three speech sessions. Training with three speech sessions
from daytime, evening, and nighttime outperformed pro-
tocols 1 and 2. Training using speech sessions consist-
ing entirely of either daytime or nighttime showed lower
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TABLE 4. Balanced accuracies of Protocol 2 (10 subjects).

performance than did training using speech sessions from
different times, as the balanced accuracies showed 93.0%
and 89.9% in protocol 3-1 and 3-2, respectively, while other
balanced accuracies were at least 94.7%. Table 6 shows
results from 20 subjects with three feature selection methods
and nine classifiers using speech data sessions from the day-
time, evening, and nighttime (Protocol 3-9 with 20 subjects).
Overall, the random-forest-based feature selection with either
MLP or decision tree showed the highest balanced accuracy
as both methods showed 92.2%. With the gradient boosting
feature selection method, the MLP provided the best accu-
racy value of 90.3%; for the decision tree feature selection
method, both R-SVM and GB provided the highest accuracy
value of 88%.

B. INFORMATIVE FEATURES
By training with one session each from daytime, evening,
and nighttime speech data (protocol 3-9), we obtained the
highest balanced accuracies (see Table 5). For protocol 3-9,

TABLE 5. Balanced accuracies of Protocol 3 (10 subjects).

the random forest was consistently chosen as the best method
for both feature selection and classifier, and the number of
features ranged between 539 and 816. Since we performed
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TABLE 6. Balanced accuracies from 20 subjects using a daytime,
an evening, and a nighttime speech sessions for training (Protocol
3-9 with 20 subjects).

feature selection methods for each session, frequently chosen
features are most likely informative features for the classifi-
cation task. Table 7 shows features that have been selected
at least three times. Fig. 2 shows a significant difference
between sessions for the protocol index 3-9, which resulted
in the highest balanced accuracy (98.1%). The outlier robust
signal range ‘max-min’ represented by the range of the 1%
and the 99% percentile of the smoothed relative spectral
transform style filtering on auditory spectra features (i.e., the
audSpec_Rfilt_sma[12]_pctlrange0-1) showed a significant
difference between sessions 3 to both 10 and 11, which are
daytime and nighttime speech data, respectively. Themeasure
of the outlier of the signal range ‘max-min’ represented by the
1% and the 99% percentile of the smoothed spectral variance
(i.e., pcm_fftMag_spectral-Variance_sma pctlrange0-1) also
showed significant difference between session 11 to both
3 and 6, which are daytime and nighttime speech data, respec-
tively. The 75% percentile of the smoothed root-mean-square
signal frame energy (i.e., pcm_RMSenergy_sma_quartile3)
showed significant difference between 10 (nighttime) and

TABLE 7. Feature list frequently selected in random forest
feature-selection (protocol 3-9).

to among 2-8 sessions (daytime and evening), and sessions
between 3, 4, and 7 (daytime and evening) to 9, 11, and 12
(nighttime). Moreover, we found that different vocal features,
including relative spectral transform, fundamental frequency,
and Mel-frequency cepstral coefficients (MFCC), were fre-
quently selected using the feature selection methods. Details
of these feature sets provided by OpenSmile software are
shown in Table 7.

IV. DISCUSSION
We used machine learning methods to identify speakers
from spontaneous speeches recorded during 25 hours of
sleep deprivation. Several different machine learning meth-
ods were trained and tested using different numbers of speech
samples from the daytime, evening, and nighttime over the
25 hours. The machine learning methods trained with speech
sessions from different times resulted in higher performance
for identifying speakers than when trained using speech sam-
ples from only one of the three times. With three speech
sessions each from the day, evening, and night used for
training, the best balanced accuracy of 98.1% was attained.
respectively.
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Our method consists of feature selection, training, val-
idation, and testing of classifiers. When feature selection
methods were used without appropriate validation, they were
likely to over-fit based on the set of features. The closed-
set speaker identification systems are supposed to over-fit for
given subjects because they are designed to identify unknown
speakers from a list of enrolled people. For example, the train-
ing has to be carried out using data from all speakers so
that they can be identified when spoken. Moreover, previ-
ous studies tested a wide set of classification methods, but
questions remain about which method is most appropriate in
practice [8]–[10]. Therefore, to test the generalization of the
classification methods, we segmented the number of subjects
into two groups for validating and testing data. We also pre-
vented possible bias that can happen when splitting data into
two groups by using four different data time segments (i.e.,
four folds), as one of our results showed poor performance in
only one fold (fold 1 of protocol 1).

Also, we discovered informative features that were fre-
quently chosen by our various feature selection methods,
including the fundamental frequency, MFCC, and the relative
spectral transform style filtering on auditory spectra features.
This is in agreement with previous studies as these features
have also been used in many speaker identification and verifi-
cation approaches [8], [10], [31]. MFCC features, especially,
have been applied to detect fatigue caused by sleep depriva-
tion [32], [33]. Greeley et al. used 36MFCC features to detect
fatigue from fixed words, comprised of 12 cepstral coeffi-
cients along with their first and second time derivatives [7].
Baykaner et al. used 19MFCC features to detect fatigue from
speech data from a book [33]. Given that the purpose of the
study was to examine how 25-hour sleep deprivation affects
speech recognition, it is not surprising that features including
MFCC and other frequently chosen features from different
times throughout the day resulted in higher performance than
just using speech data from a particular time of the day or
even a combination of two time sessions. While we have lim-
ited the effect of increasing the number of protocol sessions
from one to three to examine their effect on the accuracy
of speaker identification, including more than three training
sessions from any of the combinations of daytime, evening,
and nighttimemay not necessarily increase the accuracy since
we have already reached greater than 98% balanced accuracy,
as shown in Table 5.

Recording nighttime voice samples to have them for train-
ing data can be challenging, as most people are inactive dur-
ing these hours.We aim to conduct a future study looking into
features that are not affected by sleep deprivation, allowing
higher accuracies, in order to develop applications that can
work with speech recorded at any time of the day.

V. CONCLUSION
We found that diversifying training speech sessions from
different time segments in a given day resulted in bet-
ter performance for closed-set text-independent speaker
identification during 25 hours of prolonged wakefulness.

With training based on speech sessions during the daytime,
evening, and nighttime, machine-learning methods were able
to obtain robust performance during 25-hour sleep depriva-
tion experiments. This work has shown some promise in that
machine learning can potentially be used for applications that
require identifying a speaker’s voice even when it is affected
by tiredness and fatigue among other stress factors (e.g.,
24-hour phone services) which are frequently encountered
in scenarios such as emergency rooms and long-duration
repetitive task operations.

ACKNOWLEDGMENT
The views expressed in this article reflect the results of
research conducted by the author(s) and do not necessarily
reflect the official policy or position of the Department of the
Navy, Department of Defense, nor the U.S. Government. The
study protocol was approved by the University of Connecticut
and Naval Submarine Medical Research Laboratory Institu-
tional Review Board in compliance with all applicable Fed-
eral regulations governing the protection of human subjects.
Jeffrey Bolkhovsky is an employee of the U.S. Government.
This work was prepared as part of his official duties. Title
17 U.S.C. §105 provides that ‘Copyright protection under this
title is not available for any work of the United States Govern-
ment.’ Title 17 U.S.C. §101 defines a U.S. Government work
as a work prepared by a military service member or employee
of the U.S. Government as part of that person’s official
duties.

REFERENCES
[1] E.MacAskill, ‘‘Did’Jihadi John’kill Steven Sotloff,’’Guardian, Sep. 2014.

Accessed: Jul. 5, 2021. [Online]. Available: https://nam10.safelinks.
protection.outlook.com/?url=https%3A%2F%2Fwww.theguardian.com%
2Fmedia%2F2014%2F sep%2F02%2Fsteven-sotloff-video-jihadi-john&
data=04%7C01%7C%7Ce874cbbe74724774c66808d93fa4616e %7C17f
1a87e2a254eaab9df9d439034b080%7C0%7C0%7C63761079760997534
4%7CUnknown%7CTWFpbGZsb3d8ey JWIjoiMC4wLjAwMDAiLCJQI
joiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=
uQMYlpDyrprsatlNDN6YUC %2BdAhWwogP7myQ%2B7NeTgE4%3
D&reserved=0 and https://www.theguardian.com/media/2014/sep/02/
steven-sotloff-video-jihadi-john

[2] B. Beranek, ‘‘Voice biometrics: Success stories, success factors and what’s
next,’’ Biometric Technol. Today, vol. 2013, no. 7, pp. 9–11, Jul. 2013, doi:
10.1016/S0969-4765(13)70128-0.

[3] J. H. L. Hansen, A. Sangwan, and W. Kim, ‘‘Speech under stress and
lombard effect: Impact and solutions for forensic speaker recognition,’’
in Forensic Speaker Recognition: Law Enforcement Counter-Terrorism,
A. Neustein and H. A. Patil, Eds. New York, NY, USA: Springer, 2012,
pp. 103–123, doi: 10.1007/978-1-4614-0263-3_5.

[4] T. Wu, Y. Yang, and Z. Wu, ‘‘Improving speaker recognition by train-
ing on emotion-added models,’’ in Affective Computing and Intelli-
gent Interaction. Berlin, Germany: Springer, 2005, pp. 382–389, doi:
10.1007/11573548_49.

[5] G. S. Raja and S. Dandapat, ‘‘Speaker recognition under stressed condi-
tion,’’ Int. J. Speech Technol., vol. 13, no. 3, pp. 141–161, Sep. 2010.

[6] Y. Harrison and J. A. Horne, ‘‘Sleep deprivation affects speech,’’ Sleep,
vol. 20, no. 10, pp. 871–877, Oct. 1997.

[7] H. P. Greeley, E. Friets, J. P. Wilson, S. Raghavan, J. Picone, and J. Berg,
‘‘Detecting fatigue from voice using speech recognition,’’ in Proc. IEEE
Int. Symp. Signal Process. Inf. Technol., Aug. 2006, pp. 567–571.

[8] N. Chauhan, T. Isshiki, and D. Li, ‘‘Speaker recognition using LPC,
MFCC, ZCR features with ANN and SVM classifier for large input
database,’’ in Proc. IEEE 4th Int. Conf. Comput. Commun. Syst. (ICCCS),
Feb. 2019, pp. 130–133, doi: 10.1109/CCOMS.2019.8821751.

96896 VOLUME 9, 2021

http://dx.doi.org/10.1016/S0969-4765(13)70128-0
http://dx.doi.org/10.1007/978-1-4614-0263-3_5
http://dx.doi.org/10.1007/11573548_49
http://dx.doi.org/10.1109/CCOMS.2019.8821751


Y. Kong et al.: Machine-Learning-Based Closed-Set Text-Independent Speaker Identification

[9] H. Fenglei and W. Bingxi, ‘‘Text-independent speaker recognition using
support vector machine,’’ in Proc. Int. Conf. Info-Tech Info-Net, Nov. 2001,
pp. 402–407.

[10] O. Mamyrbayev, N. Mekebayev, M. Turdalyuly, N. Oshanova,
T. I. Medeni, and A. Yessentay, ‘‘Voice identification using classification
algorithms,’’ in Intelligent System and Computing. London, U.K.:
IntechOpen, 2019.

[11] M. F. Akhsanta and S. Suyanto, ‘‘Text-independent speaker identification
using PCA-SVMmodel,’’ inProc. 3rd Int. Seminar Res. Inf. Technol. Intell.
Syst. (ISRITI), Dec. 2020, pp. 525–528.

[12] N. Chauhan, T. Isshiki, and D. Li, ‘‘Speaker recognition using fusion
of features with feedforward artificial neural network and support vector
machine,’’ in Proc. Int. Conf. Intell. Eng. Manage. (ICIEM), Jun. 2020,
pp. 170–176.

[13] S. Sujiya and D. E. Chandra, ‘‘A review on speaker recognition,’’ Int. J.
Eng. Technol., vol. 9, pp. 1592–1598, 2017.

[14] A. M. Ariyaeeinia, J. Fortuna, P. Sivakumaran, and A. Malagaonkar,
‘‘Verification effectiveness in open-set speaker identification,’’ IEE Proc.-
Vis., Image Signal Process., vol. 153, no. 5, pp. 618–624, 2006.

[15] T. Kinnunen and H. Li, ‘‘An overview of text-independent speaker recog-
nition: From features to supervectors,’’ Speech Commun., vol. 52, no. 1,
pp. 12–40, Jan. 2010, doi: 10.1016/j.specom.2009.08.009.

[16] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2020.

[17] M. Artkoski, J. Tommila, and A.-M. Laukkanen, ‘‘Changes in voice
during a day in normal voices without vocal loading,’’ Logopedics
Phoniatrics Vocology, vol. 27, no. 3, pp. 118–123, Jan. 2002, doi:
10.1080/140154302760834840.

[18] B. M. Ben-David and M. Icht, ‘‘Voice changes in real speaking situa-
tions during a day, with and without vocal loading: Assessing call center
operators,’’ J. Voice, vol. 30, no. 2, pp. 247.e1–247.e11, Mar. 2016, doi:
10.1016/j.jvoice.2015.04.002.

[19] (Apr. 27, 2015). Eye Tracking Technology for Research—Tobii Pro.
Accessed: Oct. 9, 2019. [Online]. Available: https://www.tobiipro.com/

[20] F. Eyben, M. Wöllmer, and B. Schuller, ‘‘Opensmile: The munich versatile
and fast open-source audio feature extractor,’’ in Proc. Int. Conf. Multime-
dia (MM), 2010, pp. 1459–1462.

[21] H. Deng and G. Runger, ‘‘Feature selection via regularized trees,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jun. 2012, pp. 1–8.

[22] P. McCullagh,Generalized Linear Models. Evanston, IL, USA: Routledge,
2019.

[23] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor non-
parametric regression,’’ Amer. Statist., vol. 46, no. 3, pp. 175–185,
Aug. 1992.

[24] T. K. Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., Aug. 1995, pp. 278–282.

[25] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[26] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, ‘‘Classification
and regression trees. Belmont, CA: Wadsworth,’’ Int. Group, vol. 432,
pp. 151–166, Jul. 1984.

[27] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY, USA:
Springer, 2009.

[28] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[29] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–323.

[30] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[31] A. Zulfiqar, A. Muhammad, A. M. Martinez-Enriquez, and G. Escalada-
Imaz, ‘‘Text-independent speaker identification using VQ-HMM model
based multiple classifier system,’’ in Proc. Mexican Int. Conf. Artif. Intell.,
2010, pp. 116–125.

[32] H. P. Greeley, J. Berg, E. Friets, J. Wilson, G. Greenough, J. Picone,
J. R. Whitmore, and T. Nesthus, ‘‘Fatigue estimation using voice
analysis,’’ Behav. Res. Methods, vol. 39, no. 3, pp. 610–619,
Aug. 2007.

[33] K. Baykaner,M. Huckvale, I.Whiteley, O. Ryumin, and S. Andreeva, ‘‘The
prediction of fatigue using speech as a biosignal,’’ in Statistical Language
and Speech Processing. Cham, Switzerland: Springer, 2015, pp. 8–17, doi:
10.1007/978-3-319-25789-1_2.

VOLUME 9, 2021 96897

http://dx.doi.org/10.1016/j.specom.2009.08.009
http://dx.doi.org/10.1080/140154302760834840
http://dx.doi.org/10.1016/j.jvoice.2015.04.002
http://dx.doi.org/10.1007/978-3-319-25789-1_2

