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ABSTRACT Multi-choice goal programming (MCGP) has been widely used to find satisfying solutions for
multiple criteria/objective decision problems in which the target value of ‘‘the more, the better,’’ or ‘‘the less,
the better’’ can easily be obtained. This paper proposes two new models for representing the triangular and
trapezoidal membership functions, which improve the efficacy of fuzzy MCGP (FMCGP). Two real-world
applications are provided in this study to demonstrate the usefulness of the proposed models. Furthermore,
the same problems are resolved by using the proposed nature-inspired optimization method (NIOM) to find
the differences between them. While the artificial bee colony (ABC) algorithm is a well-known NIOM
technique, studies have shown that it has an excellent performance with high-quality solutions. Thus, this
study initially uses the ABC algorithm to find the differences between MCGP and ABC. Finally, some
insightful information is obtained from the comparison to contribute to the NIOM and MCGP fields and
their respective applications.

INDEX TERMS Fuzzy, multi-choice goal programming, multiple objective decision making.

I. INTRODUCTION
In recent years, fuzzy multiple objective decision mak-
ing (FMODM) has become more important for helping com-
panies make an appropriate decision under environmental
uncertainty. Chang [1]–[3] proposed a series of multi-choice
goal programming (MCGP) methods that effectively solve
multi-aspiration level problems to contribute to the field of
multiple objective decision making (MODM). In the MCGP,
the multi-aspiration level can be represented as discrete,
vector, and utility functions (UF) according to decision-
makers’ (DM) needs. By using MCGP to solve MODM
problems, both qualitative and quantitative issues can be con-
sidered simultaneously. Moreover, MCGP has been widely
applied to solve many real-world decision-making prob-
lems such as supplier selection [4], [5], house selection [6],
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sugar and ethanol milling problem [7], selection of locations
for coffee shops and renewable-energy facilities [8], [9],
supply chain management problem [10], consumer choice
problem [11], and catering supplier selection problem [12].
On the other hand, many advanced MCGP relevant meth-
ods were subsequently proposed including fuzzy MCGP
(FMCGP) [13], multi-segment MCGP [14], multi-coefficient
GP [15], MCGP with the conic scalarizing function [16], and
weighted-additive fuzzy MCGP (WA-FMCGP) [17].

Membership function (MF) is usually used to quantify
linguistic terms and represent a fuzzy set graphically. For
example, an MF for a fuzzy set on the universe of discourse
is defined as µA : x → [0, 1]. Further, the applications
of MF can be seen in automatic control, decision-making
capacity, and fuzzy logic. Chang [3] was the first to add two
popular UFs (linear and S-shaped UFs) to MCGP in dealing
with both qualitative and quantitative issues simultaneously.
This technique enriches the fields of MCGP and MCDM.
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FIGURE 1. The relationship of MCGP family p of MCGP family.

Chang [3] first introduced the fuzzy method to MCGP, called
the FMCGP, to formulate triangularMF and enrichMCGP for
qualitative decision-making issues. However, there are two
limitations on their method: (1) it only deals with triangular
MF, which is less flexible in resolving practical problems,
and (2) it only maximizes the values of MF (i.e., qualitative
issue) in the objective function; while it may be necessary to
consider both qualitative and quantitative issues in practice.

Additionally, Hocine et al. [17] proposed a WA-FMCGP
method to formulate triangular and trapezoidal MFs. How-
ever, there is a major restriction on their method: 2n binary
variables were required in their model to formulate n triangu-
lar MFs, which becomes time-consuming when the problem
size increases. Li et al. [18] also proposed a large-scale
group decision-making method to manage crisp, interval
and triangular numbers, and [19] a generalized fuzzy num-
ber to express decision makers’ preferences. On the other
hand, Zheng and Chang [20] proposed an MGCP model
with a trapezoidal utility function to measure senior citizens’
satisfaction in topology design. Zhang et al. [21] derived
a consensus-reaching method for social network group
decision making by considering leadership and bounded

confidence. Zhang et al. [22] proposed a consensus reaching
method for group decisionmaking withmulti-granular unbal-
anced linguistic information. Patro et al. [23] also presented
an MCGP model using Vandermonde’s interpolating poly-
nomial, binary variables, and a least square approximation
method.

Moreover, MCGP with triangular and trapezoidal MFs
has been rarely studied in the past. To fill this gap, this
study proposes a novel method with two contributions: (1) it
can be easily used to formulate triangular and trapezoidal
MFs, which will improve the usefulness of MCGP in solving
real-world problems, and (2) only

⌈
log2 2n

⌉
binary variables

are required to formulate n triangular MFs. In addition, given
the lack of literature, this study aims at understanding the rela-
tionship betweenMCGP and the nature-inspired optimization
method to understand the related technologies of MODM
better. Therefore, the new FMCGP and the nature-inspired
optimization method (NIOM) are proposed to improve the
usefulness ofMCGP in the field ofMODM. The relationships
between the MCGP family members are shown in Figure 1.
Although Lingo 12 [24] or related software can be used to
solve the FMCGP model, Lingo cannot guarantee to find the
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FIGURE 2. The flowchart of this study.

global optimal solution when it faces a non-linear problem.
Thus, many meta-heuristics, including nature-inspired opti-
mizationmethods, are proposed as global optimization search
algorithms to solve FMCGP problems.

The artificial bee colony (ABC) algorithm is a well-known
technique, and many studies have shown that it has an excel-
lent performance with high-quality solutions. Thus, this study
first uses the ABC algorithm to solve FMCGP problems and
finds out the differences between MCGP and ABC methods.
This study also fully applies the ‘‘equation constraint’’ feature
in the proposed NIOM to reduce the number of required deci-
sion variables for the original model, dramatically reducing a
problem’s complexity. Furthermore, the role of this study is
to explore a new area that enriches the field of MODM.

This paper proposes two newmethods to formulate popular
triangular and trapezoidal MFs. In addition, a NIOM method
is also provided to enrich the related fields ofMCGP. To prove
the novelty of the NIOM and the proposed FMCGP methods,
these same methods are used to solve the same set of MODM
problems with triangular and trapezoidal MFs. A comparison
of the accuracy of the solutions of both methods is further
provided. To briefly demonstrate the comparison in the study,
a flowchart is shown in Figure 2. First, it defines the triangular
and trapezoidal MFs. Second, it establishes the MCGP and
NIOM models for triangular and trapezoidal MFs. Third,
it solves theMCGP and NIOMmodels and then compares the
results. If the NIOM result is better than the MCGP, the find-
ings are obtained, and the procedure is halted. Otherwise,
the NIOM algorithm would be revised and compared again.
Furthermore, this study provides more insightful informa-
tion regarding the NIOM algorithm, which contributes to the
MCGP and NIOM fields and their respective applications.

The remainder of this paper is organized as follows:
Section 2 presents model formulations for the proposed
model with triangular and trapezoidalMFs. Section 3 presents

the artificial bee colony algorithm for solving triangular and
trapezoidal MFs. In Section 5, we conclude our findings and
recommendations for future research are provided.

II. MODEL FORMULATIONS
A. PREVIOUS MODELS
TheMCGPwith UFµi(yi) proposed by Chang [3] allows DM
to set their preferencesmappingwith linear UF for anMODM
problem. The linear UFs can be expressed as in (1) and (2) as
shown in Figure 3.

µi(yi) =


1, if yi ≤ gi,min
gi,max − yi

gi,max − gi,min
, if gi,min ≤ yi ≤ gi,max

0, if yi ≥ gi,max

for LLUF (1)

µi(yi) =


1, if yi ≥ gi,max
yi − gi,min

gi,max − gi,min
, if gi,min ≤ yi ≤ gi,max

0, if yi ≤ gi,min

for RLUF (2)

where gi,max and gi,min are lower and upper bounds for the ith
goal, respectively.

Further, the MCGP with utility functions proposed by
Chang [3] was expressed, as follows:

Min
n∑
i=1

[wi(d
+

i + d
−

i )+ βif
−

i ]

s.t. λi ≤
gi,max − yi

gi,max − gi,min
, i = 1, 2, . . . , n, for LLUF

(3)

λi ≤
yi − gi,min

gi,max − gi,min
, i = 1, 2, . . . , n, for RLUF

(4)

fi(x)− d+i + d
−

i = yi, i = 1, 2, . . . , n, (5)

λi + f
−

i = 1, i = 1, 2, . . . , n, (6)

gi,min ≤ yi ≤ gi,max, i = 1, 2, . . . , n, (7)

d+i , d
−

i , f
−

i , λi ≥ 0, i = 1, 2, . . . , n, (8)

x ∈ F, (F is a feasible set, while x is unrestricted in sign),
where wiand βiare weights attached to deviational variables
d+i , d

−

i and f −i ; λi is the utility value. As described in (6),
the highest possible value of the L(R)LUF (from (3) and (4))
is 1. Other variables are defined as in MCGP (see Chang [1]).

B. PROPOSED MODEL FOR TRIANGULAR
MF FORMULATION
A triangular MF is widely used to solve many uncertainty
problems, which can be expressed as:

Mi(yi) =



yi − gmin
i1

g̃i1 − gmin
i1

, if gmin
i1 ≤ yi ≤ g̃i1

1, if yi = g̃i1
yi − g̃i1
gmax
i1 − g̃i1

, if g̃i1 ≤ yi ≤ gmax
i1

(9)
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FIGURE 3. The linear utility functions.

FIGURE 4. Two triangular MFs.

Particularly, an example of two triangular MFs is demon-
strated in Figure 4, which can be represented by Mi1 =

µi1 ∪ µi2 and Mi2 = µi3 ∪ µi4, where µij is a sub-triangular
MF. To improve the usefulness of MCGP, a new triangular
MF should be added. Therefore, Figure 4 can be intuitively
formulated, as follows:

(P1) New MCGP with triangular MF

Min
n∑
i=1

(αid
+

i + βid
−

i )+
n∑
i=1

4∑
j=1

wije
−

ij

s.t. fi(yi)− d
+

i + d
−

i = yi1zi1zi2 + yi2zi1(1− zi2)

+ yi3(1− zi1)zi2 + yi4(1− zi1)(1− zi2),

i = 1, 2, .., n (10)

µi1 = 1−
g̃i1 − yi1
g̃i1 − gmin

i1

, µi2 = 1−
yi2 − g̃i1
gmax
i1 − g̃i1

,

i = 1, 2, . . . , n (11)

µi1 + e
−

i1 = 1, µi2 + e
−

i2 = 1, i = 1, 2, . . . , n

(12)

µi3 = 1−
g̃i2 − yi3
g̃i2 − gmin

i2

, µi4 = 1−
yi4 − g̃i2
gmax
i2 − g̃i2

,

i = 1, 2, . . . , n (13)

µi3 + e
−

i3 = 1, µi4 + e
−

i4 = 1, i = 1, 2, . . . , n

(14)

X ∈ F , (F is a feasible set), where d+i and d−i are positive and
negative deviational variables attached to |fi(y)− g̃i|; αi and
βi are the weights attached to d+i and d−i ; wij is the weight
attached to e−ij ; fi(y) is the ith objective function; zij is the
binary variable; µij is the MF of g̃ij; e

−

ij is the negative devi-
ational variable used to force the value of µij approaching 1
(i.e., the maximum value of MF). gmax

ij (gmin
ij ) is upper (lower)

bound of yij; yi1 ∈ [gmini1 , g̃i1], yi2 ∈ [g̃i1, gmaxi1 ], yi3 ∈
[gmini2 , g̃i2], and yi4 ∈ [g̃i2, gmaxi2 ] are additional variables.
Proposition 1: P1 and Figure 4 are equivalent in the sense

that they have the same optimal solutions.
Proof:

(i) If the value of yi1 ∈ [gmin
i1 , g̃i1], then µi1 = 1− g̃i1−yi1

g̃i1−gmin
i1

(from (11)). This forces zi1 = zi2 = 1 (from (10)) and
the value of µi1 approaching 1 (from (12)).

(ii) If the value of yi1 ∈ [g̃i1, gmax
i1 ], thenµi2 = 1− yi2−g̃1

gmax
i1 −g̃i1

(from (11)). This forces zi1 = 1, zi2 = 0 (from (10))
and the value of µi2 approaching 1 (from (12)).

(iii) If the value of yi2 ∈ [gmin
i2 , g̃i2], then µi3 = 1− g̃i2−yi3

g̃i2−gmin
i2

(from (13)). This forces zi1 = 0, zi2 = 1 (from (10))
and the value of µi3 approaching 1 (from (14)).

(iv) If the value of yi2 ∈ [g̃i2, gmax
i2 ], thenµi4 = 1− yi4−g̃i2

gmax
i2 −g̃i2

(from (13)). This forces zi1 = zi2 = 0 (from (10)) and
the value of µi4 approaching 1 (from (14)).

This is essentially the same as P1=Figure 4 and completes
the proof of Proposition 1.
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By referring to Chang [25], the quadratic binary term zi1zi2
in (10) can be linearized, as follows:

Let xi = zi1zi2, where xi satisfy the following inequalities.

(zi1 + zi2 − 2)+ 1 ≤ xi ≤ (2− zi1 − zi2)+ 1, (15)

xi ≤ zi1, (16)

xi ≤ zi2, (17)

xi ≥ 0, (18)

The management implication of P1 is that two MFs
(M1 andM2) represent the aspiration levels on the right-hand
side of (10) as ‘‘choosing one from them.’’ For example,
the two MFs can be used to map two types of customer
satisfaction in the MODM model. This provides an optimal
choice of MFs for MODM problems. As seen in P1, plus
4 sign constraints (from (18)) are required to deal with 2 tri-
angular MFs, 2 binary variables (from (10)), and 16 auxiliary
constraints (from (15)-(17)). Accordingly, to deal with the
number of n triangular MFs,

⌈
log2 2n

⌉
binary variables, 8n

auxiliary constraints, plus 2n sign constraints are required.
This handling is better than the model of Hocine et al. [17],
where 2n binary variables are needed in their model to deal
with the number of n triangular MFs. In order to reduce
the auxiliary constraints in P1, Proposition 2 is introduced,
as follows:
Proposition 2: Given the two infinite sets K = {1, . . . , n}

and J = {1, . . . ,
⌈
log2 n

⌉
}, extra continuous variables are

denoted as ck (k ∈ K ), which can be constructed by adding
a logarithmic number of binary variables bj(j ∈ J ) and the
following constraints.

f (x) =
∑
k∈K

dkck , (19)∑
k∈K

ck = 1, (20)∑
k∈J+(j)

ck = bj, ∀j ∈ J , (21)

where J+(j) = {k ∈ K : j ∈ σ (B(k)); B : K → {0, 1}J is any
injective function; σ (B(k)) is the support of vector B(k); ck is
the continuous variable; bj is the binary variable; the number
of j =

⌈
log2 k

⌉
; f (x) contains k possible values in the set

D = {d1, . . . , dk}, dk ∈ R.
Example 1: A company is manufacturing two products,

y1 and y2. For product y1, there are two types of cus-
tomers, namely general customers (GC) and VIP customers
(VIPC), with ‘‘approximate’’ demands of 30 and 50, respec-
tively. These demands can be represented by different MFs,
as shown in Figure 4. The maximum allowable negative and
positive deviations for GC and VIPC from their goals are set
as 4 and 5, respectively. Further, (G1) is denoted as y1 ∼= 30
or 50 and (G2) as y2 ∼= 15 or 30. The selling profit for the
product y1 (y2) is 10 (12) dollars. The information about these
two products is shown in Table 1. However, due to limitations
such as political ones, the company must select only one of
its customers for each product. A profit of at least 450 dollars

TABLE 1. Related information about products.

TABLE 2. The amount of resource consumption for each product.

from the product is expected. Weights w1 and w2 are given as
0.4 and 0.3, respectively. The available amount of resources
for products y1 and y2 is shown in Table 2. The objective is to
find the best degree of achievement of the two fuzzy goals.

Based on the proposed FMCGP and P1 models, the prob-
lem can be formulated as follows.

(M1)

Min
2∑
i=1

(d+i + d
−

i )+ 0.4
4∑
i=1

e−i + 0.3
8∑
i=5

e−i

s.t. y1 − d
+

1 + d
−

1 = x1z1z2 + x2z1(1− z2)+ x3(1− z1)z2
+ x4(1− z1)(1− z1), (22)

µ1 = 1− (
x1 − 30

4
), µ2 = 1− (

30− x2
4

),

µ1 + e
−

1 = 1, µ2 + e
−

2 = 1, for GC, (23)

µ3 = 1− (
x3 − 50

5
), µ4 = 1− (

50− x4
5

),

µ3 + e
−

3 = 1, µ4 + e
−

4 = 1, for VIPC, (24)

y2 − d+2 + d−2 = x5z3z4 + x6z3(1− z4)+ x7(1− z3)z4
+ x8(1− z3)(1− z4), (25)

µ5 = 1− (
x5 − 15

4
), µ6 = 1− (

15− x6
4

),

µ5 + e
−

5 = 1, µ6 + e
−

6 = 1, for GC, (26)

µ7 = 1− (
x7 − 30

5
), µ8 = 1− (

30− x8
5

),

µ7 + e
−

7 = 1, µ8 + e
−

8 = 1, for VIPC, (27)

10y1 + 12y2 ≥ 450, (28)

4y21 + 7y22 ≤ 5000, (29)

3y1 + 5y2 ≤ 380, (30)

y1 + 2y2 ≤ 120, (31)

y1y2 ≤ 400, (32)

z1, z2, z3 and z4 are binary variables (33)

d+i , e
−

i ≥ 0, (34)

28 ≤ x1 ≤ 32, 28 ≤ x2 ≤ 32, 47.5 ≤ x3 ≤ 52.5,

47.5 ≤ x4 ≤ 52.5, (35)
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13 ≤ x5 ≤ 17, 13 ≤ x6 ≤ 17, 27.5 ≤ x7 ≤ 32.5,

27.5 ≤ x8 ≤ 32.5, (36)

The quadratic terms of (22) and (25) can be lin-
earized using (15)-(18) or Proposition 2. To solve this
problem, Lingo 12 [24] is used to obtain the local
optimal solutions (objective function value (OFV) =
15.2086426) as (y1, y2, µ1, µ2, µ3, µ4, z1, z2, z3, z4) =

(17.0996122, 23.3923452, 1, 0.5, 1, 1, 1, 0, 0, 0) and the
degree of achievement of two fuzzy goals where g̃y1 and g̃y2 is
50.00% and 50.00%, respectively (g̃y1 = 1− (30− 28)/4) =
50.00%; g̃y2 = 1 − (30 − 27.5)/5 = 50.00%). A profit of
$451.7043 is also obtained.

Based on Proposition 2, (22) and (25) can be replaced,
as follows:

y1 − d
+

1 + d
−

1 = x1c1 + x2c2 + x3c3 + x4c4, (37)

c1 + c2 + c3 + c4 = 1, (38)

c2 + c4 = z1, (39)

c3 + c4 = z2, (40)

y2 − d
+

2 + d
−

2 = x5c5 + x6c6 + x7c7 + x8c8, (41)

c1 + c2 + c3 + c4 = 1, (42)

c2 + c4 = z1, (43)

c3 + c4 = z2, (44)

where ci, ∀i are continous variables, and zi, ∀i are binary
variables.

This problem is solved again using Lingo 12 [24] to obtain
the same solutions.

C. PROPOSED MODEL FOR TRAPEZOIDAL
MF FORMULATION
A trapezoidal MF can be expressed as (37).

Mi(yi) =



0, if yi ≤ gmin
i or yi ≥ gmax

i
yi − gmin

i

g̃ib − gmin
i

, if gmin
i ≤ yi ≤ g̃ib

1, if g̃ib ≤ yi ≤ g̃ic
yi − g̃ic
gmax
i − g̃ic

, if g̃ic ≤ yi ≤ gmax
i

(45)

An example of two trapezoidal MFs is demonstrated in
Figure 5, which can be represented byMi1 = µi1 ∪ Ri1 ∪µi2
and Mi2 = µi3 ∪ Ri2 ∪ µi4. To improve the usefulness of
MCGP, a new trapezoidal MF should be added. Therefore,
Figure 5 can be intuitively formulated, as follows:

(P2) The new MCGP with trapezoidal MF

Min
n∑
i=1

(αid
+

i + βid
−

i )+
n∑
i=1

6∑
j=1

wije
−

ij

s.t. fi(yi)− d
+

i + d
−

i = yi1zi1zi2zi3 + yi2zi1zi2(1− zi3)

+ yi3zi1(1− zi2)zi3 + yi4zi1(1− zi2)(1− zi3)

+ yi5(1− zi1)zi2zi3 + yi6(1− zi1)zi2(1− zi3),

i = 1, 2, . . . , n, (46)

FIGURE 5. Two trapezoidal MFs.

µi1 = 1−
g̃i1b − yi1
g̃i1b − gmin

i1

, µi2 = 1−
yi2 − g̃i1c
gmax
i1 − g̃i1c

,

i = 1, 2, . . . , n, (47)

µi1 + e
−

i1 = 1, µi2 + e
−

i2 = 1, i = 1, 2, . . . , n,

(48)

Ri1 = zi1(1− zi2)zi3, Ri1 + e
−

i3 = 1,

i = 1, 2, . . . , n, (49)

µi3 = 1−
g̃i2b − yi4
g̃i2b − gmin

i2

, µi4 = 1−
yi5 − g̃i2c
gmax
i2 − g̃i2c

,

i = 1, 2, . . . , n, (50)

µi3 + e
−

i4 = 1, µi4 + e
−

i5 = 1, i = 1, 2, . . . , n,(51)

Ri2 = (1− zi1)zi2(1− zi3), Ri2 + e
−

i6 = 1,

i = 1, 2, . . . , n, (52)

gmin
i1 ≤ fi(yi) ≤ g

max
i2 , i = 1, 2, . . . , n,

X ∈ F, (F is a feasible set) (53)

where d+i and d−i are positive and negative deviational vari-
ables attached to |fi(yi)− g̃i|; αi and βi are the weights
attached to d+i and d−i ; wij is the weight attached to e−ij ;
fi(yi) is the objective function; zij is the binary variable; µij
is the MF; e−ij is the negative deviational variable used to
force µij and Rij approaching 1 (i.e., maximum value of MF).
gmax
i (gmin

i ) is upper (lower) bound of yi; yi1 ∈ [gmini1 , g̃i1b],
Ri1 ∈ [g̃i1b, g̃i1c], yi2 ∈ [g̃i1c, gmaxi1 ], yi3 ∈ [gmini2 , g̃i2b], Ri2 ∈
[g̃i2b, g̃i2c], and yi4 ∈ [g̃i2c, gmaxi2 ] are additional variables.
Proposition 3: P2 and Figure 5 are equivalent in the sense

that they have the same optimal solutions.
Proof:

(i) If the value of yi ∈ [gmin
i1 , g̃i1b], then µi1 = 1 −

g̃i1b−yi1
g̃i1b−gmin

i1
(from Eq.(47)). This forces zi1 = zi2 =

zi3 = 1 (from (46)) and the value of µi1 approaching 1
(from (48)).

(ii) If the value of yi ∈ [g̃i1b, g̃i1c], then Ri1 = 1 (from
(49)). This forces zi1 = 1, zi2 = 0, zi3 = 1 (from (46)).

(iii) If the value of yi ∈ [g̃i1c, gmax
i1 ], then µi2 = 1 −

yi2−g̃i1c
gmax
i1 −g̃i1c

(from (47)). This forces zi1 = zi2 = 1,
zi3 = 0 (from (46)) and the value of µi2 approaching 1
(from (48)).
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(iv). If the value of yi ∈ [gmin
i2 , g̃i1b], then µi3 = 1 −

g̃i2b−yi4
g̃i2b−gmin

i2
(from (50)). This forces zi1 = 1, zi2 = 0,

zi3 = 1 (from (46)) and the value of µi3 approaching 1
(from (51)).

(iv) If the value of yi ∈ [g̃i2b, g̃i2c], then Ri2 = 1 (from
(52)). This forces zi1 = 0, zi2 = 1, zi3 = 0 (from (46)).

(v) If the value of yi ∈ [g̃i2c, gmax
i2 ], then µi4 = 1 −

yi5−g̃i2c
gmax
i2 −g̃i2c

(from (50)). This forces zi1 = 0, zi2 = 1,
zi3 = 1 (from (46)) and the value of µi4 approaching 1
(from (51)).

This is essentially the same as P2=Figure 5 and completes
the proof of Proposition 3.
Example 2: Eating disorders or imbalanced diets have

recently become a serious health problem worldwide. Many
chronic diseases such as atherosclerosis, heart disease, and
stroke are associated with imbalanced diets. Basal metabolic
rate (BMR) is the rate at which the body uses energy while at
rest to maintain vital functions such as breathing and body
temperature. In this example, the revised Harris-Benedict
equation from the American college of sports medicine is
used to determine a person’s daily energy expenditure in
calories. The BMR is calculated as follows:

BMR(male) = (13.397× weight(kg))

+(4.799× height(cm))

− (5.677× age)+ 66

BMR(female) = (9.247× weight(kg))

+ (3.098× height(cm))

− (4.33× age)+ 447.593

The basic summation of calories to be burned off is BMR
plus 400 Kcal, to account for daily activities such as walking,
thinking, breathing, and other important functions.

A 26-year-old man, Sam, is selected as the analytical target
whose height and weight are 168cm and 77kg, respectively.
Sam’s basic consumption of calories is calculated as follows:

13.397× 77+ 4.799× 168.5.677

× 26+ 66+ 400 = 2090 Kcal/day

1254 Kcal (carbohydrate)+ 522.5 Kcal (protein)

+ 313.5 Kcal (fat) = 2090 Kcal /day

The acceptable distribution range of nutrients is shown
in Table 3. On the other hand, the range of target values
for carbohydrate, protein, and fat is depicted in Figures 6-8.
Twenty-seven types of food have been chosen from four
categories (grains, meat, vegetable, egg), where each food has
nine types of nutrients, as shown in Table 4. The objective
is to find the best degree of carbohydrate, protein, and fat
achievement for Sam.

1) GOALS
Maximize the degree of achievement of carbohydrate, pro-
tein, and fat

FIGURE 6. A carbohydrate MF.

2) DECISION VARIABLES
M1: the degree of achievement of carbohydrate
M2: the degree of achievement of protein
M3: the degree of achievement of fat

3) PARAMETERS
x1: total intake amount of carbohydrate (Kcal)
x2: total intake amount of protein (Kcal)
x3: total intake amount of fat (Kcal)
x4: total intake amount of vitamin A (µg)
x5: total intake amount of vitamin C (mg)
x6: total intake amount of vitamin B1 (mg)
x7: total intake amount of vitamin B2 (mg)
x8: total intake amount of calcium (mg)
x9: total intake amount of iron (mg)
xUj : upper bound of total intake of the nutrient j
xLj : lower bound of total intake of the nutrient j
Gi: ith grain is selected if Gi = 1, otherwise Gi = 0

where Gi ∈ {0, 1}
Mi: ith meat is selected ifMi = 1, otherwiseMi = 0

whereMi ∈ {0, 1}
Vi: ith vegetable is selected if Vi = 1, otherwise Vi = 0

where Vi ∈ {0, 1}
Ei: ith egg is selected if Ei = 1, otherwise Ei = 0

where Vi ∈ {0, 1}
Nij: ith food (i = 1, . . . , 27) and jth nutrients

(j = 1, . . . , 9)

The objective function maximizes the degree of achieve-
ment of carbohydrate, protein, and fat, as follows:

Max M1(y)+M2(y)+M3(y)

Furthermore, the constraints of the problem are described
as follows:

1. Nutrients x1, . . . , x9 must fall within a certain interval,
as shown in Table 4. Therefore, the constraint xLj ≤
xj ≤ xUj (j = 1, . . . , 9) should be obeyed. Assuming his
personal needs, his nutrition may have some non-linear
limitations as in 2x26 + 3x27 ≤ 27 and x6x7x9 ≤ 120.
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TABLE 3. Nutrient requirements (Sam: Gender: Male; Age: 26; Height: 168cm; Weight: 77Kg).

TABLE 4. Food nutrients.

2. The amount of nutrients is made up of selected foods.
Therefore, it can be expressed as:

xj =
6∑
i=1

GiNij +
16∑
i=7

MiNij +
24∑
i=17

EiNij +
27∑
i=25

EiNij

× (j = 1, . . . , 9).

Based on the proposed FMCGP and P2 models, this prob-
lem can easily be formulated as follows:

(M2)

Min
3∑
i=1

(d+i + d
−

i )+
9∑
i=1

wie
−

i
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FIGURE 7. A protein MF.

FIGURE 8. A fat MF.

s.t. f1(y)− d
+

1 + d
−

1 = y1z1z2 + y2z1(1− z2)

+ y3(1− z1)z2, for carbohydrate, (54)

µ1 = 1−
1191− y1

1191− 1066
, µ2 = 1−

y2 − 1316
1442− 1316

,

(55)

µ1 + e
−

1 = 1, µ2 + e
−

2 = 1, (56)

R1 = (1− z1)z2, R1 + e
−

3 = 1, (57)

f2(y)− d
+

2 + d
−

2 = y4z3z4 + y5z3(1− z4)

+ y6(1− z3)z4 for protein, (58)

µ3 = 1−
503− y4
503− 458

, µ4 = 1−
y5 − 548
594− 548

,

(59)

µ3 + e
−

4 = 1, µ4 + e
−

5 = 1, (60)

R2 = (1− z3)z4, R2 + e
−

6 = 1, (61)

f3(y)− d
+

3 + d
−

3 = y7z5z6 + y8z5(1− z6)

+ y9(1− z5)z6 for fat, (62)

µ5 = 1−
263− y7
263− 164

, µ6 = 1−
y8 − 363
462− 363

,

(63)

µ5 + e
−

7 = 1, µ6 + e
−

8 = 1, (64)

R3 = (1− z5)z6, R3 + e
−

9 = 1, (65)

xj =
6∑
i=1

GiNij +
16∑
i=7

MiNij +
24∑
i=17

ViNij +
27∑
i=25

EiNij,

j = 1, . . . , 9, (66)

2x26 + 3x27 ≤ 27 (67)

x6x7x9 ≤ 120 (68)

xLj ≤ xj ≤ x
U
j , range of nutrient intake (69)

Zi ∈ {0, 1}, Gi ∈ {0, 1}, Mi ∈ {0, 1},

Vi ∈ {0, 1}, Ei ∈ {0, 1} (70)

where f1(y) = x1; f2(y) = x2; f3(y) = x3.
The model is then solved using Lingo [24] to obtain

a satisfied solution: (OFV = 2.77870707) as (x1, x2, x3,
µ1,R1, µ2, µ3,R2, µ4, µ5,R3, µ6, z1, z2, z3, z4, z5, z6M1(y),
M2(y),M3(y)) = (1191.0, 479.9, 235.9, 1, 1, 1, 0.4866, 0, 1,
0.7262, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0.497826087, 0.726262626).
This means that the demand for carbohydrates is fully met.
However, the degree of achievement of protein and fat is only
48.666667% and 72.6262626%, respectively:

M1(y) = 1− (1191− 1191)/(1191− 1066) = 1.0 = 100%

M2(y) = 1− (503− 479.9)/(503− 458) = 0.48666667

= 48.666667%

M3(y) = 1− (263− 235.9)/(263− 164) = 0.72662626

= 72.6262626%

III. SOLVING M1 AND M2 BY ARTIFICIAL BEE
COLONY ALGORITHM
The ABC algorithm is used to solve M1 and M2 and demon-
strate the usefulness of the proposed methods. The ABC
algorithm is a swarm-based metaheuristic algorithm intro-
duced by Karaboga [26] for optimizing numerical problems.
Satisfactory ABC-based algorithm results have been reported
when applied to the numerical test functions of optimization
problems [27], [28]. Moreover, a honeybee swarm inspires
the emergence of ABC algorithm by its intelligent forag-
ing behavior, and has been transformed into artificial bees
postulated in three groups: employed bees, onlooker bees,
and scout bees. An employed bee exploits a food source; an
onlooker bee decides to search a food source; and a scout bee
performs a random search for a new food source. When an
employed bee abandons a food source, it becomes a scout bee.
Meanwhile, as employed bees and onlooker bees perform the
exploitation process, the scout bees control the exploration
process.

The proposedABC algorithm uses four variables as param-
eters: (1) SN refers to the number of food sources, (2) limit
denotes a predefined number that if the food source cannot
be improved in successive limit iterations, the employed bee
becomes a scout bee to explore a new solution, (3) Gmax is
the number of maximal allowable iterations, and (4) Penalty
is the penalty of a solution if equations are violated. Both
numbers of employed bees and onlooker bees are set as SN .
The pseudo-code of the proposed ABC algorithm is shown
in Figure 9. It begins with a population of randomly generated
food sources (initialize each solution Xi in the first population
by random, i = 2, . . . ., SN ). In order to obtain a good
initial solution, we set the initialize solution X1 in the first
population using the solution obtained by FMCGP. Assume
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FIGURE 9. The pseudo-code of the proposed ABC algorithm.

that the food source is Xi(Xi = [xi,1, xi,2, . . . , xi,D]) and
j ∈ {1, . . . ,D}, where D is the number of decision variables
in the solution; xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j),
where xmin,j andxmax,j are the minimum and maximum values
of the xi,j, and rand(0, 1) gives a random real value between
0 and 1. For simplicity, we set xmin,j and xmax,j to be 0 and 1,
respectively, so all variables will range from 0 to 1.

Furthermore, the calculation of the fitness of food sources
is shown in Figure 8 (later explained). A typical iteration
of ABC proceeds as follows. While the employed bees and
onlooker bees are both placed in their food sources, the latter
is concerned with their nectar volume. On the other hand,
scout bees sent to the search area to discover new food sources

Xi do not change in successive limits (limit). An onlooker’s
selection is contingent on the probability associated with a

certain food source: pi = fiti/
SN∑
j=1

fitj, where fiti is the fitness

value of solution i; SN is the number of food sources. The
expression yi,j = xi,j + φi,j(xi,j − xk,j) is used to produce
a prospect of food position Yi = [yi,1, yi,2, . . . , yi,D] from
the old one Xi = [xi,1, xi,1, . . . , xi,D] in the memory, where
j ∈ [1, 2, . . . ,D] and k ∈ [1, 2, . . . , SN ]are randomly
chosen indices; k must be different from i; Dis the number of
variables; and φi,j is a random number in the range [−1, 1].
Finally, the best food source (Xbest ) found is recorded to the
memory. This process repeats until it satisfies the termination
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FIGURE 10. The pseudo-code of the fitness calculation.

condition (the number of iterationGequals the maximum
number of iteration Gmax) [29], [30].
To apply the ABC algorithm in solving an FMCGP prob-

lem, a solution (food source) is represented by D continuous
values, where D is the number of the necessary decision
variables in the model. The continuous values range from
0.0 to 1.0 (xmin,j and xmax,j set to be 0 and 1, respectively).
For each continuous variable in the model, its value can be
determined by vlower + (vupper − vlower ) · [∗], where vlower
and vupper are the lower and upper bound of the variable and
[∗] is the value obtained for the variable from the proposed
ABC algorithm. For each binary variable in the model, if the
value obtained from the proposed ABC algorithm is smaller
than 0.5, the binary variable is set to 0; otherwise, the binary
variable is set to 1. Although many decision variables exist
in the FMCGP, many of them are deducible when parts of
the decision variables are given (many of the equations equal
(=) one) which significantly reduce the complexity of the
problem.

As shown in Figure 10, after values of variables of the
FMCGP model are obtained, the OFV can then be calculated
directly. For each equation, if the violation happens, a hefty
penalty is added to the OFV, computed by a constant plus the
degree of violation. Further, the fitness value of a solution is
computed as 1.0/OFV – the larger the value, the better the
solution.

Moreover, the proposed algorithm is implemented using
Visual C++ 2015 under Windows 10 operating system.
The parameter SN and limit are set to 20 and 100, respec-
tively, to be consistent with the default as in Karaboga and
Basturk [31]. The penalty is set to 100,000. In addition,
the number of iterations is set to 500,000 to balance the
computing time and solution quality.

A. SOLVING M1 BY ABC ALGORITHM
In solving the M1 through the proposed ABC algorithm,
a solution has the following 14 variables: x1, x2, . . . , x8, y1,
and y2 are non-negative variables with given ranges,
while z1, z2, z3, and z4 are binary variables. If the val-
ues of the 14 decision variables are given, the values
d+1 , d

+

2 , d
−

1 , d
−

2 , e
+

1 , e
+

2 , e
−

1 , e
−

2 , u1, u2, . . . , u8 can be com-
puted using the equal (‘‘=’’) function in (22)-(27) for
ABC. For example, if the values of decision variables
x1, x2, x3, y1, z1, and z2 are given in (22), the non-zero one
(d+1 or d−1 ) can be easily computed because either d+1 or d−1
is zero. In (23), given the values of x1 and x2, the values
of µ1 and µ2 can be computed directly by µ1 = 1 −
( x1−304 ) and µ2 = 1 − ( 30−x24 ), respectively. After obtain-
ing the values of µ1 and µ2, the values of e−1 and e−2 can
also be obtained by e−1 = 1 − µ1 and e−2 = 1 − µ2,
respectively. After all values of variables of the FMCGP
model are obtained, the OFV can be calculated directly. Fur-
ther, a penalty is added to avoid the violation of (28)-(32)
and greatly enlarge the OFV resulting in a smaller fitness
value of the solution. For example, if the left side value is
449.8 in the (28), the penalty for (28) is 100,000 + 100,000∗

(450-449.8).
The best solution is taken among 10 calculations of the

M1 by the proposed ABC algorithm. The detailed best solu-
tions obtained by Lingo 12 [24] and the proposed ABC
algorithm for M1 are shown in Table 5. A prominent result
is shown by the ABC (OFV = 0.9150181) compared
to that of Lingo 12 (OFV = 15.2080426). Furthermore,
the solution obtained by the ABC is (y1, y2, µ1, µ2, µ3, µ4,

z1, z2, z3, z4) = (28.0010294, 14.2849002, 1.0, 0.5002614,
1.0, 1.0, 1, 0, 1, 1) and the degree of achievement of two
fuzzy goals g̃y1 and g̃y2 is 50.026143% and 100.00%
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TABLE 5. The detailed solutions obtained by lingo and for M1

satisfied, respectively.

g̃y1 = 1− (30− x2)/4 = 1− (30− 28.0010457)/4

= 50.0261425%

g̃y2 = 1− (x5 − 15)/4 = 1− (15.0000000− 15)/4

= 100%

B. SOLVING M2 BY ABC ALGORITHM
In solving the M2 by the proposed ABC algorithm, a solu-
tion has the following 42 variables: y1 to y9 are continuous

TABLE 6. The detailed solutions obtained by lingo and for M2.

decision variables, while z1 to z6, G1 to G6, M7 to M15, V16
to V24, and E25 to E27 are binary decision variables. If the
value of the above decision variables are given, the value of
x1 to x9, R1 to R2, u1 to u6, and e1 to e9 can be obtained
by the (54)-(66) in the model. After all values of variables
of the FMCGP model are obtained, the OFV can be calcu-
lated directly. A penalty is added to avoid the violation of
(67)-(68) and greatly enlarge the OFV resulting in a smaller
fitness value of the solution. As shown in Table 6, the OFV
obtained by Lingo 12 [24] and the proposed ABC algorithm
is 2.7870707 and 2.6809091, respectively. Consequently,
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FIGURE 11. Evolution of best solution obtained for M1.

FIGURE 12. Evolution of best solution obtained for M2.

we can imply that the solution obtained by the ABC algorithm
for M2 is better than that of Lingo 12. The solution obtained
by theABC is (x1, x2, x3, µ1,R1, µ2, µ3,R2, µ4, µ5,R3, µ6,

z1, z2, z3, z4, z5, z6,M1(y),M2(y),M3(y)) = (1307.9, 485.2,
234.75, 1, 1, 1, 0.6044444, 0, 1, 0.7146465, 0, 1, 1, 0, 0).
This means that the demand for carbohydrates is fully
met, although the degree of achievement of protein and
fat is 60.444444% and 71.464646%, respectively. Further,
the degree of protein achievement is much better, while the
degree of achievement of fat is closer to that of Lingo.

M1(y) = 1− (1191− 1191)/(1191− 1066) = 1
M2(y) = 1− (503− 485.20)/(503− 458) = 0.60444444

= 60.444444%
M3(y) = 1− (263− 234.75)/(263− 164) = 0.71464646

= 71.464646%

To show the convergence trend of the proposed ABC algo-
rithm for M1 and M2, theOFV obtained with the ‘‘number of
iterations’’ is displayed in Figures 11 and 12, respectively.
As shown, the solution improvement rate decreases over
an increasing number of iterations, and there is no more
improvement in the best solution obtained after a certain
number of iterations. Thus, using more iterations may not
enhance the solution quality. In addition, the ABC algorithm
can obtain more precise solutions than that obtained by the
MCGP method.

According to the results of M1 and M2, the proposed ABC
algorithm may obtain better solutions than the immediate
solutions from Lingo 12 [24]. The reason the proposed ABC
algorithm acquires better solutions may be as follows: (1) the
ABC algorithm is a global optimization search algorithm;
(2) many equations equal (=) one in the fuzzy MCGP and
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after giving the values of parts of the decision variables in
these equations, the remaining variables could be deduced,
which significantly reduces the complexity of the problem.

Moreover, this fills in the gap between the MCGP and
NIOM methods. In the future, we can integrate MCGP and
NIOM as a new method to enrich the field of MCDM tech-
niques for solving qualitative and quantitative issues.

IV. CONCLUSION AND FUTURE RESEARCH
With the current status of available knowledge, this study
is the first to investigate the relationship between MCGP
and NIOM, aiming with two contributions between them and
further improve the usefulness of MCGP. Therefore, new
models are proposed to enrich FMCGP with triangular and
trapezoidal MFs and improve the usefulness of MCGP for
solving more MODM problems. NIOM is also provided to
solve the same problem and know the differences between
them. In addition, a comparison of the two methods is exhib-
ited to understand their differences better and enrich the
knowledge of both MCGP and NIOM. Furthermore, the new
algorithms provided improve the efficacy of NIOM in solving
fuzzy decision/management problems. Meanwhile, the pro-
posed ABC algorithm uses many equal (‘‘=’’) equations in
the fuzzy multi-choice model. After giving the values of parts
of the decision variables in these equations, the remaining
variables could be deduced in the NIOM, which significantly
reduces the complexity of the fuzzy MCGP model. In addi-
tion, the proposed methods could easily be used to solve
multiple objective problemswhile considering qualitative and
quantitative issues at the same time [20].

Moreover, several possible future directions exist for
this research. In the future, other NIOMs, such as particle
swarm optimization, firefly algorithm, bacterial foraging-
inspired algorithm, genetic algorithm, and cuckoo search
algorithm, can also be used to solve the FMCGP prob-
lems with non-linear constraints and MFs. Another excit-
ing potential research direction is applying the proposed
NIOM algorithm in solving more complex FMCGP problems
with non-linear constraints and MFs in real applications.
Finally, the proposed NIOM algorithm and newMCGPmeth-
ods can be used to solve multi-attribute decision-making
problems [32] while considering qualitative and quantitative
issues simultaneously.
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