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ABSTRACT The growing development of IoT (Internet of Things) devices creates a large attack surface for
cybercriminals to conduct potentiallymore destructive cyberattacks; as a result, the security industry has seen
an exponential increase in cyber-attacks.Many of these attacks have effectively accomplished their malicious
goals because intruders conduct cyber-attacks using novel and innovative techniques. An anomaly-based
IDS (Intrusion Detection System) uses machine learning techniques to detect and classify attacks in IoT
networks. In the presence of unpredictable network technologies and various intrusion methods, traditional
machine learning techniques appear inefficient. In many research areas, deep learning methods have shown
their ability to identify anomalies accurately. Convolutional neural networks are an excellent alternative for
anomaly detection and classification due to their ability to automatically categorize main characteristics
in input data and their effectiveness in performing faster computations. In this paper, we design and
develop a novel anomaly-based intrusion detection model for IoT networks. First, a convolutional neural
network model is used to create a multiclass classification model. The proposed model is then implemented
using convolutional neural networks in 1D, 2D, and 3D. The proposed convolutional neural network
model is validated using the BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, and IoT-23 intrusion
detection datasets. Transfer learning is used to implement binary and multiclass classification using a
convolutional neural networkmulticlass pre-trainedmodel. Our proposed binary andmulticlass classification
models have achieved high accuracy, precision, recall, and F1 score compared to existing deep learning
implementations.

INDEX TERMS Internet of Things, anomaly detection, IoT intrusion detection, machine learning, deep
learning, transfer learning, network security, convolutional neural network.

I. INTRODUCTION
Cybersecurity is a crucial part of the information manage-
ment framework of today’s IoT environment. The following
factors contributed to the widespread exposure of IoT
vulnerabilities to cyber-attacks: the large-scale distribution
of IoT devices from every household to every home, smart
power grids, and smart cars, as well as the complexity
of the communication protocols used by IoT users, will
create significant security threats. Although the IoT increases
efficiency and productivity through smart and remote control,
it also increases cyberattack risk. The IoT information
protection architecture is essential in today’s technological
innovations. The number of IoT devices in use has risen
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significantly from 16 billion in 2015 to over 30 billion
in 2020, increasing since homes and companies are steadily
relying on web technology. By 2024, the IoT is projected
to reach 83 billion devices [1]. The increased variety of
IoT systems being produced demonstrates that the IoT
manufacturing industry is progressing toward revolutionizing
IoT architecture. Therefore, the requirements that govern IoT
devices connectivity are complex, needing a shared forum
to promote communication between devices. Industry and
manufacturing use 40.2% of IoT devices; 30.3% of IoT
equipment is used in the medical sector; retail uses 8.3%,
security uses 7.7% of IoT equipment; and transport uses
4.1%, IoT equipment [1].

The growing variety of IoT devices developed for various
applications ensures that the IoTmanufacturer is increasingly
evolving IoT technologies and reducing the time to sell their
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produce. End users have benefited from IoT devices, and
critical facilities have also used them successfully in carrying
out their daily tasks. Besides taking significant measures to
have improved protection features, the IoT makes consumers
potentially susceptible to cyber-attacks on their personal
information. A large number of critical vulnerabilities on IoT
networks are also a threat. Common cyber-attacks involve
DDoS (Distributed Denial of Service), ransomware, and
botnet attacks, which seek to exploit IoT networks and
destroy their computational capabilities. The volume of data
produced by these devices increases exponentially and can
contain confidential information. The IoT-generated data is
expected to reach 73.1 ZB by 2025 [2].

Although IoT applications are favored over traditional
devices and frameworks, such implementations remain sus-
ceptible to a range of attack approaches that take advantage
of both well-known and novel attack routes. Since IoT and
web-based framework infiltration became more accessible in
recent years, attacks such as DoS (Denial of Service), DDoS,
and other remote hacking techniques are more commonly
used to breach their confidentiality. The attacker intended
to overwhelm the target IoT networks with malicious
behavior. Hackers often exploit unpatched, non-patchable,
or unencrypted IoT networks to access valuable data held on
insecure IoT devices.While protection systems are better now
than in the past, some people always try to deceive devices by
breaking into smart locks and garage doors [3].

IoT systems have benefited people in several ways;
however, there are several weaknesses in IoT systems.
Security is the most challenging aspect of IoT networks.
It is hard to prevent IoT threats since there are no agreed-
upon guidelines for developing IoT devices. Different com-
munication protocols can introduce additional complexity
when implementing an IoT framework [4]. The challenges
associated with the wide variety of IoT protocols complicate
delivering a reliable and uniform cybersecurity approach
for IoT networks. Adversaries can attack and compromise
the IoT networks due to many vulnerabilities available in
the IoT protocols. Device disruption, data theft, interruption,
and MiTM (Man-in-The-Middle) are all threats that can
be applied to any of these scenarios [5]. The rise of
malicious threats on critical infrastructure has required
proactive protection technology to enhance the protection
of critical systems. The IDS has gained popularity as
reactive network security. Network intrusion detection aims
to evaluate different network data through various behavioral
analyses of the network to ensure its security is maintained.
Commercial security products are typically mainly focused
on thresholds, signatures, heuristics-driven approaches, or
statistics. These techniques work well for known threats but
fail when attempting to identify new or unknown threats.
In addition, these approaches often necessarily require
domain training and knowledge and continuing updates.
The inability to identify new developing cyber threats and
the need for manual signature database updates restrict the
effectiveness of signature-based detection systems.

The increased use of the Internet has prompted IoT
protection firms to build more sophisticated technologies and
standard security approaches to protect IoT devices from
intruders. There are a wide variety of methods that are
available for network anomaly detection. Machine learning
has been both necessary and effective in the timely identi-
fication of cyber-attacks. While several anomaly-detection
methods are used, fewer attempts were made to implement
CNN (Convolutional Neural Network) for anomaly detection.
Malicious actions in IoT networks must be detected and
stopped immediately; therefore, the function of IDS has
become critical in securing IoT networks by identifying
anomalies. Our proposed IDS use a deep learning-based
model for multiclass and binary class traffic classification.
The proposed system uses a convolutional neural network
architecture in the multiclass classifier to categorize 15 types
of attacks and effectively distinguishing them from regular
network traffic. A model also built using a CNN and focuses
on transfer learning for binary and multiclass class traffic
classification. This article makes the following significant
contributions:
• A novel anomaly detection model for IoT networks
based on a convolutional neural network.

• A transfer learning model for binary and multiclass
classification based on a convolutional neural network.

• A strategy for creating a new dataset from a current
one to detect anomalous behavior in IoT networks.
The processing and generation of features focused
on the flow of raw network traffic. We created four
datasets using this strategy and then combined them
with increasing the number of attack categories. The
proposed datasets may be accessed [6].

• Performance improvements of binary and multiclass
classification models.

The rest of the paper proceeds as follows: Section II
discussed the related work. The proposed model is presented
in Section III. In Section IV, data collection strategies and
datasets used are discussed. The analysis of the evaluation
results are presented in Section V, with discussion and
comparison results in Section VI. Finally, Section VII
concludes the paper and offers ideas for future work.

II. RELATED WORK
The massive rise in data transmission via various IoT
devices and communication protocols has increased security
concerns, emphasizing the need for effective IDS. Deep
learning is a form of artificial intelligence that uses several
neurons to model the learning process. Researchers have
focused their attention on more comprehensive artificial
intelligence methods of anomaly detection, and that is
why deep learning has gained more importance in the
industry. The review of deep learning approaches carried
out by Aldweesh et al. [7] provides a comprehensive
evaluation of intrusions. In the past, several researchers
used KDD99 or NSL-KDD datasets to identify malicious
activities; the survey paper main findings emphasized the
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need for a modern and legitimate dataset to get accurate
output results. Kaur et al. [8] use a CNN model to identify
and describe several attacks. They analyzed their model
via CICIDS2017 and CICIDS2018 datasets. Their model
provides multiclass attack classification, but the detection
rate for many attacks was not satisfactory.

Ferrag et al. [9] conduct a deep learning survey for
data security intrusion detection. The authors compare
seven deep learning models using 35 well-known datasets
and classify them into seven separate categories. They
conducted binary and multiclass classification and checked
their strategies on BoT-IoT and CIC-IDS2018 datasets. The
authors investigated several attack methods to evaluate the
effectiveness across different deep learning models. These
models were evaluated using their false alarm rates, accuracy,
and detection rates. TheCNNmodel ismore effective than the
FFN (FeedForward Neural Network) and RNN (Recurrent
Neural Network) models. The convolutional neural networks
have proven successful in several applications, including
target tracking, image processing, and surveillance systems.
A convolutional neural network extracts features from labeled
files to perform classification. Due to the computational
and memory requirements of these multilabel convolutional
neural network models, deployment on edge devices is
complicated. Odetola et al. [10] develop a multilabel
classification method using a convolution neural network on
edge IoT devices. The framework uses a single convolutional
neural network with many predefined layers and configurable
loss functions. Their model achieved less latency and
MACC (multiply and accumulate) operations. They suggest
a multilabel identification technique that enhances the
capabilities of a model prepared for traditional classification
to performmultilabel classification. Their approach is perfect
for extracting different features from a single image. Their
technique enables multilabel classification at a low cost and
with a substantial degree of precision.

Ge et al. [11] propose a novel scheme for connected IoT
networks based on deep learning principles. They used the
FFN model for binary and multiclass classification. Their
model produced accurate binary classification results but
failed to produce precise multiclass classification results.
Pecori et al. [12] developed IoT benign and malicious net-
work traces by combining separate datasets. The integrated
dataset consists of four attack categories and a normal
category. They used seven hidden layers and 50 epochs
to achieve the best performance; however, accuracy, recall,
and F1 score are not satisfactory for binary and multiclass
classification. Their model is inapplicable due to the complex
structure of neural networks and the inadequate detection
rate.

Idrissi et al. [13] conducted a study to identify IoT vul-
nerabilities and security threats. Their paper uses real-world
threats and vulnerabilities to identify several types of IoT
threats and vulnerabilities. They also discuss recent research
in IoT security, focusing on intrusion detection techniques
based on neural network strategies. Tian et al. [14] proposed a

distributed approach for identifying network threats through
URLs using deep learning algorithms. Their system was
designed to protect multiple web applications in the EoT
(Edge of Things) distributed environment. Their framework
can be practically effective because of its automated function
collection, ease of upgrading, and reliability in defending
against attacks on distributed deep models. Hassan et al. [15]
suggest a hybrid deep learning algorithm that uses a
CNN and a WDLSTM (Weight-Dropped Long Short-Term
Memory ) model to identify intrusions in a large data
context. CNN is used to discover the best features, and the
WDLSTM technique is used to help a neural network resist
overfitting. Using the UNSW-NB15 dataset, the model had
a binary classification accuracy of 97.1% and a multiclass
classification accuracy of 98.4%. The entire computational
environment has evolved as a result of significant advances
in information and communication technology.

Priya et al. [16] suggested a DNN (Deep Neural Network)
to recognize and forecast unexpected cyberattacks in IoMT
(Internet of Medical Things) networks to establish reliable
and productive IDS. The proposed DNN framework achieved
improved accuracy and a 32% reduction in computation time,
allowing quicker detection to prevent post-intrusion effects
in critical cloud computing. The development of networks
has always been associated with advancing information
technology, but now, the Internet economy is growing rapidly
with IoT. Li et al. [17] propose a deep migration learning
model architecture for IoT feature selection and anomaly
detection in smart cities that incorporate deep learning and
intrusion detection technologies. Their paper provides a
migration learning model analysis scheme as well as system
feature selection. The proposed algorithm has a fast detection
time, but the detection rate is insufficient for some attacks.

Governments worldwide are encouraging smart city
applications to increase the standard of everyday liv-
ing in metropolitan environments. The growing rise of
Internet-enabled devices is triggering an increase in botnet
attacks centered on the IoT. Sriram et al. [18] propose a
network traffic flow-based deep learning botnet identifica-
tion technique. In certain situations, the efficiency of IoT
applications relies on the consistency and credibility of the
information. Yin et al. [19] developed an integrated deep
learning model for anomaly detection in IoT networks. They
used LSTM autoencoder and CNN to identify the anomalies.
They use a two-stage window-based data preprocessing
to achieve improved learning predictions. Their suggested
approach was restricted to binary classification and achieved
better accuracy, precision, recall, and F1-score.

Privacy and confidentiality are seen as critical concerns
when it comes to the IoT. Intruders may carry out various
attacks, resulting in issues with the privacy and security of
IoT devices.Manimurugan et al. [20] suggested aDBN (Deep
Belief Network) model for anomaly identification in smart
medical environments. Their model provided better outcomes
for the normal class, but the anomaly class outcome was
not satisfactory. Wang et al. [21] build a deep hierarchical
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TABLE 1. Overview of related work.

network for packet-level analysis of malicious traffic capable
of understanding traffic characteristics from raw packet
data. They extracted spatial features from the raw packet
using a CNN and temporal features using GRU (Gated
Recurrent Units). Their model had a high detection rate
for specific attack categories but a low detection rate for
others. Table 1 presents a summary of the intrusion detection
models using deep learning techniques. The table shows that

many research papers only focused on accuracy performance
measures and binary classification to evaluate the deep
learning intrusion detection model. The detection rate for
some articles is not satisfactory. Several academic papers
evaluated intrusion detection techniques using an old KDD
intrusion detection dataset. Many latest cyber-attacks are not
considered in the KDD99 dataset, and the KDD99 dataset
was not developed considering the IoT network. In Table 1,
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DR represents detection rate, Acc means accuracy, and a
single dash ‘-’ in by itself (in any of the tables throughout the
paper) indicates not applicable or information is not available.

III. PROPOSED MODEL
A. MODEL DESIGN
The convolutional neural networks have recently produced
excellent responses in voice recognition and image recogni-
tion. This paper proposes a model focused on convolutional
neural networks due to its superior image analysis capability.
The results produced by convolutional neural networks
are attractive in these fields. Furthermore, by transforming
intrusion detection issues into image recognition problems,
convolutional neural network benefits may be more fully
utilized. A convolutional neural network allocates weights
and biases to different image elements and distinguishes one
from the other.

In this paper, we design and develop 1D, 2D, 3D
convolutional neural networks for anomaly detection in IoT
networks. A general structure of the proposed model is
presented in Fig. 1. The model consists of an input layer,
four blocks of convolution layers, flatten layer, a fully
connected layer, and an output layer. Each block consists
of a convolutional layer, normalization layer, pooling layer,
and dropout layer. The input layer receives inputs from the
reshaping system. The reshaping system transforms network
data into a format compatible with CNN1D, CNN2D, and
CNN3D models. The blocks of convolution layers are the
primary components of a convolutional neural network. The
pooling layer was omitted from the CNN2D model fourth
block and excluded from the CNN3D model third and fourth
blocks. The reason for eliminating the pooling layer from
these models is because additional downsampling of the input
data is not possible. The convolution layer extract features
from the input image and learns image attributes from tiny
squares of input data, preserving the association between
pixels. The layer normalization aims to normalize all the
inputs to a neural network layer. The layer normalization
layer standardizes the output of the convolution layer for
the average pooling layer. The pooling layer lets to improve
features by summarizing features in sub-maps with robust
features. The average pooling layer determines the overall
number of features in each patch by computing the total
number of updates throughout the whole function map.

A neural network that uses convolution has a possibly over-
fitting issue and will have to undergo extensive fine-tuning
of the test dataset parameters. A dropout layer reduces
the chance of overfitting by ignoring some neurons during
the training phase. When adjacent frames are interrelated
strongly with feature maps, a regular dropdown does not
regularize the activations. We used a spatial dropout layer
that drops the entire feature maps instead of individual units.
The tensor is reshaped to create a flat operation on a tensor
with the number of elements in the tensor, excluding the
batch size, equal to the number of elements in the tensor.
The flattening layer is fully connected to a dense layer.

A total of 512 neurons were used in the dense layer. The
last layer of the model is the output layer, and the number
of neurons in the output layer equals the number of classes.
To further demonstrate the effectiveness of the CNN model
in detecting an anomaly in IoT networks, we implement the
same structure across the CNN1D, CNN2D, and CNN3D
models. Six IoT intrusion detection datasets were used to
train, validate, and test CNN1D, CNN2D, and CNN3D
models.

FIGURE 1. Layers view of proposed model.

B. CONVOLUTION1D MODEL DESIGN
Convolution is calculated in 1D using time access and
the kernel moves in one direction. The input and output
data for CNN1D are two-dimensional, and it is most often
used for time series data. First, an input vector 64 × 1
is generated to fit the 64 best features chosen by the
feature selection algorithm. After the input layer, four
convolution layer blocks were added to the model. The
four-convolution layer blocks are considered a method of
feature learning. The convolution layers extract features from
the input image and find image properties from small data
samples within the input, retaining the vector relationship.
The proposed CNN1D model layer’s view is presented
in Fig. 2.

Convolution first layer use relu activation, 32 filters, kernel
size 5, and the same padding parameter. The layer normaliza-
tion adjusts the preceding layer activation separately for each
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given sample in a batch. The output of the first convolution
layer and layer normalization is (64, 32). The average pooling
layer offers a solution to downsample feature maps by
summarizing features in a feature map segment. The average
pooling layer output (32, 32). We used a spatial dropout layer
to regularize the training data model and reduce overfitting
with a drop value of 0.05. Each of the four convolution
layers uses identical parameters except the filters, which are
doubled in each subsequent layer. The classification part
consists of fully connected flatten and dense layers. The
flatten layer is applied to the model transforming the tensor
into a shape equivalent to tensor elements. There is no batch
size parameter for the flatten layer. The flatten layer is
connected to a fully connected dense layer, and the dense
layer is connected to the output layer. The dense layer has
512 neurons, whereas the output layer has a class number
dependent number of neurons.

C. CONVOLUTION2D MODEL DESIGN
The CNN2D is a three-dimensional neural network that is
most often used to process image data. Kernel moves in two
directions in a CNN2D model. First, an 8× 8 input image is
created to match the 64 features of the CNN2D model. The
CNN2D model consists of an input layer, four convolution
layer blocks, fully connected layers, and an output layer. The
CNN2D first convolutional layer uses a relu activation, with
a (5, 5) kernel, 32 filters, and same padding parameter. The
proposed CNN2D model layer view is presented in Fig. 3.
The output of the first convolution layer and normalization
layer is (8, 8, 32). By summing the locations of features
in segments, the average pooling layer offers a method for
generating sample characteristic maps. The average pooling
layer output (4, 4, 32). A spatial dropout layer is added at
the end of the first convolution layer to minimize the model
overfitting and regularize the training data output. A dropout
value of 0.05 was used for the dropout layer. The same
parameter values are used throughout all four convolution
layers, with the exception of the filters, which are doubled in
each successive layer. The average pooling layer was not used
in the fourth convolution layer block because the input vector
shapes were reduced to (1, 1, 128) in the third convolution
layer block. To construct a feature vector, we flatten the
output of the convolutional layer. The flatten layer is linked
to the fully connected dense layer, and the dense layer is
attached to the output layer. The number of neurons in the
output layer is calculated by the number of classes in the
dataset.

D. CONVOLUTION3D MODEL DESIGN
The CNN3D is a four-dimensional neural network that is
commonly used to process three-dimensional image data. The
kernel moves in three directions in CNN3D. First, an input
image with the dimensions 4 × 4 × 4 is generated to match
the 64 features of the CNN3D model. The CNN3D layer
view of the proposed model is shown in Fig. 4. In addition
to the input layer, the CNN3D model has four convolutions

layers blocks, flatten layer, a dense layer, and an output
layer. Relu activation, 32 filters, kernel size (5, 5, 5), and
the same padding were used in the CNN3D first layer. Layer
normalization and average pooling layer are used next to the
convolution layer. The output of the average pooling layer
(2, 2, 2, 32). A spatial dropout layer is created at the end of the
first convolution layer block to prevent overfitting the model
and regularize the performance. The average pooling layer is
used only in the first two convolution layer blocks because,
in the second convolution layer, the pooling layer reduces the
vector dimension to (1, 1, 1, 64). The layer normalization and
spatial dropout were used along with all convolution layer
blocks. The flatten layer was added to reshape the number
of elements of the tensor. The flatten layer is connected to
the dense layer, and the dense layer connects to the output
layer. The dense layer has 512 neurons, while the output layer
contains an undetermined number of neurons based on the
class number.

E. TRANSFER LEARNING
Transfer learning is a kind of machine learning technique
in which a model produced for one activity is utilized as
the starting point for a model on a different task. Transfer
learning principle is used to deploy a pre-train multiclass
CNN model for the multiclass and binary models. In the
first phase, we used IoT-DS-2 pre-trained multiclass classi-
fication CNN1D, CNN2D, CNN3D models for the binary
classification of the IoT-DS-2 dataset via the transfer learning
principle. In the next phase, we used the same pre-trained
learning model for multiclass classification of BoT-IoT, IoT
Network Intrusion, MQTT-IoT-IDS2020, IoT-23, and IoT-
DS-1 datasets. Because the BoT-IoT, IoT Network Intrusion,
MQTT-IoT-IDS2020, IoT-23, and IoT-DS-1 datasets are
subsets of the IoT-DS-2 dataset, the transfer learning concept
was used in the multiclass classification model for these
datasets. Transfer learning from a multiclass CNNmodel to a
binary class CNNmodel is effective because the binary CNN
model is trained using a subset of data used by the multiclass
classification model. Using the multiclass CNN model for
binary CNN model, the input, convolution layers, and fully
connected layers are adopted from the already IoT-DS-2
dataset trained model.

The output layer was removed from the pre-trained
multiclass CNN model. A new output layer was added to the
model with two neurons and a softmax activation function
for binary classification. The new model is trained using a
binary class dataset. All current model layers were disabled
during training except the dense and output layers used in the
binary dataset training process. A binary classification model
based on transfer learning is presented in Fig. 5. The binary
classification model uses a pre-train multiclass classification
model. The input layer has the same number of features.
The convolution layers, normalization layers, pooling layers,
dropout layers, and flatten layer were frozen while the binary
classification model was being trained. During the training
phase, only the dense and output layers were allowed to learn.
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FIGURE 2. Convolution1D layers view of proposed model.

FIGURE 3. Convolution2D layers view of proposed model.

FIGURE 4. Convolution3D layers view of proposed model.

The binary classification model uses an IoT-DS-2 dataset
pre-trained model consisting of all attack classes from BoT-

IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23,
and IoT-DS-1 datasets. The binary CNN model has a relu
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FIGURE 5. Layers view of proposed binary model using transfer learning.

activation function and 256 neurons at the dense layer. The
output layer uses two neurons and a softmax activation
function. The same hyperparameters are used for CNN1D,
CNN2D, and CNN3D for binary classification. Next, the
transfer learning methodology was applied to multiclass
classification using the BoT-IoT, IoT Network Intrusion,
MQTT-IoT-IDS2020, IoT-23, and IoT-DS-1 datasets. The
multiclass model uses the IoT-DS-2 dataset pre-trainedmodel
to detect and classify anomalies in these datasets.

F. MODEL TUNING
Most deep learning networks require many training itera-
tions to reach the convergence stage, but iterations may be
reduced by choosing a precise parameters configuration that
enables more convolution in the training process, creating
and guiding the network structure. In addition, regular-
ization is also beneficial in avoiding overfitting. We used
three regularization methods and various hyperparameters
to tune the multiclass and binary class models. We used
the same hyperparameters and monitoring optimization for
the multiclass and binary CNN models to implement the
model generalization for different classification problems.
As the baseline construct, we used a multiclass CNN model
consisting of four blocks of convolution layers, a flatten layer,
a dense layer with 512 neurons, and the number of classes in
the dataset represented by the neurons in the output layer. We
initialize the CNN model layers with random values to help
it learn the features over time.

We used three different methods for regularization: L1,
L2, and dropout. The kernel, bias, and activity regularizers
are used on the L1 and L2 data preparation levels. L1 is
additionally randomized, and L2 is integrated with L1.
Dropout, L1, and L2 produce a more generalized model.
Convolutional neural networks with three architectures were
investigated. We specifically increased/decreased the number
of convolutional layer blocks, increasing/reducing filters and
kernel size. We also used different dropout rates at the
convolutional layer blocks and dense layers. The findings
indicate that the reference convolutional neural network
model performs better. We choose adam optimizer and apply
a sparse categorically cross-entropy loss function to adjust the
optimizer weights. In deep learning algorithms, the learning
rate is essential since it specifies the size of the steps taken
by a model during each iteration. We performed a series
of tests, varying the learning rate for adam optimizer (0.01,
0.001, 0.0001, 0.00001), and 0.0001 was chosen as the best
learning rate with maximum detection rate. As the network
learns, the loss function becomes inversely proportional to its
output, and the error trend decreases as accuracy increases.
Finally, to prevent overfitting, we implemented an early
stopping strategy. When the validation loss does not reduce
over a set number of iterations, the training process will stop.
The number of epochs must be adjusted to guarantee the
highest potential network output during the testing period,
to the point that the network accuracy vs. epochs no longer
increases.We used 50, 100, 200, and 500 epochs in each CNN
model. Since all CNN models converge within 100 epochs,
we consider 100 epochs to be the optimum number of
epochs.

The activation function of a deep learning algorithm is
important. The relu activation function is used in convolution
layers, as well as in the dense layer. Softmax activation
is used in the output layer. The batch size is also a
key hyperparameter to adjust in deep learning systems.
By increasing the batch size, we can improve the degree to
which computations are parallelized, and we can distribute
the training examples across several worker nodes. As a
result, model training may be significantly accelerated.
However, larger batch sizes have seemed to generalize poorly
for testing results despite producing comparable training
losses to smaller batch sizes [63]. The generalization gap
refers to the difference between train and test error. We ran a
set of experiments of different batch sizes to see what would
work best (16, 32, 64, 128, 256, 512). A batch size of 64 to
128was considered the optimal choice for training and testing
the CNN model.

IV. DATA COLLECTION
A. DATASETS
The initial phase involves the processing of raw network
traffic. This process extracts network functionality from pcap
files from datasets. In this study, we used four publicly
available IoT datasets.We used CICFlowmeter [64] to extract
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the features from pcap files and export them in a CSV
format. The CICFlowmeter is an open-source flow generation
platform that generates network features from pcap data. TCP
flows are typically terminated by link teardown, while UDP
flows are terminated by a flow timeout. Our suggested IoT
datasets provide general network features and flow-based
network features. Each dataset contains 80 distinct network
features.

1) BoT-IoT DATASET
Koroniotis et al. [65] created the BoT-IoT dataset. The
BoT-IoT dataset testbed includes VMs linked to the network
both over a LAN and the Internet. The PFSense system
connects the VMs to the Internet. The Ubuntu server provides
IoT resources to emulate a real IoT network, while Kali
Linux is used as an attack system. The ostinato tool is used
to generate normal network traffic. A realistic smart home
framework was generated using five IoT devices that were
run locally and linked to the cloud services through the
node-red system for developing network traffic. The MQTT
protocol is used to transmit IoT messages into the Cloud.
The taxonomy of attacks in the BoT-IoT dataset is shown
in Fig. 6. There are four attack categories which are further
divided into ten subcategories. A comprehensive explanation
of the testbed configuration and attacks is available in the
referenced article [65]. Our adapted BoT-IoT dataset may be
accessed [6].

FIGURE 6. BoT-IoT dataset attack taxonomy.

2) IoT INTRUSION DETECTION DATASET
Kang et al. [66] developed the IoT Network Intrusion
detection dataset. A standard smart home system consisting
of a smart home SKT NGU and EZVIZ Wi-Fi camera was
used to produce an IoT Network Intrusion d12ataset. These
two IoT devices are used victim devices and are wired to a
smart home Wi-Fi router. Laptops, tablets, and smartphones
are also linked to the smart home router. These devices
were used as attacking devices in the testbed. Fig. 7 shows
the taxonomy of attacks in the IoT Network Intrusion
dataset.

There are four attack categories which are further divided
into eight subcategories. Binary, category, or subcategory
can be used for as label features. Our adapted IoT intru-
sion detection dataset is available for download on the
website [6].

FIGURE 7. IoT network intrusion dataset attack taxonomy.

3) MQTT-IoT-IDS2020 DATASET
Hindy et al. [67] develop the MQTT-IoT-IDS2020 dataset.
This dataset comprises both common attacks and brute force
attacks from the MQTT networking framework. Twelve
MQTT sensors, a broker, a system to replicate a camera
feed, and an intruder make up the network. The twelve
sensors automatically publish random messages during regu-
lar service. The dataset includes the most common MQTT
attacks and scenarios for testing real-world devices. There
are four attack categories in the MQTT-IoT-IDS2020 dataset.
Fig. 8 shows the attack categorization in the MQTT-IoT-
IDS2020 dataset. Our adapted MQTT-IoT-IDS2020 dataset
is available [6].

FIGURE 8. MQTT-IoT-IDS2020 dataset attack taxonomy.

4) IoT-23 DATASET
The IoT-23 dataset was developed by Stratosphere Lab-
oratory CTU University, Czech Republic [68]. There are
20 malicious-related events and three non-malicious-related
events for IoT devices. The objective of the IoT-23 dataset
is to give researchers a massive, labeled dataset of real IoT
and IoTmalware infections to buildmachine learningmodels.
Attacks in the IoT-23 dataset are classified into nine types,
as shown in Fig. 9.

The IoT-23 dataset includes twenty different network
activities to simulate multiple use cases for IoT devices.
The benign network traffic was collected by gathering the
network traffic of three separate IoT devices. These three
devices are real hardware devices, not simulated. Malicious
and normal situations operate with unrestricted Internet
connectivity in a managed network setting, like every other
actual IoT network system. This dataset aims to provide
the community with different datasets: the first category
contains normal and malicious networks, while the other
includes only benign IoT network capture. The primary
advantage of the IoT intrusion detection dataset is that it
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FIGURE 9. IoT-23 dataset attack taxonomy.

accurately mimics a recent trend in IoT network traffic;
it is also one of the few publicly accessible IoT intrusion
detection datasets. Our adapted IoT-23 dataset may be
accessed [6].

B. FEATURE PROCESSING
A flow has the same source IP, destination IP, source port,
destination port, and protocol. After extracting the features,
the next step is to label each dataset instance according to
a predefined condition. Each dataset we used in this paper
has its own set of rules for labeling dataset instances as
normal or malicious. CICFlowmeter extracts 80 network
features from pcap files. The network features flow ID, source
IP, destination IP, source port, and timestamp were deleted
from all adapted datasets. These network features describe
communication in a specific IoT network; however, our pro-
posed model applies to all IoT networks. Second, the dataset
non-numeric category features are coveted to a numeric field.
We used 0 to fill NaN values in all datasets. After converting
the pcap files to CSV files, duplicate instances were intro-
duced. Finally, redundant instances were removed from all
datasets.

The BoT-IoT dataset instances presented in Table 2,
the IoT Network Intrusion Detection dataset instances are
shown in Table 3, MQTT-IoT dataset instances presented
in Table 4, and IoT-23 dataset instances presented in Table 5.
After removing redundant instances, we can assess the
model output during the testing process using previously
unseen data. We normalized input feature columns within
a defined range (−1, 1) to remove extreme high values and
effectively speed up calculations. The binary label column is
encoded as 0 for normal and 1 for attack network instances.
BoT-IoT dataset multiclass were labeled from 0 to 3 for
normal, DoS/DDoS, Scan, and Data theft. The IoT Network
Intrusion detection dataset multiclass were labeled from 0 to
4 for normal, DoS, MITM ARP Spoofing, Mirai, and Scan.
MQTT-IoT dataset multiclass were labeled from 0 to 4 for
normal, MQTT Bruteforce, Scane_A, Scan UDP, and Sparta.
The IoT-23 dataset multiclass was labeled from 0 to 9 for
normal, attack, Mirai, file download, heartbeat, C&C, Torii,
port scan, DDoS, Okiru.

C. PREPROCESSING DATASET
We present four adapted datasets in Table 2 to 5. We devel-
oped these datasets using the same software to ensure
precise regularity in all datasets. First, we combined BoT-IoT,
IoT Network Intrusion, and MQTT-IoT-IDS2020 datasets
to increase the number of attacks in the dataset. The new
dataset consists of 9 attack classes and a normal class.
The new dataset, named IoT-DS-1, is described in Table 6.
The IoT-DS-1 dataset multiclass was labeled 0 for normal
and 1 to 9 for attack categories. The first reason for the
generation of IoT-DS-1 is to increase the number of attacks.
The second reason is to evaluate our model with two different
datasets having the same number of attack categories. Next,
we combined BoT-IoT, IoT Network Intrusion, MQTT-IoT-
IDS2020, and IoT-23 datasets further to increase the number
of attacks in the dataset. Table 7 shows the new dataset named
IoT-DS-2, which contains 15 attack classes and a normal
class. The IoT-DS-2 dataset multiclass was labeled 0 for
normal and 1-15 for attack categories. Due to the imbalance
in the training set, we adjusted the class weights to give the
classifiers distinct sensitivity to each class. To simplify the
class weights calculation, we divided the number of instances
in each class using all class quotients to determine the weight.
As a result, the under-represented class with fewer samples
would have a higher weight score.

The preprocessed data is divided into three sets for
classification purposes: training, validation, and testing. The
training phase input selected features from the training set and
fed them into a neural network model. The testing procedure
is used to evaluate the classifier performance against a given
test set. We investigated binary and multiclass classification
methods. A binary classification model generates either a
normal or an attack category for each instance, while a
multiclass classification model produces either a normal or
an attack category. We used the TensorFlow library and Keras
implementations. All our experiments were conducted with
Google Colab Pro on a Tesla V100-SXM2 with 27.4 GB
RAM. The Pareto Theory, also known as the 80/20 rule,
is used to partition the dataset. The dataset is first divided
into 80% for training and 20% for testing in a stratified way.
The stratified methodology ensures an equivalent number of
samples from each division of training, validation, and testing
sets. The training set is then divided into 80% for training and
20% for validation in a stratified way. The total number of
instances and class numbers present in each dataset as shown
in Table 8. All three convolution neural network models were
evaluated using these six datasets described in Table 8.

D. FEATURE SELECTION
The selection of features is an important step in the
development of a deep learning model. Model improvement
techniques known as feature selection include identifying
and then only choosing certain features that are needed to
enhance prediction. The feature selection strategy minimizes
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TABLE 2. BoT-IoT dataset instances.

TABLE 3. IoT network intrusion dataset instances.

TABLE 4. MQTT-IoT-IDS2020 dataset instances.

TABLE 5. IoT-23 dataset instances.

overfitting, speeds up model training, and allows the model
less prone to test errors.We used a feature selection technique
called RFE (Recursive Feature Elimination) in this paper

to extract relevant features from our proposed datasets.
Accuracy, precision, recall, and F1 score are used to rank
features. A random forest algorithm was used to estimate
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TABLE 6. IoT-DS-1 dataset classes.

TABLE 7. IoT-DS-2 dataset classes.

TABLE 8. Dataset instances and number of classes.

the overall importance of features. To validate the subset of
selected features and the RFE model overfitting, we used
a 5- and 10-fold cross-validation test. We use the RFE
algorithm to extract 64 features from the IoT-DS-2 dataset.
Our suggested feature selection technique utilizes the feature
significance, and coefficient attributes to determine the
relevance of each feature and then eliminates the least

important item from the current collection of features.
IoT-DS-2 was chosen as the feature selection dataset
because it contains malicious data from all the other
datasets. We used the same set of 64 features in CNN1D,
CNN2D, and CNN3D for BoT-IoT, IoT Network Intru-
sion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-DS-2
datasets.
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V. EVALUATION RESULTS
A. ANALYSIS OF RESULTS
The multiclass and binary CNN models are validated using
the accuracy, precision, recall, and F1 score. Accuracy is
expressed as the proportion of accurately identified samples
to the total number of samples. Precision is measured
by the ratio of appropriately classified items to the total
TP (True Positive) and FP (False Positive). The recall
value is determined by calculating the overall amount of
TP measurements by the total number of TP and FN
(False Negative). Finally, the F1 score is computed as
the weighted average of precision and recall. Additionally,
we also calculate TPR, TNR, FPR, and FNR. Where TPR
(True Positive Rate) refers to the number of abnormal
items that test positive, the TNR (True Negative Rate)
is the number of normal samples that are found to be
negative, the number of normal samples that test positive
is known as the FPR (False Positive Rate), and FNR (False
Negative Rate) is the number of abnormal samples that test
negative.

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(1)

Precision =
TP

(TP+ FP)
(2)

Recall =
TP

(TP+ FN )
(3)

F1 score = 2×
(Precision× Recall)
(Precision+ Recall)

(4)

The CNN model accuracy and loss were measured for
both the training and validation sets at each epoch value.
It allows us to assess if the model has been sufficiently
learned to differentiate between various anomalies and how
many data points in the validation set have been correctly
identified. The loss function is perhaps the most important
aspect of neural networks. The gradients are calculated
using the loss function, and the gradient is used to update
the neural network biases, increasing or decreasing the
neural network weights. TensorFlow has a variety of loss
functions that can be used to accomplish a variety of tasks.
In this paper, we used adam optimizer and applied a sparse

categorically cross-entropy loss function. Fig. 10 shows
the loss of the CNN model during training and validation.
The logarithmic loss function measures the total deviation
for each test within the training set. The average loss
for training 0.05, while the testing loss measured 0.0007.
When the validation loss does not reduce for a certain
number of iterations, the early stopping technique will end
the training process to reduce the over-fitting problem.
We trained the CNN model using a 100 epoch, a batch
size of 128, and patience of 5 iterations. The loss function
and accuracy plot are inversely related, as seen in Fig. 10.
The average accuracy was 99.20 for training, 99.30 for
validation, and 99.90 for testing using the BoT-IoT dataset.
The accuracy did not improve with 200 and 500 epochs and
10 iterations of patience. Consequently, operating a model
over a large number of epochs results in overfitting the
training data.

B. MULTICLASS CLASSIFICATION
The multiclass classification was used to categorize the
dataset as normal network traffic or any attack described
in Tables 2 to 7. Fig. 10 presents the multiclass classification
model efficiency during training and validation in terms of
loss and accuracy. It is found on the function curves; the
accuracy and loss values have inverse functions. Overfitting
is reduced due to the early stopping strategywith patience of 5
iterations. The training and validation processes take less than
100 epochs to complete. The loss of training and validation
dropped slowly up to 100 epochs. This evidence con-
firms that these models would correctly categorize various
cyber-attacks present in the datasets or real IoT networks. The
effectiveness of the multiclass CNN model is then accom-
plished utilizing BoT-IoT, IoT Network Intrusion, MQTT-
IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-DS-2 datasets. The
BoT-IoT dataset consists of three attack categories and a
normal category. The performance of CNN models using the
BoT-IoT dataset is presented in Table 9 (a). All CNN models
produce high accuracy over four classes. The detection rate
for Normal, DoS, Scan, and Theft was 99.90%, 99.96%,
99.91%, and 98.10%. Overall, FNR was 0.67%, and FPR
was 0.05%.

FIGURE 10. Performance of multiclass CNN models in training and validation.
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TABLE 9. Multiclass classification BoT-IoT, IoT network intrusion, and MQTT-IoT-IDS2020 datasets.

The IoT Network Intrusion dataset consists of five classes.
The CNN model performance for the IoT Network Intrusion
dataset is presented in Table 9 (b). The detection rate for
the Normal class is 99.63%, while the detection rate for
the DoS class is 99.94%. The detection rates for Mirai,
MITM, and Scan were 97.85%, 88.23%, and 93.30%. The
detection rate for Mirai, MITM, and Scan classes was not
high as Normal and DoS classes. There are five classes
in the MQTT-IoT-IDS2020 dataset. Table 9 (c) shows that
the MQTT-IoT-IDS2020 dataset achieved a high detection
rate for the Normal class and all malicious classes. Normal,
Scan, and Sparta classes correctly detected. The only
misclassification occurred in the MQTT brute force attack
class, resulting in an FNR of 1.48%. The CNN model
capacity to classify larger multiclass datasets was evaluated
by merging the BoT-IoT, IoT Network Intrusion, and MQTT-
IoT-IDS2020 datasets.

The new IoT-DS-1 consists of 9 attack classes and a normal
class. The findings of CNN models on the IoT-DS-1 dataset
are summarized in Table 10. All CNN models obtained a
high detection score for Normal, DDoS, DoS, MQTT_BF,
OS Scan, Sparta, and Theft classes. On the other hand,
malicious classes MITM, Mirai, and Port scan belong to the
IoT Network Intrusion dataset with a high misclassification
ratio. Next, we illustrate the CNN model efficiency using
the IoT-23 dataset, which comprises a normal class and
nine malicious classes. Normal, Attack, Mirai, C&C, Torii,
Portscan, DDoS, and Okiru had a detection rate greater than
99.70%. While the detection rate for FileDownload 98.29%

and the detection rate for Heartbeat 97.60%. In comparison
to IoT-DS-1, the proposed model performs better on the IoT-
23 dataset. The findings of CNNmodels on the IoT-23 dataset
are shown in Table 11.

Finally, the CNN model capability for larger multiclass
classification was evaluated. In Table 12, we present the
results of CNN models using the IoT-DS-2 dataset. The
proposed IoT-DS-2 dataset consists of a normal class and
15 attack classes. The Normal class has a detection score of
99.98%. DDoS, Okiru, Portscan, Torii achieved a detection
rate of ∼100%. The detection rate for DoS, Mirai, MQTT-
BF, Sparta, Theft, Attack, and OS scan measured greater or
equal to 99.60%. The lowest detection rate was measured
for MITM. A summary of the multiclass classification TPR,
TNR, FPR, and FNR is presented in Table 13.

Next, we used transfer learning formulticlass classification
for BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020,
IoT-23, and IoT-DS-1. This was performed using a pre-train
model using the IoT-DS-2 dataset for the CNN1D, CNN2D,
and CNN3D models. We chose a batch size of 128 across
all datasets for regular multiclass classification; however, this
batch size does not perform well for transfer learning multi-
class classification models. Several experiments were carried
out to determine the most appropriate batch size to use. Batch
sizes of 32 and 64 work well for transfer learning models.
Table 14 summarizes the average accuracy, precision, recall,
and F1 score for regular multiclass classification, whereas
Table 15 summarizes the average accuracy, precision, recall,
and F1 score for transfer learning multiclass classification.
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TABLE 10. Multiclass classification IoT-DS-1 (BoT-IoT, IoT network intrusion and MQTT-IoT-IDS2020 datasets).

TABLE 11. Multiclass classification IoT-23.

TABLE 12. Multiclass classification IoT-DS-2 (BoT-IoT, IoT network intrusion and MQTT-IoT-IDS2020, IoT-23 datasets).
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TABLE 13. Average multiclass classification TPR, TNR, FPR, FNR.

TABLE 14. Average multiclass classification accuracy, precision, recall, and F1 score.

TABLE 15. Average multiclass classification accuracy, precision, recall, and F1 score using transfer learning.

The CNN1D and CNN2D models perform better than
CNN3D. These models achieved approximately the same
detection rate as normal multiclass classification models. The
CNN3D model has a relatively high error rate throughout
training, validation, and testing. The CNN3Dmodel detection
rate is insufficient since it has very high FPR and FNR rates.
In addition, it has a lower detection rate for the normal
class compared to other malicious classes. We conclude
from our study that CNN1D and CNN2D are more effective
at detecting anomalies in multiclass classification. These
models are also better at detecting anomalies in transfer
learning multiclass classification. This research shows that
the proposed model will help create an effective network
intrusion detection system with a high detection rate for IoT
networks.

C. BINARY CLASS CLASSIFICATION
The proposed binary CNNmodel classification accuracy, pre-
cision, recall, and F1 score were assessed using the BoT-IoT,
IoT Network Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-

DS-1, and IoT-DS-2 datasets. The same set of features were
used for binary CNN1D, CNN2D, and CNN3D models.
The binary classification assigns the dataset instance to
one category: normal network traffic or malicious network
traffic. We evaluate and conduct experiments on each dataset
mentioned in Table 8. Fig. 11 shows the accuracy, precision,
recall, and F1 score for binary classification using CNN1D
and IoT-DS-2 dataset. The minimum detection rate for binary
classification was 99.79% for the Theft class. The evaluation
metrics for binary classification (Min, Max, Std Dev, Avg)
for BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020,
IoT-23, IoT-DS-1, and IoT-DS-2 datasets using CNN1D are
presented in Table 16.

The binary classification was performed using a transfer
learning approach. The binary CNN model took less time
to train and validate compared to multiclass classification.
The use of a pre-train model further reduces the training
time for binary classification. Early stopping and dynamic
learning rates monitor the number of training epochs
and increase adam optimization process efficiency during
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FIGURE 11. Binary classification performance metrics CNN1D model for IoT-DS-2 using transfer learning.

training. The IoT-DS-2 pre-trained model was used for binary
classification of BoT-IoT, IoT Network Intrusion, MQTT-
IoT-IDS2020, IoT-23, and IoT-DS-1 datasets. The IoT-DS-2
pre-train model was chosen because it contains all the
attacks and normal network traffic from the BoT-IoT, IoT
Network Intrusion, MQTT-IoT-IDS2020, IoT-23, and IoT-
DS-1 datasets. The Binary CNN model has high accuracy,
precision, recall, and F1 score with a small number of
incorrectly classified instances. Attackers may use various
options of the same or other resources to configure the
attack.

Additionally, several sophisticated attackers can employ
evasion mechanisms. However, identical header fields inside
the packets may be used to accomplish the same attack
objective. Consequently, the dataset network traffic indicates
authentic hacker activities, illustrating the proposed model
generalizability [61]. In terms of runtime, the CNN model
took between 10 and 20 minutes to complete each binary
classification’s training, validation, and testing process.

VI. DISCUSSION AND COMPARISON RESULTS
In this section, the results of CNN models are compared to
previous results from other research studies. Our proposed
models were significantly more effective at identifying
anomalies in IoT networks. The research mentioned in this

article investigated the possibility of utilizing a convolutional
neural network to solve anomaly detection in IoT networks.
We investigated various convolutional neural network’s abili-
ties to detect and classify anomalies in IoT networks. Further-
more, we evaluated different convolutional neural network’s
capacity to detect and classify anomalies in IoT networks via
binary and multiclass classification through transfer learning.
An input layer, four blocks of convolutional layers, a fully
connected dense layer, and an output layer make up the
model we used in this article. Our proposed architecture is
implemented using CNN1D, CNN2D, and CNN3D models.
The BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020,
IoT-23, IoT-DS-1, and IoT-DS-2 datasets are used to evaluate
the CNN model’s performance. Several experiments were
conducted with the primary objective of classifying attack
categories using binary and multiclass classification.

The concept of transfer learning is being used to imple-
ment a pre-train multiclass CNN paradigm for binary and
multiclass classification. Ge et al. [61] utilized transfer
learning to create a representation for high-dimensional
categorical features. To the best of our knowledge, a transfer
learning approach was never used for anomaly detection
where a pre-train multiclass model can be reused binary and
multiclass anomaly detection. Initially, we used the transfer
learning technique for binary classification. We choose a
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TABLE 16. Binary classification (min, max, std dev, avg) using transfer learning.

pre-train multiclass classification model that was trained on
the IoT-DS-2 dataset. One reason to select transfer learning
for binary is to keep consistency for the binary classification
among different datasets. The second reason is to reduce the
complexity and run time of binary classification. Convolution
layers were excluded from training during the binary
classification training process, but the dense and output
layers are used. The transfer learning technique considerably
reduces the time required for training, validation, and testing
in binary classification. Mohammad et al. [15] propose a
CNN-based anomaly detection model to demonstrate binary
and multiclass classification. The detection rate of their
proposed was not satisfactory for binary and multiclass
classification. The binary classification model achieved an
accuracy of 97.17% for normal and abnormal classes. The
binary classification of our proposed model is compared to
the previously proposedmodels in Table 17. Numerous recent
advancements in deep learning technologies demonstrate
their ability to identify patterns through various research
fields. We consider four, five, ten, and sixteen categories
of IoT network traffic in multiclass classification. Several
publications in the literature focused exclusively on binary
classification while developing a deep learning model for
anomaly detection. Many of these publications use accuracy
as a metric of performance for assessing their model.
However, we used many performance metrics and a large

number of malicious categories. The multiclass classification
is divided into small category datasets, consisting of up to five
classes. The medium dataset consists of up to ten classes, and
large datasets consist of up to sixteen classes. The outcome
of the proposed model multiclass classification TPR, TNR,
FPR, and FNR for six datasets is presented in Table 13. The
proposed model multiclass classification average accuracy,
precision, recall, and F1 score are shown in Table 14.

The multiclass classification results of the CNN models
are compared to those mentioned previously in other research
articles. Many of these articles are only concerned with
the suggested model’s accuracy. Table 18 presents our
proposed model’s accuracy, precision, recall, F1 score,
and other models for multiclass classification analysis.
As seen in Table 18, our proposed CNN models are more
accurate than other deep learning models. Ge et al. [61]
build a multiclass classification model using feed-forward
neural networks with embedding layers. They used the
BoT-IoT dataset for their model validation. In certain attack
classes, their model performed well, but in others, the
model performed poorly. Our proposed model accuracy,
precision, recall, and F1 score exceed other deep learning
models. However, a few research papers developed an
intrusion detection deep learning algorithm using multiclass
classification. We use multiclass classification to classify IoT
network traffic into four, five, ten, and sixteen categories. Our

VOLUME 9, 2021 103923



I. Ullah, Q. H. Mahmoud: Design and Development of Deep Learning-Based Model

TABLE 17. Binary classification.

TABLE 18. Multiclass classification.

proposed CNN models outperform all other implementations
in all datasets included in this study: BoT-IoT, IoT Network
Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-
DS-2. In comparison to the CNN3D model, the CNN1D and
CNN2D models perform better. CNN3D requires twice as
much time to train as CNN1D or CNN2Dmodels. In addition,
the CNN3D model needed a large number of epochs for
its convergence. The CNN1D model was the most accurate
in terms of detection rate and required the least amount of
training time.

VII. CONCLUSION AND FUTURE WORK
Deep learning approaches have demonstrated their capacity
to classify anomalies in many fields of research correctly.
However, intruders employ novel and innovative techniques
to launch cyber-attacks. While significant attempts to track
and distinguish these attacks continue to occur in multiple
ways in collaboration with other potential attacks such as
DDoS andBotnets attacks. This article proposes and develops
an anomaly detection model for IoT networks using a
convolutional neural network to detect and classify binary and
multiclass anomalies. We provide a technique for detecting
anomalous activity in IoT networks by generating a new
dataset from an existing one. This method was used to create
four IoT datasets, which were then combined to increase

the number of attack categories. We use the BoT-IoT, IoT
Network Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1,
and IoT-DS-2 intrusion detection datasets to validate our
proposed convolutional neural network model. We classify a
variety of anomalies using 1D, 2D, 3D convolutional neural
network models.

Furthermore, we use the transfer learning principle to
build multiclass and binary classification models. Our
proposed binary and multiclass classification models showed
high accuracy, precision, recall, and F1 score compared
to existing classification strategies and recent deep learn-
ing implementations. The minimum detection rate of the
CNN1D model 99.74%, CNN2D model 99.42%, CNN3D
99.03% for BoT-IoT, MQTT-IoT-IDS2020, IoT-23, and
IoT-DS-2 datasets. This study findings indicate that the
suggested model will aid in the development of an efficient
anomaly-based intrusion detection system for IoT networks
that has both a high detection rate and a low false alarm
rate.

For future work, we plan to investigate further anomaly
detection using various deep learning methods, like FFN and
RNN, GAN, and contrast the findings to those obtained using
a deep convolutional neural network model.
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