
Received June 18, 2021, accepted June 26, 2021, date of publication July 1, 2021, date of current version July 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093830

Building an Intrusion Detection System
to Detect Atypical Cyberattack Flows
ULYA SABEEL 1, SHAHRAM SHAH HEYDARI 1, (Senior Member, IEEE),
KHALID ELGAZZAR 2, (Senior Member, IEEE), AND
KHALIL EL-KHATIB 1, (Member, IEEE)
1Faculty of Business and IT, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada
2Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada

Corresponding author: Ulya Sabeel (ulya.sabeel@ontariotechu.net)

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Engage Grant.

ABSTRACT Artificial Intelligence (AI) techniques provide effective solutions for the detection of many
aberrant network traffic patterns and attack flows. However, the validation of these techniques often relies
on one training dataset. Recent results show that such training may fail in the face of dynamically-changing
cyberattacks. Given the increased sophistication of cyberattacks nowadays, it is imperative to examine and
improve the performance of such AI models. This paper proposes a defensive AI engine combined with
a twofold feature selection technique and hyperparameter optimization of the AI model. In this work,
we utilize the proposed system for binary attack flow identification and the AI models are trained and
validated on the CICIDS2017 dataset. The system is then evaluated using synthesized atypical attack flows to
mimic real-world scenarios. We demonstrate the effectiveness of the proposed atypical attack flow detection
approach using several Deep Learning and Machine Learning models including DNN, Linear-SVC, and
Stacked Decision Tree Classifier (S-DTC). Simulation results demonstrate that the proposed defensive AI
engine significantly improves the True Positive Rate (TPR) of AI models on multiple atypical attacks.

INDEX TERMS Artificial Intelligence (AI), atypical attacks, Denial of Service, feature profile, intrusion
detection.

I. INTRODUCTION
Artificial Intelligence provides powerful solutions for
improving cybersecurity in general, and intrusion detection
systems [1], [2] in particular due to improvement in attack
detection rates, precision, and recall as well as the reduction
in false positives and negatives. Such techniques have also
been applied successfully in network analytics to analyze
complex encrypted traffic flows [3], [4]. These AI models
can learn sequential features from raw network traffic flows
as well as classify them as attack or benign. AI techniques
have been typically applied to network intrusion detection
by training Deep Learning (DL) or Machine Learning (ML)
models on a benchmark dataset and validating them on a split
of the observed data to detect similar future attack patterns.
The main advantage of AI models is their ability to learn
the representative features of an object and create a general

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

perception of the target object for future sample predictions.
For example, a DLmodel that is trained on a sufficiently large
database of bird pictures can correctly identify a picture of
an unknown bird (different from the ones already present in
training data) based on the generic features learned during
training. In the case of network intrusion detection, an AI
model should be able to inspect the network traffic and detect
any attack-related abnormal patterns such as changes in the
data rate and inter-arrival times, or incomplete requests from
specific network addresses. Training such models requires
labeled data or synthetically generated datasets for binary
or multi-class identification of non-malicious and malicious
patterns.

The main predicament in AI-based network intrusion
detection is that attack patterns can differ substantially in
each case. Especially when attackers dynamically mutate
multiple features to change the attack profile such as port
numbers and data rates using sophisticated tools to evade
detection. The majority of AI research in network security

94352
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7651-1024
https://orcid.org/0000-0002-6107-7728
https://orcid.org/0000-0002-5892-632X
https://orcid.org/0000-0002-5960-6942
https://orcid.org/0000-0001-8221-0666


U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

typically uses a portion of benchmark training data to evaluate
the model performance. For example, a dataset is divided
into three parts-70% for training, 20% for validation, and
10% for testing or evaluating the model. Such models are
not evaluated or tested on any external synthesized datasets
[5]–[7]. The fundamental challenge with this approach is
that the data usually represents only specific attack scenarios
on specific network settings. Consequently, the training and
testing data subsets may exhibit the same characteristics.
As such, these datasets may share certain tool-dependent
characteristics such as packet size distributions, port num-
bers, bandwidth, and data rates. Since the training and testing
data have similar characteristics, such models often achieve
high detection rates. This does not necessarily show the equal
success of such amodel in real-world scenarios when exposed
to attacks of the same nature but with different parame-
ters. While adaptive re-training of the observed model may
improve the detection rate, it will not reduce its vulnerability
to rapidly evolving attack parameters.

In this paper, we propose a highly efficient generic defen-
sive AI engine that detects atypical attack flows with a
novel feature selection and training algorithm. The focus of
this work is on identifying DoS/DDoS attacks through flow
analysis using the proposed defensive AI engine. We chose
flow-based identification over packet-based identification
since it contains aggregated information about the entire
network [8]. Additionally, it is easier and faster to identify an
attacker in high bandwidth networks using this technique [8].
Although we apply the proposed technique to identify only
DoS/DDoS attack flows, it is equally applicable to identify
any type of network attack.

The main contributions of this research are as follows:
• We employ a two-phase feature selection technique
to select the best features to improve the Intrusion
Detection System (IDS) training. The first phase is the
pre-screening of features based on the knowledge and
understanding of the attack characteristics. The second
phase is passing a refined feature subset through an
ensemble of feature selectors to generate the final feature
subset. The advantages of this approach are discussed in
more detail in the methodology section.

• We test several AI-based IDS models on the synthe-
sized atypical attack flows to improve generalization
and ensure an unbiased evaluation of these models.
The models run through a hyperparameter optimiza-
tion process if their performance is below a predefined
threshold. Pre-trained and optimized models are then
reevaluated on atypical attack flows until satisfactory
performance is achieved.

The remainder of the paper is organized as follows.
Section III provides detailed information about the related
work. Section II discusses the concept of feature profile
and elaborately explains an atypical attack in our con-
text. Section IV provides insights on background techniques
applied for this research. Section V describes our method-
ology in great detail. Section VI describes the experimental

setup and performance evaluation. Section VII discusses the
hyperparameter optimization process and provides a com-
parative analysis of AI models on different atypical attacks.
Lastly, Section VIII concludes the paper, discusses several
challenges identified during this research, and outlines the
scope for future work.

II. ATYPICAL ATTACK
In our context, the term feature profile for an attack is
defined as the range of values of features that constitute
an attack [9]. For example, the feature profile of a TCP
SYN DoS attack may include certain port numbers, a certain
number of half-open connections, a certain number of set
SYN flags, and a specific data rate. Attacks of different fea-
ture profiles can be generated by tweaking the feature range
values randomly to perform a successful attack. We define
an atypical attack as a cyberattack with similar features like
the typical attacks in the training dataset but having a dif-
ferent feature profile. In other words, such attacks have a
different range of values for features as compared to the ones
the IDS has been previously trained on during the learning
process.

An atypical attack scenario in our case is shown in Fig. 1.
The attacker launches an attack on the target network using
sophisticated attack tools. The target network is equipped
with a Network Intrusion Detection System (NIDS) to iden-
tify the attack. If the attack is identified, the attacker is
blocked by the target network. This attacker later changes the
feature profile (range of values of features) of the attack by
mutating certain parameters to launch a new atypical attack.
For example, F1 is changed to F1’ and F3 is changed to
F3’ as shown in the figure. The goal of this attacker is to
attack the network in such a way that it can evade detection
from the NIDS by launching attack flows as close to benign
data flows as possible. The attacker will keep on launching
atypical attacks until it is successful in evading detection by
the target network or until it runs out of features.

FIGURE 1. An atypical attack scenario.

Our recent research has also shown that current AI-based
attack detection techniques often fail to detect such atypical
attacks [9]. These attacks can pose a great challenge for our
cyber environment if we rely on traditional security tech-
niques. Therefore, an improved security system to combat
such attacks is the need of the hour.

VOLUME 9, 2021 94353



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

III. RELATED WORK
AI-based models for intrusion detection offer many benefits
in forging insights into different cyberattacks. These tech-
niques are broadly classified as static and dynamic. Static
models are also known as offline models because they are
trained in a stationary environment. While dynamic or online
models are trained in a continuously changing or real-world
environment.

A. STATIC LEARNING IN INTRUSION DETECTION
Static AI models are used where data is not continuously
changing. Models are trained once with benchmark data and
then are deployed for static network attack detection. A con-
siderable number of AI-based research studies have been
conducted for static or offline network attack detection using
both ML and DL models.

1) MACHINE LEARNING
Machine learning has been an active and hot research topic
for network attack detection. This section provides a brief
overview of different ML algorithms and shows how current
researchers use benchmark datasets to train and evaluate their
models offline. Syarif and Gata [10] have used a combi-
nation of Binary Particle Swarm Optimization (PSO) and
K-Nearest Neighbour (KNN) for network intrusion detection.
Shah et al. [11] propose a network attack detection technique
based on Sparse Logistic Regression. Sparse Logistic Regres-
sion in their case is used for feature selection and attack clas-
sification. The mini batch K-means clustering approach has
been also effectively used in intrusion detection systems [12].
The algorithm is compared with traditional K-means based
on clustering time and the Calsski Harabasz (CH) indica-
tor to improve the performance. However, no comparison
has been conducted based on the accuracy or detection rate
for attacks, only clustering time is compared. The research
techniques mentioned above rely on the same benchmark
dataset both for training and evaluation of their models
and these models typically fail to generalize in detecting
attacks of a similar nature but with a different feature
profile [9].

Aksu et al. [13] compare the performance of SVM, KNN,
and DT algorithms for attack detection. The authors use
the Fisher Scoring technique based on the maximum like-
lihood function for feature selection and report improve-
ment in the accuracy of decision tree classifiers afterward.
Ahmim et al. [14] propose a hybrid attack detection system
based on DT and Rule-Based models. The authors claim that
their technique outperforms the state of the art. However,
the model fails to generalize to capture atypical attacks.
Abdulhammed et al. [15] apply Principal Component Anal-
ysis (PCA) for feature reduction on various defensive ML
models such as Random Forest, Bayesian Network, Linear
Discriminant Analysis, and Quadratic Discriminant Anal-
ysis. Although they report improved accuracy using their
technique, no evaluation of their trained models on atypical
attacks is reported.

2) DEEP LEARNING
Deep learning has also been a powerful tool for intrusion
detection in computer networks. Kim et al. [1] use Long
Short Term Memory (LSTM) for network intrusion detec-
tion. The authors focus more on improving the attack detec-
tion rate while neglecting the benign detection rate which
makes their predictions have high false positives. This means
the benign packets in their case are classified as attacks.
Ma et al. [16] propose an ensemble IDS based on spectral
clustering and DNN for sensor networks. While the precision
rates on DoS and probe attacks are high, their work does
not focus on improving detection rates for atypical attacks of
different feature profiles. Wang et al. [17] propose an attack
detection technique based on the knowledge gained from
low-level spatial-temporal features using CNN and high-level
spatiotemporal features using LSTM. The authors use the
same benchmark dataset for both training and validation,
achieving high accuracy.

Vinayakumar et al. [18] propose a framework using a DNN
model for identifying attacks. Although the authors conduct
extensive experiments with different benchmark datasets and
report high accuracies in most cases, their models have not
been evaluated using attacks that are even slightly different
from the training dataset. Some other research studies have
been conducted recently using CNN [19], [20] and LSTM
[21], [22] to identify typical attackswith high accuracy.While
these techniques present favorable results for the detection of
attack flows using benchmark data, no testing is provided on
atypical attacks.

Many researchers employ unsupervised one-class anomaly
detection techniques to identify attacks in the network. In this
case, the AI-based IDSmodel is only trained on benign obser-
vations whereas the rare attack observations in the evaluation
data are treated as anomalies. Bovenzi et al. [23] propose a
hierarchical MultiModal Deep Autoencoder model to iden-
tify anomalies in an IoT network. Although the authors report
very low FAR (≤ 1), this evaluation is provided only for
a maximum of 25 packets. Many anomaly detection-based
research works report improved accuracy [24], [25], but the
main problem with these models is their high false alarm
rate [26]. Such intrusion detection models may not be able
to generalize effectively on an unknown observation and may
classify it as an attack even though it is an unknown benign
observation [27]. Furthermore, in a dynamically changing
attack scenario, an attacker finds ways to mutate the feature
profile and generate attack distributions that are close to
benign. In such situations, the unsupervised anomaly detec-
tion models may fail to correctly identify attack flows thus
increasing the false negative rate. We provide a comparison
of current static learning-based approaches in Table 1.

B. CONTINUOUS/ DYNAMIC LEARNING IN INTRUSION
DETECTION
In real-world scenarios, attackers can mutate the attack
feature profile quite often, thus making it difficult for
AI-based IDS systems to identify such newly evolved attacks.

94354 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

TABLE 1. Comparison between current static learning based approaches for intrusion detection. Here TA represents typical attack (hold-out dataset from
benchmark data), AA represents an atypical attack, FS represents feature selection, HPO represents hyperparameter optimization, and N/A represents
‘‘not available’’.

These systems need continuous or dynamic updates with
incoming packet streams to keep up to date. This dynamic
learning technique for such AI-based IDS models is also

referred to as incremental learning or online learning or
adaptive learning. Extensive research has been done in this
area to tackle the outstanding challenge.

VOLUME 9, 2021 94355



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

TABLE 2. Comparison between current dynamic learning based approaches for intrusion detection. Here TA represents typical attack (hold-out dataset
from benchmark data), AA represents an atypical attack, FS represents feature selection, HPO represents hyperparameter optimization, and N/A
represents ‘‘not available’’.

Mirsky et al. [28] propose an online unsupervised network
intrusion detection system using an autoencoder ensemble for
a local IoT network. At a FAR threshold of 0.1%, the IDS
can classify only three attack classes out of a total of 6 with
a TPR of above 99%. For the other three attacks, the model
performs poorly. Benmessahel et al. [29] present an enhanced
neural network that uses Evolutionary Multi-verse Optimiza-
tion for selecting a set of hyperparameters for its performance
improvement. The authors, however, have not performed any
extensive feature selection in this case. In Table 2 we high-
light some of the current research work in this field.

Multiple researchers use a variation of Extreme Machine
Learning (ELM) to detect network attacks. For instance,
Ku et al. [30] use Self-Adaptive Differential Evolution-
ary Extreme Machine Learning (SADE-ELM) algorithm
for the optimization of neural network node parameters.
Gao et al. [31] use an incremental extreme learning machine
(I-ELM) to detect attacks in the network with Adaptive PCA
for feature reduction. Although all these approaches report a
good performance for known attacks, yet none of them evalu-
ate their models for atypical attack scenarios. Yuan et al. [32]
propose a concept drift-based incremental learning approach
for attack identification. Concept drift measures changes in
the statistical properties of the data over time. Their idea
is to use a primary and secondary classifier for detection.
When the primary classifier is used for attack detection,
the secondary classifier updates itself with new incoming
data and then both classifiers swap their roles for continuous

learning. Although authors report good performance for their
system, no latency measurement is reported while retraining
and switching the classifiers.

It is evident from the current research works using both
static and continuous learning that the training data and
test data are subsets of a single benchmark dataset and
share the same probabilistic distribution and feature profile.
ML models trained on this data do not generalize well for
the real-life detection of evolved or atypical attack patterns.
Hence, such models may not be successful in detecting atyp-
ical attacks [9]. In the real world, rapidly changing attacks
pose severe threats to networks since their feature profile
differs from the ones with which the AI models are trained.
This, in turn, decreases the attack detection rates of such
systems. The main objective of this research is to close
this research gap by examining and improving the detection
of AI-based models on slightly evolved synthesized attacks
with different feature profiles. For this purpose, we incor-
porate our proposed extensive feature selection technique
alongwith hyperparameter optimization to improve AImodel
performance and generalization on test data. The proposed
approach outperforms the state-of-the-art techniques in the
literature and demonstrates highly accurate results.

IV. BACKGROUND AI TECHNIQUES
This section gives detailed background information about
various feature selection and hyperparameter optimiza-
tion (HPO) techniques applied in our methodology.

94356 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

A. FEATURE SELECTION METHODS
Feature selection is the process of selecting the best group
of attributes from a dataset without mutating them [33]. It is
an important component of ML/DL techniques as it reduces
the computational complexity, makes interpretations easy,
and avoids overfitting [34]. This is achieved by reducing the
loss while training a model for a specific target using certain
mathematical functions [35] as we outline in the following.

1) FILTER METHOD
Features are selected based on their scores in various statis-
tical tests. These scores are created based on the correlation
between a continuous or categorical feature and a continuous
or categorical target variable. An example of this feature
selection method is the Chi2 statistical test. This test mea-
sures whether an observed feature is related to the target
variable [36]. If the Chi-Square value is high, the target is
dependent on that feature and this feature has high importance
and vice versa. Since our features are continuous (for exam-
ple, Inter arrival time and flow duration) and the target vari-
able is categorical (attack or benign), we use the Chi-Square
statistical test to select the best features that correlate to the
target class.

2) WRAPPER METHOD
The wrapper method identifies feature subsets based on their
efficacy for improving the performance of an AI model.
However, since the model is trained iteratively until no bet-
ter performance is achieved, the process is computationally
expensive and time-consuming. An example of thesemethods
is Recursive Feature Elimination (RFE), which selects the
best features based on theGreedy technique. The best features
are selected at each iteration and their ranking is done based
on the order of elimination. RFE combines the best attributes
of all the wrapper methods and thus we adopt it in this
research.

3) EMBEDDED METHOD
In these methods, feature selection is a part of the learning
algorithm. At each model iteration, the features that con-
tribute to the best model performance are set aside. These
methods combine the best attributes of both filter and wrap-
per methods. These are adopted for this research since they
are efficient, computationally less expensive, and do not
require dataset partitioning for training, validation, andmodel
retraining [34].

Linear models such as LR and L-SVC select features by
using regularization for overfitting. This causes features that
have a weak association with the target class to shrink to zero
and get eliminated. Tree-based models such as Random For-
est Classifier (RFC) and Extra Tree Classifier (ETC) select
features based on the mean decrease in impurity known as
Gini index [37]. Ensemble Gradient Boosting models such
as Light Gradient Boosting Machine (L-GBM) find the most
relevant feature based on some threshold from a local set

of features in each tree. The selected feature with the high-
est score indicates its usefulness in the construction of the
tree. This process is repeated until we get the final feature
subset [38].

B. HYPERPARAMETER OPTIMIZATION TECHNIQUES
In machine learning, a hyperparameter (HP) is defined as a
parameter whose value is set before training to control the
learning process such as the network topology and number of
layers in neural networks for instance. Hyperparameters also
include the learning rate, batch size, maximum depth of the
tree, minimum sample split, and the number of estimators for
our tree-basedmodels.ML/DLmodelsmust be tunedwith the
most appropriate hyperparameters to make better predictions.
In our case, this means minimizing the loss function on
continuously evolving attacks in the test data. Finding the best
hyperparameters is a challenging and exhaustive task because
themodel performance is highly sensitive to any small change
in the hyperparameter.

Hyperparameter Optimization (HPO) is the global opti-
mization of the computationally expensive error function fe
for the ML/DL model [39]. This function selects a hyperpa-
rameter h from the list of H hyperparameters. The selected
hyperparameter is then mapped to the validation error of the
ML/DL model with Ln learned parameters [39]. The eq.(1)
for HPO in general is given as:

minhεRH fe(h,Ln; dval) (1)

where, Ln equals:

argmin fe(h,Ln; dtrain)

Here, dtrain and dval are training and validation data and
Ln parameters can be learnt by minimizing the error of the
model. Different HPO techniques are given below.

1) MANUAL SEARCH HPO (MS-HPO)
This is a simple trial and error method for the hyperparam-
eter search. Hyperparameters are tweaked manually and the
model is retrained again until it achieves the best performance
in terms of minimizing the loss function. This technique is
extremely complex and highly sub-optimal.

2) GRID SEARCH HPO (GS-HPO)
Grid Search is an exhaustive search of hyperparameters
which means it searches for all the possible hyperparam-
eter combinations given by the user. Each different set of
hyperparameter combinations is treated as a separate ML/DL
model. The outcome is the best-performing model. Grid
search suffers from the high dimensionality problem as the
number of searches and function evaluations can grow expo-
nentially [40]. The grid search HPO for an algorithm aεA
parametrized with H hyperparameters can be represented by
the following eq.(2):

h = argmin fo(H ; a, dtrain, dval, fe) (2)

VOLUME 9, 2021 94357



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 2. The defensive AI engine for training and generalization of the AI models against atypical attack flows.

where, hεH is an improved subset of hyperparameters
selected by Grid Search CV used for optimizing model M
with an objective function fo and loss (error) function fe. The
training and validation data are represented by dtrain and dval
respectively.

3) EVOLUTIONARY SEARCH HPO (ES-HPO)
Evolutionary Search HPO can solve optimization problems
by mimicking biological evolution. Problems are solved by
sequential selection, combination, and mutation of different
hyperparameters. Firstly, an initial population of randomly
selected hyperparameters is created and ranked based on their
fitness function. Like natural selection, the worst-performing
hyperparameters are replaced by the new hyperparame-
ters created by mutation and crossover between parents.
These new hyperparameters proceed to the next genera-
tion. This process is repeated until the performance of the
algorithm no longer improves. The population of N mem-
bers, in this case, can be evaluated in parallel as suggested
in [41].

V. METHODOLOGY
Fig. 2 illustrates the proposed defensive AI approach against
atypical attacks in computer networks. It consists of three
important phases, namely, feature selection, training and gen-
eralization, and hyperparameter optimization (HPO).

A. OFFLINE FEATURE SELECTION
In this phase, the raw packet captures are first passed
through the flow analyzer which generates data flows that
are subjected to cleaning as a standard ML practice. This
cleaned benchmark data undergoes the feature selection
process which consists of two main phases: manual fea-
ture pre-screening and Heterogeneous Feature Selection
Ensemble (HFSE). The features, in this case, represent
flow-based information about the entire network such as
IP addresses, network ports, protocols, connection time
duration, arrival times, data/packet size, and some other
miscellaneous flags.

1) FEATURE PRE-SCREENING
Most AI systems are black boxes providing limited intuition
as to why certain predictions were made. Some explain-
able algorithms such as Local Interpretable Model-Agnostic
Explanations [42] can be used to resolve this issue by explain-
ing the AI predictions based on the selected features, but
they do not work efficiently for all types of AI models [43].
When the training data does not fairly reflect important
features, the AI algorithm will learn insignificant patterns
that do not aid in improving the detection rates, leading to
AI bias [43]. Also, AI-based models may pick up a fea-
ture that is insignificant from the point of view of a net-
work attack because such models are trained on currently
available public datasets that are often created by standard
attack generator tools that have a configured range for var-
ious feature values. As such, these AI models may pick up
a contributing feature simply because the attack generator
was configured to use a fixed feature profile. In such cases,
an initial manual feature pre-screening identifies the prior-
ity features which reflect the vulnerabilities of the target
system.

While we do not know the feature profile of the attack
in advance, we do have some information on how an attack
could potentially affect the target. Manual pre-screening is
performed based on the vulnerabilities of the target. For
example, the packet size might not be a determining factor
in a SYN DoS attack on a web server, so it may be eliminated
in the pre-screening process. However, the same factor could
be important in a DDoS attack on a networking device, thus
it could be included in the features that the defensive AI
considers. In other words, pre-screening focuses on the target
vulnerabilities that can be determined offline. While in our
process the manual pre-screening is done at the start, it can
also be revisited over time when the system states change.
However, it remains offline and not part of the dynamic
real-time AI response. The refined feature set is then passed
through the Heterogeneous Feature Selection Ensemble for
further filtering. Themain advantage of using this approach is
to ensure that the AI selects the most significant features that

94358 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

make the results more accurate, reduce AI bias, and improve
the performance against atypical attacks.

2) HETEROGENEOUS FEATURE SELECTION ENSEMBLE
(HFSE)
Ensemble Feature selection combines the results of multi-
ple models strategically to find the best feature subset. The
feature subset selected manually further undergoes filtering
using the Heterogeneous Feature Selection Ensemble in an
offline mode. Multiple feature selectors as described above
are chosen to be a part of this ensemble as the name implies.
The feature selectors in this ensemble vote for the best fea-
tures using a ranking score. The feature that receives the
highest votes is considered the best while the feature with
the lowest votes is the least significant. Fig. 3 represents our
proposed offline feature selection ensemble technique.

FIGURE 3. Offline Heterogeneous Feature Selection Ensemble (HFSE).

The main advantage of this approach is to build a hypothe-
sis using multiple models [44] and then combine their results
to achieve a better outcome. Using a variety of models
for selecting features is advantageous because it controls
the variance, and reduces the likelihood of poor feature
selection [45].

3) DATA STANDARDIZATION PROCESS
The selected feature subset is inspected again using
Quantile-Quantile plot (QQ Plot) to check for normality [46].
We apply the z-score normalization on the data to create
a Gaussian Distribution with a zero mean and a standard
deviation of one [47]. The equation for Z-score normalization
is given in eq.(3).

Z − score =
yi − y′

σi
(3)

Here, yi represents the feature vector, y′ represents the
mean of the feature vector and σi is the standard deviation.

Data standardization is an important step for most AI
algorithms, especially gradient descent-based, such as neural
networks, logistic regression, and distance-based algorithms

like SVM, KNN, and K-means [48]. These models may
not behave as expected [49] if data is not standardized.
For gradient descent-based models, feature values affect
the step size of the gradient descent [48]. If the features
have different ranges, this might cause variations in the step
sizes of each feature. The gradient descent will converge
smoothly towards the minima when the features have the
same scale [48]. Distance-based algorithms use distances
between different observations to classify them into different
categories. If some features have different ranges, chances are
that they will have a higher impact on the AI results, therefore
leading to AI bias. By introducing scaling, all features will
contribute equally to generate the results [48].

B. SYNTHESIZING ATYPICAL ATTACKS
For this research, we assume that the attacker may employ
sophisticated attack tools with the ability to change attack
parameters to launch an atypical attack. For this purpose,
we have simulated a virtual network where an attacker
is launching real attacks on a target Apache server using
commonly available DoS tools such as Slowloris and Slow
Httptest. These slow-rate attacks exploit the HTTP vulnera-
bility and send incomplete requests to the target server to open
as many connections as possible. The target’s resources and
connections are kept engaged while denying access to legit-
imate users thus leading to a Denial of Service attack [50].
While Slowloris is a slow HTTP header attack, the Slow
Httptest attack can be launched in different modes such as
slow header, slow body, and slow read [50]. To understand
how these atypical attacks are launched we have also added a
diagrammatic representation as depicted in Fig. 4. Although
we have employed only two attack classes to evaluate the
IDS, our work is equally applicable for other classes of
attacks as well.

FIGURE 4. Low bandwidth HTTP DoS attack.

The atypical attacks are synthesized after runningDenial of
Service (DoS) attack traffic on a target server. All the attacks
are separately launched successfully from the attacker to the
Apache Server installed on the target machine by sending
incomplete GET/POST requests to the target server. The
feature profile of the attack can be changed by mutating
the tool-based parameters from their default values to ran-
domized values to launch a new attack. Packets are captured
using the Wireshark tool running in the background on the

VOLUME 9, 2021 94359



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

Algorithm 1:Atypical attack generation & identification
Input:
IDS input- original training data dtr ;
Test data dts with typical attacks dta and benign flows
dbe;
Number of iterations for atypical attack generation - n
Output:
Atypical Attacks daa
Trained IDS;
initialize Heterogeneous Feature Selection Ensemble;
initialize True Positive Rate (TPR) threshold as T;
for i = 1 to n do

Attacker A synthesizes atypical attacks daa by
randomly changing attack parameters;

end
while true do

for IDS train_epochs do
IDS identifies typical attacks dta, atypical
attacks daa and benign flows dbe;

end
if TPR<T then

Hyperparameter Optimization();
end
else

Break;
end

end

target machine. The captured data is then analyzed offline
and converted into different features using the network flow
analyzer CICflowmeter [51], [52]. We validate the success
of these attacks on the target server by checking its status
for the duration of the attack to confirm access disruption.
Fig. 5 depicts the success of the Slow Httptest DoS attack
on the target server. The target’s services are successfully
disrupted by the attacker after requesting 5000 simultaneous
connections. The figure shows service unavailable and target
unreachable for the duration of the attack.

FIGURE 5. Successful Slow Httptest DoS attack (Slow header mode) on
the target apache server.

C. TRAINING AND RESULT GENERALIZATION
The next phase for our system includes training AI mod-
els with the benchmark data until it achieves the best

performance followed by the validation of results. The val-
idation step calculates the loss value of the trained model to
measure its performance. The evaluation of the final model
is conducted after the training and validation phases are
completed.

The term generalization in the context of network security
refers to the AI-based IDS model’s ability to identify mutated
attacks as compared to the ones it was previously trained on.
In other words, this process provides an evaluation of the
ability of an AI-based IDS model to correctly identify attacks
with different feature profiles. This is done to ensure that
the models will be successful when deployed in a real envi-
ronment and avoid overfitting. Overfitting occurs when AI
models make accurate predictions on training and validation
data while making inaccurate predictions on test data (i.e.,
data that was never used in training). This step is crucial as
it provides an unbiased performance evaluation for these IDS
models.

D. HYPERPARAMETER OPTIMIZATION
Defensive AI development constitutes training of the model,
validation, and generalization of its results, and hyperparam-
eter optimization until the model performance on test data
(constituting atypical attacks) shows no more improvement.
The performance is measured based on the True Positive
Rate (TPR) for attack and True Negative Rate (TNR) for
benign flows. The optimization process is performed when
the models do not generalize well on atypical attacks in test
data with TPR less than a predefined threshold value. In such
a case, the model continues retraining until the TPR no longer
improves.

Algorithm 1 represents a generic overview of our pro-
posed methodology for synthesizing and identifying atypical
attacks.

E. NOVELTY AND ADVANTAGES
To the best of our knowledge, the proposed Defensive AI
approach is unique and highly accurate against atypical attack
flows. This approach outperforms the state-of-the-art tech-
niques for intrusion detection and network security in several
ways. Our novel feature selection technique plays a very
important role in making the AI interpretations easy since
it picks the most relevant feature subset and minimizes the
training loss (which can otherwise be high due to a large num-
ber of less significant features). Our training methodology is
not based on using subsets from the same benchmark dataset
for training and generalization as compared to most of the
current researches in the field of cyberattack detection using
AI [5]–[7], [10]–[12], [18], [19], [53], [54]. Since these data
subsets may have the same probabilistic distribution and fea-
ture profiles, it leads to overfitting of AI models [9]. The used
atypical attacks are synthesized in a virtual environment to
make better generalizations for the AI models. Our approach
is unique, compared to other AI cybersecurity [10], [11],
[14], [16], [17], [19], in that it improves model generalization

94360 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

TABLE 3. Best 20 features selected using the HSFE technique.

TABLE 4. Different feature profiles for Slow Httptest DoS attack.

using hyperparameter optimization and retraining to produce
unbiased classifiers.

VI. EXPERIMENTS AND PERFORMANCE EVALUATION
This section explains in detail the training and validation
of all ML/DL classifiers using CICIDS2017 data and their
performance measurement. The machine used in our research
to conduct the experiments consists of the following config-
urations: Intel Xenon CPU E5-2630 v3@ 2.40GHz, 480GB
SSD, 64-bit Windows 10 Pro, and NVIDIA Quadro K2200.
The Hyperparameter optimization step for various AI models
was implemented on a server installed with 4 GPUs (GeForce
GTX 1080 Ti with a compute capability of 6.1).

A. CICIDS2017 DATASET DETAILS
CICIDS2017 benchmark dataset is used only for training
and validation of the AI models against typical attacks and
benign flows. Fig. 6 shows the CICIDS2017 attack versus
benign flows. This benchmark dataset contains the most
recent attacks that resemble real-world attacks [51], [52]. The
total percentages of DoS Hulk, DDoS, DoS GoldenEye, DoS
Slowloris and DoS SlowHttptest attack flows are 22.04%,
12.21%, 0.98%, 0.55% and 0.52% respectively. While the
total percentage of benign flows in this dataset is 63.70%.

The dataset consists of 75 features. These features are gen-
erated by feeding the packet captures that resemble real-world
data into the CICFlowmeter. A detailed explanation of all
the features can be found in [55]. Table 3 shows the best

FIGURE 6. CICIDS2017 attack versus benign flows.

20 features selected using the proposed feature selection
technique based on their respective rank in the voting score.

B. ATYPICAL DATA DETAILS
We synthesized 8 atypical attacks, 4 each for two low-rate
DoS attack classes, Slowloris and Slow Httptest DoS. These
attacks have similar features as that of training data, but hav-
ing a different range of values of features and are synthesized
in different network settings as compared to training data.

Slow Httptest attack is launched in 3 different modes
namely Slow Header (H), Slow Body (B), and Slow Read (X)
to create different feature profiles for the attack. The fea-
tures used for synthesizing Slow Httptest atypical attacks are
explained in detail in Table 5.Wemutate these tool-based fea-
tures from their default values to random values to generate
new feature profiles. The synthesized atypical attacks
with different feature profiles are represented in Table 4.

VOLUME 9, 2021 94361



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 7. Atypical attack and benign flows. ‘‘AA’’ is used to depict feature profiles for atypical attack (1-4) both for Slow Httptest and
Slowloris attack classes.

TABLE 5. Features for synthesizing Slow Httptest DoS attacks.

The CICflowmeter (flow analyzer) is used to generate flows
from raw attack packet captures. The number of attack flows
generated depends on the time duration of the attack. If the
attack time duration is higher, a greater number of attack
flows will be generated.

As shown in Fig. 7(a), the number of attack flows for Slow
Httptest atypical attack-1, attack-2, attack-3 and attack-4 are
1473, 8550, 17185 and 9205 respectively. We would like to
indicate that in our case, the number of atypical attack flows
is expected to be small since our intention is precisely to
examine how a defensive AI engine can deal with mutated
attacks that are not present in the training data. We have
selected benign flows randomly fromCICIDS2017 test (hold-
out) data to match the number of attack flows for analyzing
AI models using different performance metrics. The total
number of random benign flows for Slow Httptest DoS
atypical attack-1, 2, 3, and 4 are 244, 10000, 20000, and
10000 respectively.

For Slowloris DoS, we use target port number (p), num-
ber of sockets (s), and random user agents (ua) features to
generate atypical attacks. The random user agents feature is
used to randomize user agents for each request. The details of
atypical slowloris attacks with different feature profiles are
given in Table 6. As shown in Fig. 7(b), Slowloris atypical
attack-1 consists of 268 flows while atypical attack-2 con-
sists of 10165 attack flows, attack-3 and attack-4 consist
of 33406 flows and 20536 flows respectively. For Slowloris
DoS atypical attack-1, 2, 3, and 4, the number of ran-
domly selected benign flows are 244, 9000, 20000, and
20000 respectively.

TABLE 6. Different feature profiles for Slowloris DoS attack.

C. PERFORMANCE METRICS
Multiple statistical measures are used to evaluate the AI
models. These metrics are used to select the best model for
binary classification that classifies input data into ’Attack’ or
’Benign’. The performance metrics used to evaluate the AI
models are:

• Accuracy
The fraction of the number of correctly identified attack
and benign flows with respect to the total number of
input flows.

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(4)

• Precision
The fraction of the number of correctly classified attack
flows among all the flows classified as attacks. It is also
known as Positive Predictive Value.

Precision =
TP

(TP+ FP)
(5)

• Recall/Sensitivity/True Positive Rate (TPR)
The fraction of the number of correctly classified attack
flows among all the attack flows in the data. It is also
known as Hit rate.

Recall =
TP

(TP+ FN )
(6)

• Specificity/Selectivity/True Negative Rate (TNR)
The fraction of the number of correctly classified benign
flows among all the benign flows in the data.

TNR =
TN

(TN + FP)
(7)

• False Alarm Rate (FAR)/ False Positive Rate (FPR)
The fraction of the number of benign flows wrongly
classified as attack with respect to the total number of

94362 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

benign flows.

FAR =
FP

(FP+ TN )
(8)

• F1 score
It measures the robustness of the model. It is repre-
sented by the harmonicmean of precision and recall. The
F1 score ranges between 0 to 1 and the higher the value,
the better the classifier is in detecting abnormal traffic.

F1 Score = 2 ∗
(Precision ∗ Recall)
(Precision+ Recall)

(9)

Here, TN , TP, FN , and FP represent True Negatives,
True Positives, False Negatives, and False Positives
respectively.

D. TRAINING AND VALIDATION PHASES
After the feature selection phase, we train and validate differ-
ent ML/DL classifiers such as Deep Neural Network (DNN),
Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN),
Bernoulli Naïve Bayes (BNB), GaussianNaïve Bayes (GNB),
Logistic Regression (LR), Linear Support Vector Classifier
(L-SVC), Linear Discriminant Analysis (LDA), Decision
Tree Classifier (DTC) and Random Forest Classifier (RFC)
on the CICIDS2017 data. All ML classifiers are trained with
their default hyperparameter configurations on 75% train
data.

To train a DNN model, 20 input dimensions are used
(equal to the number of selected features). The model has
3 Dense layers with Rectified Linear Unit (ReLU) activation
functions, each has 60 neurons. Each Dense layer is followed
by Dropout with a value of 0.2 to avoid overfitting. The last
Fully Connected (FC) layer along with Sigmoid activation
provides output probabilities for attack or benign traffic. The
model is trained for 200 epochs, but early stopping is applied
to reduce overfitting. The batch size is set to 1024 and the
learning rate is 0.0001.

FIGURE 8. ROC comparison of AI models on CICIDS2017 test data (typical
attack and benign flows).

Fig. 8 shows a comparison between various ML/DL mod-
els based on their AUC values on CICIDS2017 test data

which consists of typical/known attacks. This hold-out data
consists of 262143 flows (both attack and benign) and con-
stitutes 25% of the total CICIDS2017 data flows. AUC mea-
sures the ability of a classifier to distinguish between classes
by calculating the area under the Receiver Operating Char-
acteristic (ROC) graph. The ROC graph represents the plot
between TPR and FPR at various threshold values. AUC
values lie in the range from 0 to 1. The higher the AUC value,
the better the model performance. Fig. 8 shows that the best
AUC is achieved by models such as DNN, MLP, KNN, DTC,
and RFC. Other models such as LR and L-SVC also achieve
AUC values as high as 0.98. Models such as BNB, GNB, and
LDA also show similar improvements.

E. MODEL GENERALIZATION AND EVALUATION
The pre-trained ML/DL models are evaluated against syn-
thesized atypical attacks to improve model generalization.
We conduct this evaluation before HPO to analyze which
AI model can identify these attacks with higher detection
rates. We compare the performances of these models using
one atypical attack (atypical attack-1) from both the attack
classes namely, Slow Httptest and Slowloris. Other synthe-
sized atypical attacks are used to evaluate multiple AI models
after the hyperparameter optimization phase. The TNR for
benign flows and TPR for attack flows are separately mea-
sured as shown in Table 7. Although most models provide
high TNR on CICIDS2017 test data, they generally have poor
performance on the atypical attack-1 from both Slow Httptest
and Slowloris attack classes. LR, L-SVC, and DTC can detect
only Slowloris atypical attack-1with 98.88%TPR and benign
data with TNR of 91.80%, 89.34%, and 100% respectively.
All other models perform poorly on both attacks.

TABLE 7. Performance of AI models on atypical attack-1 & benign flows.

A comparative analysis of different AI models using multi-
ple performance metrics including precision, recall, F1 score,
FAR, and accuracy is shown in Fig. 9. The figure shows
that LR, L-SVC, and DTC have a better performance on
Slowloris atypical attack-1 while MLP performs better on
Slow Httptest atypical attack-1 only. This signifies that the
studied AI models are unable to perform well in identifying
both classes of atypical attacks. The reason for this poor
performance on atypical attacks is due to the overfitting prob-
lem of these models. Therefore, we subject the AI classifiers

VOLUME 9, 2021 94363



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 9. Evaluation of AI models on atypical attack and benign flows.

to further optimization of hyperparameters to improve their
generalization on atypical attacks.

VII. HYPERPARAMETER OPTIMIZATION
Since the TPR of the AI models employed for evaluation on
atypical attack-1 is less than the predefined threshold value
(in our case, 80%), thesemodels needHPO to further improve
their performance. For simplicity, we selected the models that
could identify at least one of the synthetic atypical attack
classes during evaluation to undergo further optimization.
These models are L-SVC, DNN, and DTC. Other AI models
discussed in this paper can also be optimized using this
technique but they are not examined further in this paper.
We also point out that our approach is generic and can be
applied to any AI-specific model.

For the hyperparameter optimization phase, AI models
are trained with the CICIDS2017 train data using multiple
hyperparameter (HP) settings. Then, their performances are
evaluated against atypical attack-1 data (both Slowloris and
Slow Httptest DoS) to select the best set of hyperparameters.
Further evaluation of these optimizedAImodels is done using
multiple atypical attacks discussed in section VII.

A. HPO AND GENERALIZATION FOR DNN
WeapplyManual SearchHyperparameter Optimization (MS-
HPO) on the DNN model to improve the TPR and TNR for
attack and benign flows, respectively. The input dimensions
for model architecture are 20 since our feature selection
technique uses 20 features. The model has 3 Dense lay-
ers with Rectified Linear Unit (ReLU) activation functions.

The first two layers have 1024 neurons while the third dense
layer has 512 neurons. Each Dense layer is followed by
Dropout with a value of 0.3 to avoid overfitting. The last Fully
Connected (FC) layer along with Sigmoid activation provides
output probabilities of synthesized test data being ‘attack’
or ‘benign’. These parameters are kept constant during the
MS-HPO process. We have only utilized batch size (bs),
number of epochs, and learning rate (lr) for HPO purposes.
We conducted theMS-HPO for theDNNmodel with different
batch sizes, number of epochs, and learning rates for a total
of 10 iterations out of which only the best 5 are discussed
further in this paper.

Table 8 shows the results of hyperparameter tuning on the
DNN model. We observe that the last two hyperparameter
configurations provide better results than others. We select
the last configuration with a learning rate of 0.0005, batch
size of 16, and 25 epochs. Our goal is to improve the TPR
of attack flows as well as TNR for benign flows, thereby
reducing both FNR and FPR. After employing our proposed
HPO technique for the DNN model, the TNR for Slow
Httptest atypical attack-1 improves by 51.26% and by 100%
for Slowloris atypical attack-1 as compared to the DNN
model discussed in Table 7.

TABLE 8. Effect of MS-HPO on DNN model.

B. HPO AND GENERALIZATION FOR LINEAR-SVC
Since L-SVC is the best performing model among linear
classifiers after the feature engineering phase, we select it
for further performance improvement using GS-HPO. The
CICIDS2017 data is divided into two datasets, 70% for train-
ing and 30% for validation. The model is evaluated on Slow
Httptest Atypical Attack-1 and Slowloris Atypical Attack-1.
Table 9 discusses the hyperparameters (HP) used in GS-HPO
for the L-SVC model.

TABLE 9. Hyperparameter optimization for Linear classifiers.

94364 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 10. Evaluation of AI models after HPO on atypical attack-1 and benign flows.

The L-SVC model is retrained based on the best hyperpa-
rameters selected by Grid Search Hyperparameter Optimiza-
tion (GS-HPO) which are C= 1.5 and tolerance= 1. Here C
represents the regularization parameter while tolerance rep-
resents the tolerance for stopping criteria [56]. It is observed
from Fig. 10 that after the HPO phase, the performance of
L-SVC for benign flows improves by 1.64% whereas, for
Slow Httptest Atypical Attack-1, TPR improves by 67.01%
and for Slowloris Atypical Attack-1, it improves by only
1.12% as compared to the L-SVC results depicted in Table 7.

C. HPO AND GENERALIZATION FOR TREE-BASED
MODELS
We use the Tree-Based Optimization Tool (TPOT) [57],
which is based on Evolutionary Search Hyperparameter Opti-
mization (ES-HPO) explained in the background section of
this paper, to find the right set of hyperparameters for build-
ing the AI model. This optimization process took 48 hours
with a population size of 50 and 5 generations to find the
right hyperparameter set for Stacked Decision Tree Classifier
(S-DTC). The population size in this case is a positive integer
that depicts the number of individuals in a population. Gen-
erations is also a positive integer representing the number of
iterations to run the pipeline optimization process [57]. The
resultant S-DTC combines the power of two DTCs stacked
together in the ensemble. The first classifier has a maximum
depth of 10, minimum leaf samples of 4, and minimum split
samples of 20. While the second classifier has a maximum
depth of 10, minimum leaf samples of 10, and minimum split
samples of 16.

Fig. 10 represents the performance evaluation of DNN and
L-SVC, and S-DTC models after HPO in terms of multiple
performance metrics such as precision, recall, F1 score, and
FAR. The results show an improvement in the performance
metrics for these models as compared to Fig. 9. For example,
the recall value for L-SVC on Slow Httptest is improved
from 5.97% (before HPO) to 72.98% (after HPO). For DNN,
the recall value has improved from 8.35% (before HPO)
to 60% (after HPO). As seen in the figure, the AI models
perform well when evaluated on Slowloris atypical attack-1

TABLE 10. A comparison between the proposed approach and current
research for typical, Atypical attacks and benign flows. Here, Typical
attack represents the hold-out attack from CICIDS2017. ShttpAA1
represents Slow Httptest atypical attack-1 and SlowAA1 represents
Slowloris atypical attack-1.

with all the performancemetric values equal to or above 92%.
It is observed that L-SVC has a better performance in terms
of TPR, and F1 Score as compared to DNN, and S-DTC.
However, the S-DTC gives the lowest FAR of almost 0% as
compared to other AI models.

Table 10 shows a comparison of L-SVC, DNN, and S-DTC
models trained using our approach with current research
for both typical and atypical data based on TPR and TNR
values. We train the models presented in [18], [20], [58],
and [21] with their default hyperparameters and evaluate
their performance using typical attacks, atypical attack-1 and
benign flows. Stable results of the AI models trained using
our approach on both typical as well as atypical attacks com-
pared to other state-of-the-art models indicate the first-rate
performance of our approach.

D. EVALUATION AND COMPARISON OF AI MODELS ON
ATYPICAL ATTACKS
This section provides an evaluation of the performance of AI
models namely DNN, L-SVC, and S-DTC against atypical
attacks. The atypical attack and benign flows (2 to 4) shown
in Fig. 7(b) and Fig. 7(a) are used for further comparison of
the AI models’ detection capability.

VOLUME 9, 2021 94365



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 11. Comparison of AI models on Slow Httptest atypical attack and benign flows after HPO.

FIGURE 12. Comparison of AI models on Slowloris atypical attack and benign flows after HPO.

The performance comparison of DNN, L-SVC, and S-DTC
on different atypical attacks belonging to the Slow Httptest
DoS attack class is shown in Fig. 11. Although all 3AImodels
achieve high precision, high TNR, and very low FAR scores
indicating their superior performance on benign flows. Yet
their performance (Recall) on atypical attack flows is lower
and lies in the range from 36% to 95%. For atypical attack-2,
L-SVC gives the best performance with 62% recall. The
DNN recall value for atypical attack-3 is 75% which is the
highest among all themodels. For atypical attack-4, DNN and
S-DTC have high recall values of 94% and 95% respectively
whereas L-SVC was not successful in identifying this attack.
The Precision and F1 score values for all these models also
vary according to their performances in identifying attack and
benign flows.We observe that none of themodels can identify
all 3 attacks with high recall values. DNN and S-DTC achieve
higher recall rates as compared to L-SVC which performs
poorly on atypical attack-3 and 4.

Fig. 12 compares the performances of DNN, L-SVC, and
S-DTC on Slowloris atypical attacks-2, 3, and 4. The results
depict a similar performance on all three attacks since all the
attacks are launched in a slow header mode. These attacks
have similar features to the typical attacks in the training
dataset but have a mutated feature profile. In comparison,
Slow Httptest DoS atypical attacks in Fig. 11, depict different
results. One of the reasons is that these atypical attacks are

launched in three different modes namely, Slow header, Slow
body, and Slow read. Therefore, they belong to three different
categories of slow-rate DoS Attacks launched using the same
attack tool.

For Slowloris DoS Atypical attacks in Fig. 12, DNN,
L-SVC, and S-DTC achieve high TNR and a very low FAR
for all the cases which imply that benign flows can be
accurately identified. From the results on atypical attack-
2, 3, and 4, DNN is the worst performing model for the
identification of these attacks with recall values of 4%, 4%,
and 3% respectively. Whereas L-SVC and S-DTC achieve
higher recall values on all three attacks indicating that for
these cases, they provide better atypical attack identifica-
tion as compared to DNN. For L-SVC, the recall values for
atypical attack-2, 3, and 4 are 81%, 78%, and 80% respec-
tively. Results on atypical attack-2, 3, and 4 indicate that for
Slowloris attack class, S-DTC is the best performing model
with recall values of 86%, 84%, and 86% respectively.

We provide an analysis of the overall accuracy of the AI
models on typical attacks, multiple atypical attacks from
Slow Httptest DoS and Slowloris DoS attack classes as well
as benign flows in Fig. 13(a) and Fig. 13(b) respectively.
All the models, DNN, L-SVC, and S-DTC achieve higher
accuracy on typical attack data as compared to atypical attack
data. For Slow Httptest DoS, the overall accuracy is lower as
compared to Slowloris DoS attacks. The accuracy for L-SVC

94366 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

FIGURE 13. Accuracy comparison of AI models after HPO on typical and atypical data. Note that typical attacks (TA) represent the
attacks in the hold-out CICIDS2017 data and AA represents an atypical attack.

FIGURE 14. Time complexity analysis for Hyperparameter Optimization (HPO) techniques and selected AI
classifiers after HPO. DNN(1-5) represent different hyperparameter configurations for DNN model (discussed
in Table 8). Here, MS-HPO represents Manual Search HPO, GS-HPO represents Grid Search HPO, and ES-HPO
represents Evolutionary Search HPO.

on Slow Httptest Atypical attack-4 is the lowest around 50%
approximately. For DNN and S-DTC, the accuracy is equal to
or greater than 65%. For Slowloris DoS, L-SVC, and S-DTC
in general have a higher accuracy on atypical attack data as
compared to DNN which is the worst-performing model on
most of the atypical attacks.

Although we observe some enhancement of model per-
formances against atypical attacks after the HPO phase, yet
further optimization and retraining are needed to meet the
pre-defined threshold values for recall. Overall results indi-
cate that S-DTC performs relatively better than all the mod-
els in comparison except on Slow Httptest atypical attack-2
where its recall value is only 36%. The other two models in
comparison, DNN, and L-SVC also have lower recall values
(36% and 62% respectively) on this attack. We believe that
the higher misclassification rate for atypical attacks may be
due to the under-representation of this attack feature profile
in the training data. We plan to investigate this poor perfor-
mance issue, re-optimization of AI models, and retraining
phases in our future work using an incremental learning
approach.

We follow the approach in [4] to provide a complexity
analysis for the hyperparameter techniques employed in this

research as well as for training the AI models in Fig. 14.
As shown in Fig. 14(a), we compare the total run time
required to train a DNN model with different sets of hyper-
parameters for identifying atypical attacks (MS-HPO) with
GS-HPO for L-SVC, and ES-HPO for S-DTC. After analysis,
the results indicate that ES-HPO for the S-DTC takes the
longest time (2880 minutes) to identify the hyperparameters
for atypical attack detection. We train the AI models DNN,
L-SVC, and S-DTC with the set of hyperparameters selected
during the HPO process for each model. Our results highlight
that after the HPO phase, the training complexity for DNN, L-
SVC, and S-DTC is reduced as indicated in Fig. 14(b). S-DTC
takes the least time to train among all the models whereas
DNN takes the longest time of 54.98 minutes owing to the
complex deep learning model structure.

VIII. CONCLUSION, CHALLENGES AND FUTURE
DIRECTIONS
This paper proposes a novel attack detection approach
that employs two-fold feature selection and hyperparameter
optimization techniques to defend against atypical attacks.
We provide an extensive experimental analysis based on
the proposed Defensive AI Engine to compare and evaluate

VOLUME 9, 2021 94367



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

multiple AImodels such as DNN, L-SVC, and S-DTC against
atypical attacks. These AI models are trained using bench-
mark data and evaluated using synthesized atypical attacks
with different feature profiles. Our experiments demonstrate
that the performance of the AI models trained using our
approach shows significant improvement after the hyperpa-
rameter optimization phase against typical as well as atypical
attacks. As compared to state-of-the-art approaches, the AI
models trained using our approach achieve better TPR and
TNR on atypical attack-1 and benign flows. The compara-
tive performance analysis demonstrates that overall S-DTC
outperforms the other two contenders (DNN and L-SVC) for
atypical attack identification.

We highlight several technical challenges identified dur-
ing this research and provide some insights to deal with
them. Our main motivation behind this work is the lack of
an extensive evaluation of IDS models against atypical and
completely unknown attacks. To enhance the current knowl-
edge of dynamically changing attacks, we propose our novel
defensive AI engine to build and analyze IDS models against
such attacks. Some important factors to consider while build-
ing an AImodel for IDS are the size of available training data,
the number of features, and the training time required. The
first important step for our methodology is selecting the most
relevant features to minimize training loss and to make AI
interpretations easier.

We employ multiple performance metrics such as preci-
sion, recall, F1 score, TNR, FAR, and accuracy to evaluate
the AI models against atypical attacks. Relying only on a
single metric such as accuracy can be misleading and can
add more bias to the classification of new attacks espe-
cially when there is a huge class imbalance problem [59].
For example, if 90% of the instances in our train data are
benign (majority class) and all these benign instances are
correctly identified, then the overall accuracy of the system
will be 90% even though 0% attacks (minority class) were
identified.

We provide an analysis of time complexity for the hyper-
parameter optimization phase as well as the training phase
of IDS models. This step is crucial especially in a dynam-
ically changing attack environment, where there is a need
for continuous retraining of the IDS as new attack data is
generated [4]. From our investigation through this research,
we deduce that the selection of optimal hyperparameters is a
very important step to build enhanced IDS models that can
face evolving attack strategies. But this process can be very
intensive, time-consuming, and complex. Although we see
improvements in the performances of our selected AI models
over multiple atypical attacks, they need more optimization
of hyperparameters and further retraining to meet predefined
TPR thresholds. These re-optimization and retraining phases
are left for future research.

Extensive improvements in the results may be expected in
the future especially with the recent advances in adversarial
learning and other semi-supervised approaches. These tech-
niques use adaptive algorithms to generate network behavior

TABLE 11. Common acronyms used in this paper with their description in
alphabetical order.

that has never been seen before. They are aware of the net-
work dynamics and can predict what will happen within the
next time frame. Therefore, as future work, we plan to explore
adversarial semi-supervised methods to defend against atyp-
ical attacks.

Our aim through this research is to identify attacks with
different feature profiles. We have kept aside a subset of
training data for testing against typical attack flows, as it is
common practice in security analysis. Our focus is partic-
ularly on attacks that can mutate themselves into atypical
attacks, i.e., starting from a known attack and then modifying
into feature profiles that would evade the IDS. We employed
two classes of slow-rate DoS attacks, Slowloris and Slow
Httptest to synthesize atypical attacks for IDS evaluation.
Such attacks may be difficult to trace since the attacker
may not send any malicious content when sending multi-
ple requests to overwhelm the target server. In our future
research, to evaluate the IDS we plan to include other classes
of atypical attacks as well. We further plan to investigate
the identification of completely unknown network attacks by
evaluating the IDS models trained using one dataset against
other currently available attack datasets such as ISCX2012,
UNSW-NB15, and DDoS 2019. Finally, we intend to analyze
the trained IDS models in a real network testbed.

94368 VOLUME 9, 2021



U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

APPENDIX A ABBREVIATIONS
Table 11 lists and describes the commonly used acronyms in
this paper in alphabetical order.

REFERENCES
[1] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, ‘‘Long short term memory

recurrent neural network classifier for intrusion detection,’’ in Proc. Int.
Conf. Platform Technol. Service (PlatCon), Feb. 2016, pp. 1–5.

[2] C. Liu, Y. Liu, Y. Yan, and J. Wang, ‘‘An intrusion detection model with
hierarchical attention mechanism,’’ IEEE Access, vol. 8, pp. 67542–67554,
2020.

[3] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, ‘‘FS-Net: A flow sequence
network for encrypted traffic classification,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2019, pp. 1171–1179.

[4] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, ‘‘Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,’’ IEEE Trans. Netw. Service Manage., vol. 16,
no. 2, pp. 445–458, Jun. 2019.

[5] M. Z. Alom, V. Bontupalli, and T. M. Taha, ‘‘Intrusion detection using
deep belief networks,’’ in Proc. Nat. Aerosp. Electron. Conf. (NAECON),
Jun. 2015, pp. 339–344.

[6] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[7] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal,
and K. Han, ‘‘Enhanced network anomaly detection based on deep neural
networks,’’ IEEE Access, vol. 6, pp. 48231–48246, 2018.

[8] H. Nguyen and D. Choi, ‘‘Network anomaly detection: Flow-based or
packet-based approach?’’ 2010, arXiv:1007.1266. [Online]. Available:
http://arxiv.org/abs/1007.1266

[9] U. Sabeel, S. S. Heydari, H. Mohanka, Y. Bendhaou, K. Elgazzar, and
K. El-Khatib, ‘‘Evaluation of deep learning in detecting unknown network
attacks,’’ in Proc. Int. Conf. Smart Appl., Commun. Netw. (SmartNets),
Dec. 2019, pp. 1–6.

[10] A. R. Syarif and W. Gata, ‘‘Intrusion detection system using hybrid binary
PSO and K-nearest neighborhood algorithm,’’ in Proc. 11th Int. Conf. Inf.
Commun. Technol. Syst. (ICTS), Oct. 2017, pp. 181–186.

[11] R. Shah, Y. Qian, D. Kumar, M. Ali, and M. Alvi, ‘‘Network intrusion
detection through discriminative feature selection by using sparse logistic
regression,’’ Future Internet, vol. 9, no. 4, p. 81, Nov. 2017.

[12] K. Peng, V. C. M. Leung, and Q. Huang, ‘‘Clustering approach based on
mini batch Kmeans for intrusion detection system over big data,’’ IEEE
Access, vol. 6, pp. 11897–11906, 2018.

[13] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca, ‘‘Intrusion detection
with comparative analysis of supervised learning techniques and Fisher
score feature selection algorithm,’’ in Proc. Int. Symp. Comput. Inf. Sci.
Cham, Switzerland: Springer, 2018, pp. 141–149.

[14] A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke,
‘‘A novel hierarchical intrusion detection system based on decision tree
and rules-based models,’’ in Proc. 15th Int. Conf. Distrib. Comput. Sensor
Syst. (DCOSS), May 2019, pp. 228–233.

[15] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid,
‘‘Features dimensionality reduction approaches formachine learning based
network intrusion detection,’’ Electronics, vol. 8, no. 3, p. 322, Mar. 2019.

[16] T.Ma, F.Wang, J. Cheng, Y. Yu, andX. Chen, ‘‘A hybrid spectral clustering
and deep neural network ensemble algorithm for intrusion detection in
sensor networks,’’ Sensors, vol. 16, no. 10, p. 1701, Oct. 2016.

[17] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018.

[18] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, ‘‘Deep learning approach
for intelligent intrusion detection system,’’ IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[19] M. Roopak, G. Y. Tian, and J. Chambers, ‘‘An intrusion detection system
against DDoS attacks in IoT networks,’’ in Proc. 10th Annu. Comput.
Commun. Workshop Conf. (CCWC), Jan. 2020, pp. 0562–0567.

[20] M. Azizjon, A. Jumabek, and W. Kim, ‘‘1D CNN based network intrusion
detection with normalization on imbalanced data,’’ in Proc. Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC), Feb. 2020, pp. 218–224.

[21] M. D. Hossain, H. Ochiai, D. Fall, and Y. Kadobayashi, ‘‘LSTM-based
network attack detection: Performance comparison by hyper-parameter
values tuning,’’ in Proc. 7th IEEE Int. Conf. Cyber Secur. Cloud Comput.
(CSCloud)/6th IEEE Int. Conf. Edge Comput. Scalable Cloud (EdgeCom),
Aug. 2020, pp. 62–69.

[22] S. Nayyar, S. Arora, and M. Singh, ‘‘Recurrent neural network based
intrusion detection system,’’ in Proc. Int. Conf. Commun. Signal Process.
(ICCSP), Jul. 2020, pp. 136–140.

[23] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape, ‘‘A hierar-
chical hybrid intrusion detection approach in IoT scenarios,’’ inProc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–7.

[24] S. Zavrak and M. Iskefiyeli, ‘‘Anomaly-based intrusion detection from
network flow features using variational autoencoder,’’ IEEE Access, vol. 8,
pp. 108346–108358, 2020.

[25] K. Sadaf and J. Sultana, ‘‘Intrusion detection based on autoencoder and iso-
lation forest in fog computing,’’ IEEE Access, vol. 8, pp. 167059–167068,
2020.

[26] Z. Zohrevand and U. Glässer, ‘‘Should I raise the red flag? A com-
prehensive survey of anomaly scoring methods toward mitigating false
alarms,’’ 2019, arXiv:1904.06646. [Online]. Available: http://arxiv.org/
abs/1904.06646

[27] K. Al Jallad,M. Aljnidi, andM. S. Desouki, ‘‘Anomaly detection optimiza-
tion using big data and deep learning to reduce false-positive,’’ J. Big Data,
vol. 7, no. 1, pp. 1–12, Dec. 2020.

[28] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, ‘‘Kitsune: An ensem-
ble of autoencoders for online network intrusion detection,’’ 2018,
arXiv:1802.09089. [Online]. Available: http://arxiv.org/abs/1802.09089

[29] I. Benmessahel, K. Xie, and M. Chellal, ‘‘A new evolutionary neural
networks based on intrusion detection systems using multiverse optimiza-
tion,’’ Int. J. Speech Technol., vol. 48, no. 8, pp. 2315–2327, Aug. 2018.

[30] J. Ku, B. Zheng, and D. Yun, ‘‘Intrusion detection based on self-adaptive
differential evolutionary extreme learning machine,’’ in Proc. Int. Conf.
Comput. Netw., Electron. Autom. (ICCNEA), Sep. 2017, pp. 94–100.

[31] J. Gao, S. Chai, B. Zhang, and Y. Xia, ‘‘Research on network intrusion
detection based on incremental extreme learning machine and adaptive
principal component analysis,’’ Energies, vol. 12, no. 7, pp. 1–17, 2019.

[32] X. Yuan, R. Wang, Y. Zhuang, K. Zhu, and J. Hao, ‘‘A concept drift based
ensemble incremental learning approach for intrusion detection,’’ in Proc.
IEEE Int. Conf. Internet Things (iThings), IEEE Green Comput. Commun.
(GreenCom), IEEE Cyber, Phys. Social Comput. (CPSCom), IEEE Smart
Data (SmartData), Jul. 2018, pp. 350–357.

[33] S. Paul. Beginner’s Guide to Feature Selection in Python.
Accessed: Feb. 18, 2021. [Online]. Available: https://www.datacamp.
com/community/tutorials/feature-selection-python

[34] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature selec-
tion,’’ J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[35] U. Khurana, H. Samulowitz, and D. Turaga, ‘‘Feature engineering for
predictive modeling using reinforcement learning,’’ in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 3407–3414.

[36] S. H. To. Chi-Square Statistic: How to Calculate it/Distribution.
Accessed: Feb. 19, 2021. [Online]. Available: https://www.
statisticshowto.com/probability-and-statistics/chi-square/

[37] T.-T. Nguyen, J. Z. Huang, and T. T. Nguyen, ‘‘Unbiased feature selection
in learning random forests for high-dimensional data,’’ Sci. World J.,
vol. 2015, pp. 1–18, Dec. 2015.

[38] N. Titov. Lightgbm. Accessed: Feb. 20, 2021. [Online]. Available:
https://lightgbm.readthedocs.io/en/latest/Features.html#references

[39] I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, ‘‘Efficient hyperpa-
rameter optimization for deep learning algorithms using deterministic RBF
surrogates,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–8.

[40] M. Feurer and F. Hutter, Hyperparameter Optimization. Cham,
Switzerland: Springer, 2019, pp. 3–33.

[41] I. Loshchilov and F. Hutter, ‘‘CMA-ES for hyperparameter optimization
of deep neural networks,’’ 2016, arXiv:1604.07269. [Online]. Available:
http://arxiv.org/abs/1604.07269

[42] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.

[43] D. Civin. Explainable AI Could Reduce the Impact of Biased
Algorithms. Accessed: Feb. 21, 2021. [Online]. Available:
https://venturebeat.com/2018/05/21/

[44] G. Brown, ‘‘Ensemble learning,’’ in Encyclopedia of Machine Learning,
C. Sammut and G. I. Webb, Eds. Boston, MA, USA: Springer, 2010,
pp. 312–320, doi: 10.1007/978-0-387-30164-8_252.

VOLUME 9, 2021 94369

http://dx.doi.org/10.1007/978-0-387-30164-8_252


U. Sabeel et al.: Building Intrusion Detection System to Detect Atypical Cyberattack Flows

[45] V. Bolón-Canedo and A. Alonso-Betanzos, ‘‘Ensembles for feature selec-
tion: A review and future trends,’’ Inf. Fusion, vol. 52, pp. 1–12, Dec. 2019.

[46] University of Virginia Library. Understanding Q-Q Plots.
Accessed: Mar. 1, 2021. [Online]. Available: https://data.library.virginia.
edu/understanding-q-q-plots/

[47] Codecademy. Normalization. Accessed: Mar. 1, 2021. [Online]. Available:
https://www.codecademy.com/articles/normalization

[48] A. Bhandari. Feature Scaling for Machine Learning.
Accessed: Mar. 2, 2021. [Online]. Available: https://www.analyticsvidhya.
com/blog/2020/04/page/3/

[49] Preprocessing Data. Accessed: Mar. 2, 2021. [Online]. Available:
https://scikit-learn.org/stable/modules/preprocessing.html

[50] Slowhttptest Package Description. Accessed: Mar. 10, 2021. [Online].
Available: https://tools.kali.org/stress-testing/slowhttptest

[51] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), 2018, pp. 108–116.

[52] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani, ‘‘Charac-
terization of tor traffic using time based features,’’ in Proc. 3rd Int. Conf.
Inf. Syst. Secur. Privacy (ICISSP), 2017, pp. 253–262.

[53] P. Toupas, D. Chamou, K. M. Giannoutakis, A. Drosou, and D. Tzovaras,
‘‘An intrusion detection system for multi-class classification based on
deep neural networks,’’ in Proc. 18th IEEE Int. Conf. Mach. Learn. Appl.
(ICMLA), Dec. 2019, pp. 1253–1258.

[54] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, ‘‘BAT: Deep learning methods
on network intrusion detection using NSL-KDD dataset,’’ IEEE Access,
vol. 8, pp. 29575–29585, 2020.

[55] CICFlowmeter (Formerly ISCXFlowMeter). Accessed: Jun. 18, 2019.
[Online]. Available: http://www.netflowmeter.ca/netflowmeter.html

[56] Sklearn.svm.linearSVC. Accessed: Mar. 20, 2021. [Online]. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC

[57] EpistasisLab at UPenn. A Python Automated Machine Learning
Tool That Optimizes Machine Learning Pipelines Using Genetic
Programming. Accessed: Apr. 10, 2021. [Online]. Available:
https://github.com/EpistasisLab/tpot

[58] N. Bakhareva, A. Shukhman, A. Matveev, P. Polezhaev, Y. Ushakov, and
L. Legashev, ‘‘Attack detection in enterprise networks by machine learning
methods,’’ in Proc. Int. Russian Automat. Conf. (RusAutoCon), Sep. 2019,
pp. 1–6.

[59] B. J. M. Abma, ‘‘Evaluation of requirements management tools with
support for traceability-based change impact analysis,’’ M.S. thesis, Dept.
Elect. Eng., Univ. Twente, Enschede, The Netherlands, 2009.

ULYA SABEEL received the Bachelor of Tech-
nology degree in information technology from
Bharath University, India, in 2011, and the Master
of Technology degree in computer science and
engineering fromAmityUniversity, India, in 2013.
She is currently pursuing the Ph.D. degree in
computer science with the University of Ontario
Institute of Technology (Ontario Tech University),
Canada.

Since 2018, she has been working as a Research
Assistant with the Advanced Networking Technology and Security (ANTS)
Research Laboratory and a Teaching Assistant for the Faculty of Business
and IT, Ontario Tech. She is currently working as a part-time Professor
in business analytics and insights with the Centennial College, Toronto.
Prior to this, she has more than five years research and teaching experi-
ence, as an Assistant Professor with Amity University. She has authored
multiple international conference and journal articles in her research field.
Her research interests include network security, computer networks, applied
machine learning, and deep learning.

Ms. Sabeel is an active member of many international professional orga-
nizations. Her Ph.D. research work has been awarded the prestigious Ontario
Graduate Scholarship, in 2019, 2020, and 2021, consequently.

SHAHRAM SHAH HEYDARI (Senior Member,
IEEE) received the B.Sc. and M.Sc. degrees in
electronic engineering from the Sharif University
of Technology, Iran, theM.A.Sc. degree fromCon-
cordia University, Montreal, and the Ph.D. degree
from the University of Ottawa, Canada.

He is currently an Associate Professor with
the Faculty of Business and Information Technol-
ogy, University of Ontario Institute of Technol-
ogy (Ontario Tech University), Canada, and the

Co-Director of the Ontario Tech Advanced Networking Technology and
Security (ANTS) Research Laboratory. Before joiningOntario Tech, in 2007,
he was a System Designer and member of the Scientific Staff at Nortel
Networks, where he worked on element management in ultrahigh-speed
IP/MPLS routers, performance modeling of automatically switched optical
networks (ASON), and proprietary voice-over-IP transport control proto-
cols. His main research interests include network design and planning,
software-defined networking, applications of artificial intelligence in net-
work management, and network Quality of Experience (QoE).

KHALID ELGAZZAR (Senior Member, IEEE)
received the B.Sc. degree in computer and commu-
nication engineering from Alexandria University,
Egypt, in 1995, the M.Sc. degree in computer
engineering from Arab Academy for Science and
Technology, Egypt, in 2007, and the Ph.D. degree
in computer science from Queen’s University,
Canada, in 2013.

He is currently the Canada Research Chair in
Internet of Things (IoT) and an Assistant Professor

with the Department of Electrical, Computer, and Software Engineering,
Ontario Tech, where he is also the Founder and Director of the IoT Research
Laboratory. Before joining Ontario Tech, he was an Assistant Professor with
the University of Louisiana at Lafayette and a Research Associate with the
Carnegie Mellon School of Computer Science. He is an expert in the areas
of the Internet of Things (IoT), computer systems, real-time data analytics,
and mobile computing.

Dr. Elgazzar received many research awards and several recognitions and
best paper awards at top international venues. He is an active volunteer in
technical program committees and organizing committees in both IEEE and
ACM events. He is an associate editor for several ACM/IEEE journals in the
areas of mobile computing and the IoT.

KHALIL EL-KHATIB (Member, IEEE) received
the bachelor’s degree in computer science from
the American University of Beirut, the Master of
Computer Science degree fromMcGill University,
Montreal, Canada, and the Ph.D. degree from the
University of Ottawa, Canada.

He is currently working as a Professor in infor-
mation security and the Director of the Faculty
of Business and Information Technology, Institute
for Cybersecurity and Resilient Systems, Ontario

Tech. Before joining Ontario Tech, he worked as an Assistant Professor with
the University ofWestern Ontario. His research interests include big data and
security analytics, security and privacy issues in wireless sensor networks,
smart cities and communities, mobile wireless ad hoc networks and vehicular
networks, smart grid security, biometrics, and ubiquitous computing.

94370 VOLUME 9, 2021


