IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 2, 2021, accepted June 27, 2021, date of publication July 1, 2021, date of current version July 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093925

Forward-Secure Multi-User Aggregate Signatures
Based on zk-SNARKSs

JEONGHYUK LEE", JIHYE KIM2, (Member, IEEE), AND HYUNOK OH"“', (Member, IEEE)

! Department of Information Systems, Hanyang University, Seoul 04763, South Korea
2Department of Electrical Engineering, Kookmin University, Seoul 02707, South Korea

Corresponding authors: Jihye Kim (jihyek @kookmin.ac.kr) and Hyunok Oh (hoh@hanyang.ac.kr)

This work was supported in part by the Institute of Information Communications Technology Planning Evaluation (IITP) grant funded by
the Korean government (MSIT) (No.2021-0-00518, High performance blockchain privacy preserving techniques based on commitment,
encryption, and zero-knowledge proofs, 50%, No0.2021-0-00532, Blockchain scalability solutions supporting high performance/capacity
transactions, 30%, No0.2021-0-00727, A Study on Cryptographic Primitives for SNARK, 10%, N0.2021-0-00528, Development of
Hardware-centric Trusted Computing Base and Standard Protocol for Distributed Secure Data Box, 5% and No.2021-0-00590,
Decentralized High Performance Consensus for Large-Scale Blockchains, 5%).

ABSTRACT As a solution to mitigate the key exposure problems in the digital signature, the forward
security has been proposed. The forward security guarantees the integrity of the messages generated in the
past despite leaks of a current time period secret key by evolving a secret key on each time period. In this
paper, we propose a new forward secure aggregate signature scheme utilizing recursive zk-SNARKSs (zero
knowledge Succinct Non-interactive ARguments of Knowledge). Our proposal has constant complexities
in key/signature sizes, signature generation, and verification time. The proposed forward secure signature
scheme can aggregate signatures generated by multiple users as well as a single user. The security of the
proposed scheme is formally proven under zero-knowledge assumption and random oracle model. The
experiment results show that our signature scheme yields 12 s for signing time, 1 ms for verification time,
25 s for aggregation time, with the 1.6 KB secret key size and signature size independent of the number of
time periods.

INDEX TERMS Aggregate signature, digital signature, forward security, recursive proof composition,

zero-knowledge proof, zk-SNARK.

I. INTRODUCTION

A digital signature is used widely in many of fields as an
authentication such as 10T, blockchain, etc. [1]-[3]. How-
ever, the digital signature has a key managing issue since
if the secret key is exposed, a signature can be forged. The
forward security which assigns a different signing key to
each time period alleviates a problem induced by the key
exposure. After the security notion is firstly proposed by
Anderson [4], several forward secure signature schemes have
been devised [5]-[11] for decades. However, these works
have a limitation in that the maximum time period 7 should
be fixed in setup for the constant public key size. It causes
the necessity of remaking the signing key and the public
key when the maximum time period 7 ends. To avoid the
problem, the maximum time period 7 is set to a large value.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

VOLUME 9, 2021

However, it results in the inefficiency of the signature scheme
of which complexities are dependent on the maximum time
period [5]-[7]. For instance, Abdalla’s construction [6] has
O(T) time complexity in setup, signing, and the verification.
Although recent optimization of Abdalla’s construction [12]
reduces signing cost to O(1) with some setup time trade-
off, the verification cost remains O(T'). While the verification
time is constant in several works [7], [9], [13], still one of the
metrics is dependent on the maximum time period in every
approach.

In the different view of the signature, aggregation is a
useful tool for alleviating a storage problem. Specifically,
the aggregate signature is used in blockchain applications
to reduce the space required for the signature storage, and
it mitigates the burden of blockchain network caused by
the immense size of the transactions [14]. Although there
exist many aggregate signature schemes to merge the signa-
tures [15]-[19], only a few researches support an aggregation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 97705

https://orcid.org/0000-0003-3697-3317
https://orcid.org/0000-0002-9044-7441
https://orcid.org/0000-0002-6502-472X

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

—

Statements for update

« </>

skyo,vky — | Rey_verify(sky;, vk =1
s Update (sky;)= skj;q

{

SkA,j

Alice

1) Alice and Bob update their
signing key respectively.

Statements for sign

<f>

Key verify(sk,;, vky) =1
f(vky,j,my)= outy;

2) Alice and Bob sign the messages l

my, ,mg each.
O4,j

e o
3) The third party aggregator aggregates S ¢ /5
the signatures of Alice and Bob

—

Statements for update

e

— </>

Key verify(skg;, vhkp) = 1
Update (skp;)= skpis

!

SkB,k

SkBJU) VRB —
Bob

Statements for sign

<[>

Key verify(skg,, vkg) = 1
f(l?kglk,k,m3)= Oufgj

{

Opk

Statements for aggregation /

Signature_verify(g,;,vk,)=1
Signature verify(og;,vkg)=1
flouty;, outgy)= out,,,

The third party aggregator

FIGURE 1. Basic structure of our proposal.

of forward secure signatures [20]-[24]. However, the aggre-
gate signature schemes are able to either aggregate signa-
tures generated from a single user [20]-[23] or multi-user
signatures at which period is equivalent [20]-[23]. This
requirement makes difficult to be deployed in a decentralized
environment where the time periods are often not synchro-
nized. In this paper, we propose a forward secure multi-user
aggregate signature scheme where all the complexities are
totally independent of the time period 7. The aggregation
supports different messages and different users flexibly appli-
cable for the decentralized environment. In our construction,
we use a simulation extractable zk-SNARK (zero-knowledge
Succinct Non-interactive Argument of Knowledge) [25]-[28]
as a building block of the signature scheme. The zk-SNARK
enables proving arbitrary statements and the arbitrariness
of the statements facilitates the removal of restrictions in
existing signature schemes. That is, it is able to consider
zk-SNARK proof as a signature if the proof proves the
statements that suit the requirement of the signature. Naively,

97706

}

Oagg

we can have an idea to construct a forward secure signature
scheme by proving following statements.

« A public verification key and a secret signing key are

well constructed.

« The secret signing key is connected with a message.

o The secret signing key is updated correctly.
Though all of the statements can be proven by simply includ-
ing these statements in a zk-SNARK circuit, it is not enough
for the forward secure signature since signing keys of all time
periods are required as witnesses in the proof generation.
Furthermore, it causes the inefficiency in that the circuit
size increases proportional to the number of key updates.
We resolve the issue by adopting PCD (Proof Carrying
Data) [29] where a proof proves the verification result of the
other proof to prove the update process without the previous
signing key.

In Fig.1, we describe the flow of our forward secure
aggregate signature construction. Sign, update, and aggre-
gate algorithms are designed by subsuming zk-SNARK proof

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

TABLE 1. Performance and size comparison in forward secure signature schemes: T and / denote the maximum period and the message length.

Ours BM [5] AR [6] | IR[7] | Boyenetal. [9] | KO17 [12]
Key generation time | O(1) | O(T) o(T) | O(T) O(logT) O(IT)
Update time o(1) o(l) o) | our) 0(1) o(l)
Signing time o) | OT+1) | odT) | O@) O(logT +1) o(1)
Verification time o) | oT+1 | odT) | O@) 0(1) o(IT)
Secret key size o(1) o) (1) o(1) O(log®T) o(1)
Verification key size | O(1) o) (1) o(1) O(logT +1) 0(1)
Signature size o(1) o(1) (1) o(1) 0(1) 0(1)

construction that proves required statements respectively.
All the statements consist of verification of previous proof
and additional computation. As described in 1) in Fig.1, when
the initial signing key ska o and skpo are assumed to be
composed of user secret value and the proof that proves a
relation of user secret value and the verification key, the secret
signing key can be updated recursively by proving statements
for update. The statement stipulates that the verification result
of the previous signing key is passed and the signing key of
the next time period is generated correctly. By updating the
signing key recursively, we can keep the circuit size constant
regardless of how many times the signing key is updated.
When the updated signing key sk, ; and the message miy
are given, the signature generation is conducted similar to
the update. For instance, when Alice proves that the secret
signing key for j period sk ; is verified and the message
my and the time period j is connected with the secret sign-
ing key, the proof can be a forward secure signature itself.
In aggregation described in 3), the third party aggregator
verifies 04 ; and op that are signatures of Alice and Bob
in j,k time period respectively. The third party aggregator
proves the verification results and the aggregation of two
signatures. That is, if the verification of two signatures is
converged into one zk-SNARK proof, it can be an aggregate
signature itself. Since the aggregation needs only the public
information required in the verification, it can be conducted
publicly.

A. OUR CONTRIBUTIONS

1) GENERIC CONSTRUCTION OF A FORWARD SECURE
SIGNATURE USING zk-SNARK

We propose a generic construction of the forward secure
signature via zk-SNARKS. In our construction, any kind of
simulation extractable zk-SNARK from the pre-processing
SNARKSs such as GM17 [25], and KLO20 [30] to uni-
versal structured reference string based SNARKSs such as
MBKM19 [31], GWC19 [32], and BBB+18 [33] can be
utilized as a building block. Various zk-SNARK libraries
including libsnark [34], and snarkjs [35] can be used in the
signature construction freely.

2) O(1) EFFICIENCY
We construct a forward secure signature of which complexi-
ties are independent of the time period. In fact, our scheme

VOLUME 9, 2021

does not require any maximum time period in the scheme
setup. In our forward secure signature, all of the metrics in
setup, update, sign, and verify algorithms have O(1) time
and space complexities. Note that the verification key size,
secret key size and the signature size are constant. Table 1
compares performance and space requirement of forward
secure signature schemes [5]-[7], [9], [12]. While all metrics
are constant in our signature scheme, the other schemes have
at least one metric that is dependent on the maximum period
T. Except Boyen et al. [9] and our scheme, at least one metric
is O(T) while the key size is not constant in [9].

3) MULTI-USER SIGNATURE AGGREGATION FOR

ANY TIME PERIOD

We propose a generic aggregate construction that aggregates
multi-user signatures removing all restrictions on the time
period and the message. While the time period and the
message should be fixed [24] or the time periods should
be sequential in existing schemes [21], [23], our scheme
can aggregate signatures of different messages generated by
multi-user in unsequential time periods. In summary, our
public aggregation technique not only allows the aggregation
of multi-user signatures without any constraint of the time
period, and the message but maintains O(1) complexity in the
signature size and the key size. Table 2 shows the aggrega-
tion possibility, the performance, and the size requirement in
various forward secure aggregate signature schemes. While
our scheme and MTO7 can aggregate signatures in arbitrary
periods, YNR12 and KO19 can aggregate signatures in con-
secutive periods. In addition, our scheme can aggregate sig-
natures generated by multiple users while the other forward
secure schemes can only aggregate signatures generated by a
single user. YNR12 scheme can aggregate signatures by only
a signer while the other schemes allow anyone to aggregate
signatures.

In summary, we present a new forward secure signature
methodology whose complexities are fully independent of the
time period and its aggregation has high flexibility. Our new
forward secure signature scheme can be utilized usefully in a
decentralized environment where entities have their own time
periods independently. However, we should bear zk-SNARK
computation that is relatively heavier than other schemes to
obtain a time period independent efficiency and the flexibility
in the aggregation. Though the computation is independent

97707

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

TABLE 2. Comparison of forward secure aggregate signature schemes where n indicates the number of aggregated signatures.

Ours MTO7 [20] | YNR12[23] | KO19 [21]
Aggregation period Any Any Sequential Sequential
Aggregation user Multiple Single Single Single
Public aggregation Yes Yes No Yes
Key generation time o(1) o(T) o(T) o(T)
Update time o(1) 0(1) o(1) o(l)
Signing time o(1) 0O(1) o(1) o(IT)
Aggregation time O(n) O(n) O(n) O(n)
Verification time O(n) O(n) O(n) O(ln+1T)
Verification key size o(1) o(T) o(T) o(l)
Signature size o(1) 0(1) o(1) 0(1)

of the time period and message length, it is reliant on
zk-SNARK circuit size. Thus, we measure the actual perfor-
mance of our signature scheme via the implementation.

We describe related works in section II. In section III,
we explain preliminaries of our design and define the security
notion. We demonstrate specific construction of our signature
scheme in section IV. Section V presents an extension of
our forward secure signature scheme to the forward secure
multi-user aggregate signature. Section VI presents the secu-
rity proofs of all constructions. Section VII analyzes the
experiment results of our scheme. We draw a conclusion in
section VIII.

Il. RELATED WORK
The forward security notion is firstly introduced by

Anderson [4] aiming to alleviate the damage from the key
exposure problem. The forward security divides overall time
periods into separate time period and utilizes a different secret
key in each period. A subsequent secret key is derived from
the one in the previous time period, and extracting the previ-
ous one from the current secret key is computationally hard.
Because of the hardness of the extraction, a past signature
cannot be fabricated even if the secret key in the current
time period is exposed. Bellare and Miner [5] formalize the
security notion and present the first practical forward secure
signature scheme. After the formalization, many pieces of
research try to improve the efficiency of forward secure sig-
nature since it is ideal that all the operations have O(1) time
complexity, O(1) signature size and O(1) key size respec-
tively. Abdalla [6] reduces the secret key size from O(l) to
O(1) where [is message length while maintaining all the
time complexity of operations. While Kozlov er al. [8] design
a forward secure signature scheme updating a key in O(1)
time complexity, it has a limitation in that its signing time
complexity and verification time complexity are linear with
overall time period 7. Itkis and Reyzin [7] present a forward
secure signature scheme whose signing and verification have
the time complexity irrelevant to overall time period 7 while
taking a trade-off in the update time. Malkin er al. [10]
construct a generic forward secure signature scheme that has
almost unbounded time period. Boyen et al. [9] propose the

97708

forward secure signature methodology whose signing key
can be updated as an encrypted form. Kim and Oh [12]
make AR [6] have the O(1) signing time complexity with
adding some computations in the setup time. Despite the
results of many pieces of research, any research could not
reach a methodology where all operations can be conducted
in O(1) time while maintaining O(1) space. In a different
view, several pieces of research resolve an issue that occurs
when the forward security is applied to certificate-based
cryptography. Lu and Li first apply the forward security
notion into certificate-based cryptography, and they propose
a forward secure certificate based signature scheme without
a random oracle model [36]. They solve an issue that occurs
when a certificated authority is malicious [37] and propose
a certificate-based key-insulated signature that improves the
security in certificate-based cryptography [38].

Meanwhile, several kinds of research introduce aggrega-
tion technique to existing forward secure signature schemes
to reduce the space required to store multiple signatures [21],
[22]. Ma and Tsudik [20] firstly construct a forward secure
aggregate signature, however, the methodology has O(T)
verification key space complexity. Although Ma [22] evolves
BM [5] and AR [6] into a forward secure aggregate signature
scheme that has a constant size of verification key, the scheme
is ascertained insecure by Kim and Oh [21]. Yavuz et al. [23]
propose the aggregation technique that can be conducted by
only a single addition. However, the technique has a draw-
back in that the verification key size is linear with 7'. Kim and
Oh [21] devise the aggregation technique where the verifica-
tion key size is irrelevant to overall time period 7. However,
these techniques [21], [23] only allow the aggregation of
single-user signatures whose time periods are consecutive.

We use a simulation extractable zk-SNARK [25]-[28] as a
building block of signature scheme where many zk-SNARK
schemes work in pairing-based environment [25], [28], [39],
[40]. Gennaro et al. [41] firstly propose a non-interactive
argument system where a general function is supported.
Groth [40] reduces the number of verification equations from
three to one and the number of elements in a proof from
eight to three. Groth and Maller [25] propose a simulation
extractable zk-SNARK firstly maintaining the proof size

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

as three. However, Groth and Maller construction supports
SAP (Square Arithmetic Program) representation only that
incurs double size of common reference string compared
with QAP (Quadratic Arithmetic Program) representation.
Several researches try to develop SE-SNARK that can be
represented as QAP representation. Bowe and Gabizon [26]
construct QAP based SE-SNARK that has five proof ele-
ments. Lipmaa [27] reduces the proof size required in QAP
representation to four, and Kim et al. [28] have three proof
elements in QAP representation and a single verification
equation.

We use PCD (Proof Carrying Data) as a specific build-
ing block of our construction. PCD is a special case of
zk-SNARK, and the proof proves the result of verification of
other proofs recursively. Chiesa and Tromer define the notion
firstly [42], and Bitansky et al. [29] devise the recursive
proof composition where any zk-SNARK can be used as a
building block. Ben-Sasson et al. [43] enhance the practi-
cality of the notion via using 2-cycles of pairing friendly
elliptic curves. In addition, Bowe et al. [44] propose the recur-
sive proof composition that does not require a trusted setup
using Bulletproof [33] and Sonic [31] as building blocks.
Chiesa et al. [45] not only grant the transparency as Bowe’s
construction [44] but enable the recursive proof composition
to work in post-quantum environments.

lll. BACKGROUND
A. NOTATION

We write y < x for substitution x on y. We write y < S
for sampling y from S if S is a set. We write y «<— A(x) for a
probabilistic algorithm on input x returning output y. When a
probabilistic algorithm A(x) has a private input r, we denote
A(x; r). We state f()) is negligible if f(A) =~ 0. We denote
a concatenation as ||. Given a scheme II, its all operations
are denoted by IT.name. Let R be a relation generator that
given a security parameter A in unary returns a polynomial
time decidable relation R <— R(1*). We denote R as the set
of relations that R(1%) outputs. We call ¢ the instance and w
the witness for (¢, w) € R. We denote all of A’s inputs and
outputs for an algorithm A by trans 4.

B. CRYPTOGRAPHIC ASSUMPTION
We use a hash extractability assumption [46] stated as below.
Definition 1: A hash function H is extractable for a PPT
adversary A when there exists an extractor ¢ such that, for
large enough security parameter A and auxiliary input aux €
{0, 1}P°bP) the adversary A wins the game below with neg-
ligible probability.
We define Advgfz;fl;ex’(k) = Pr[G®" e ()] where the

H.,e, A
game gg’“;”f" is defined in Algorithm 1.

The hash extraction game needs the function Check which
allows the verifier to check the well-formedness of hashes
received from the adversary [47].

C. SIMULATION EXTRACTABLE zk-SNARK
We adopt a simulation extractable zero-knowledge succinct
non-interactive arguments of knowledge (SE-SNARK) [25]

VOLUME 9, 2021

Algorithm 1 Hash Extraction Game ggaghfﬂ

gHash—ext()L)
H.e, A

pp < Setup(1*)

(05 xe) < (AllE)(pp, aux)

A wins if 3x such that H(pp, x) = o Ao # H(pP, x.) and
there is a PPT algorithm Check(pp, o) that returns 1 if 3x
such that H(pp, x) = o and 0 otherwise.

as a building block of our signature scheme. A formal defini-
tion of SE-SNARK is described as follows.

Definition 2: A zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK) for R is a
set of quadruple algorithms I1 = (Setup, Prove, Verify,
SimProve) as follows.

o Setup is a PPT setup algorithm that takes as input a
relation R € R, and returns a common reference string
crs and a simulation trapdoor t.

« Prove is a PPT algorithm that takes as input a common
reference string crs, an instance ¢ and a witness w for
(¢, w) € R, and returns a proof .

o Verify is a deterministic polynomial time algorithm
which takes as input a common reference string crs,
an instance ¢ and a proof 7, and returns O (reject) or 1
(accept).

o SimProve is a PPT algorithm which takes as input a
common reference string crs, a simulation trapdoor t,
and an instance ¢. The algorithm returns a simulated
proof .

zk-SNARK IT satisfies completeness, knowledge sound-
ness, zero-knowledge, and succinctness as described below.

1) PERFECT COMPLETENESS
Perfect completeness stipulates that a prover with a witness

who is given a true statement can convince a verifier.
Forall A € N, for all R € R;, and for all (¢, w) € R:

Pr[(crs, T) < Setup(R); = < Prove(crs, ¢, w) :
Verify(crs, ¢, m)=1]1=1 (1)

2) COMPUTATIONAL SOUNDNESS

Computational knowledge soundness states that the prover
must know a witness and the witness should be extracted
efficiently from a knowledge extractor. Proof of knowl-
edge requests every adversarial prover A to generate an
accepting proof, there must be an extractor x4 which
outputs a valid witness taking a same input of 4. For-

. d _ d
mally, we define Advi(’r‘;”’A,XA()\) = Pr[gjfrgum(x)] where
Gsound s defined as follows.

g A xa

An argument system Arg is considered computationally
sound if for any PPT adversary adversary A, there exists a

PPT extractor x 4 where Advi"r’;”j ‘A A =~ 0.

97709

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

- sound
Algorithm 2 Knowledge Soundness Game Gy
d
gfs(;gfiA, XA @)
R < R(1Y)

(crs, T) < Setup(R)

(¢, w) < Alcrs)

w <— xA(trans)

A wins if Verify(crs, ¢, 7) = 1 and (¢, w) ¢ R and fails
otherwise.

Algorithm 3 Zero-Knowledge Game gj];g A

gfx]ig,A()‘)
R <« R(1%)
(crs, T) < Setup(R)
b <« {0, 1}
if » = O then
Pi’mt(dy, w;) returns 7r; where r; < Prove(crs, ¢, w)
and (¢;, w;) € R
else
P}er,r((bi’ w;) returns m; where
SimProve(crs, ¢, T) and (¢;, w;) € R
end if
B <« APl @iow)
A wins if b = b’ and fails otherwise.

TT; <

3) PERFECT ZERO-KNOWLEDGE
Perfect zero-knowledge stipulates that a proof does not dis-
close any information about the witness besides the truth
of the instance. The statement is certified by a simulator
which cannot access a witness but has some trapdoor infor-
mation that allows simulating proofs. Formally, we define
Adviﬁg’A(A) = 2Pr[g/§krg’A()»)] — 1 such that the game (]f{/ig’A
is defined as follows.

The argument system is considered perfect zero-knowledge
if Advzkrg’ A(A) = 0 for all PPT adversaries A.

4) SIMULATION-EXTRACTABILITY

Simulation-Extractability stipulates that any adversary A
who can access a simulated proof for a false instance cannot
forge the proof to another proof for a false instance. In a simu-
lation extractable zk-SNARK, the adversary cannot generate
anew valid proof even if the adversary acquire proofs of other
statements.

Formally, we define Advzgﬁjfﬁ(k) = Pr[gﬁ:(;ﬁjij M)
gpruof —ext

Are Ay a is defined as follows.

Compared to the knowledge soundness game described in
Algorithm 2, the adversary can access the simulated proof
via SimProve queries additionally. zk-SNARK is considered
simulation extractable if there exists an extractor x 4, for any
PPT adversary A, where Ad Ar;:])‘(:ﬁ()») ~ 0.

Proof-Carrying Data: Proof-carrying data (PCD) [42],
[48] is a cryptographic primitive that guarantees the validity

where the game

97710

Algorithm 4 Simulation Extractable Knowledge Soundness

proof —ext
Game gArg,A,XA

Gt xa®)

R« R(1*),0 <0
(crs, T) < Setup(R)
repeat
m; < SimProve(crs, T, ¢;)
0 < QU{¢i, i}
until (¢,) < ASMProvecrs.« (cpg)
w <— xA(trans 4)
A wins if Verify(crs, ¢,) = 1, (¢, w) ¢ R and (¢,) ¢
0 and fails otherwise.

of all previous proofs via the recursive proof composition.
It is a special case of zk-SNARK where the relation R is
composed of some functions that are required for the verifi-
cation of other proofs. To guarantee the verification result of
the other proof in the proof circuit, the instance ¢ includes a
proof set 77 and inputs needed for the verification of the proof
additionally. It has a proof size independent of the number
the recursion, and it has O(1) verification time regardless
of the number of recursion. PCD inherits all the proper-
ties of zk-SNARK such as the completeness, the knowledge
soundness and zero-knowledge. The concrete proofs of these
properties are described in Ben-Sasson et al.’s work [43].

D. FORWARD SECURE SIGNATURES
A forward secure signature scheme is a key evolving digital
signature algorithm. All of the operations are divided into
time period ¢ and a signer signs a message using a different
signing key which is issued at each time period. A key update
is conducted by a one-way update function that computes a
secret key for the new time period from the secret key at the
current time period. A formal definition of the forward secure
signature is as follows.

Definition 3: A forward secure signature is a set of four
algorithms FSS = (Keygen, Update, Sign, Verify) where

« Keygen takes as input a security parameter A and returns
a key pair sko, vk the initial signing key and the verifi-
cation key and the time period j.

« Update takes as input a secret key sk;, the time period j
and returns the secret key sk and the next time period
J+ 1L

« Sign takes as input a message m, the secret key sk;,
the time period j, the verification key vk and returns o;
that is a signature for time period j.

« Verify takes as input a message m, the time period j,
the verification key vk, the signature o and returns 1 if
the o is valid signature or 0, otherwise.

We define the security of FSS similarly to the existing
works [5]-[7], [9]. The only difference is that we do not
assume the maximal period anymore. Informally, an adver-
sary who wants to succeed a valid signature forgery executes

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

Algorithm 5 Forward Security Game g,‘/!g‘g” 7£(3)

Grss.
(sko, 0, vk) < Keygen(i)
j<0
repeat
j < j+ 1; skj < Update(skj—1,j — 1,vk); d <
FSianC-i)(ecma, vk)
until d = breakin
(m*, b, o) < F(forge, sk;)
if Verify(m*, b, vk,0) = 1 and m* was not queried of
Sign(-, b)) and 0 < b < j then
return 1 else return 0
end if

chosen message attack cma until a secret signing key of the
current time period is leaked. The adversary succeeds a valid
forgery if the adversary generates a signature of the previous
time period on a new message.

fwsec sec

Formally, we define Advigg 7(1) = Pr[Gggg #(1)] where

the game Gfag x is defined in Algorithm 5.

The adversary F works in three phases: the chosen
message attack cma phase, the break-in phase, breakin,
the forgery phase forge. FSS is considered as forward secure

wsec

if Advpgg (&) ~ 0 for any PPT adversary F where the
execution time is at most ¢ and the number of signing queries
is at most gy;g.

E. FORWARD SECURE MULTI-USER

AGGREGATE SIGNATURES

We extend the forward secure signature notion to a forward

secure multi-user aggregate signature that supports the aggre-

gation of multi-user signatures whose messages and time

periods are different. A formal definition is as follows.
Definition 4: A forward secure multi-user aggregate sig-

nature FSMAS is a set of six algorithms by including addi-

tional algorithms in FSS. The additional algorithms are

defined as follows.

o Agg takes as input a multi-user signature set
((my,j1,vky, 01),..., (my, ju, vky, 0,)) and returns an
aggregate signature ogg.

o AggVerify takes as input a set (my, ji, vky), .., (M, jn,
vky), the aggregate signature 0,44, and returns 1 if o, is
a valid signature or 0, otherwise.

We define the security of forward secure multi-user
aggregate signature similar to Algorithm 5. An adversary
JF can freely choose all of the user verification keys vk =
(vk1, ..., vk,) except the verification key of one honest
user vk*. When the adversary F is given the verification
key of the honest user vk*, the adversary tries to forge
an aggregate signature that involves the signature of the
honest user. An adversary J can access a sign oracle and
an update oracle freely, and can request break-in query
also. Since the aggregation is allowed to everyone, the

VOLUME 9, 2021

Algorithm 6 Forward Security Game of FMSAS

sec

Fsmas, ()

sec
Ghans,7)
(sk, 0, vk*™) < Keygen(x)
j<0
repeat
j<—Jj+1 skj* <« Update(skj*_l,j — 1,vk*); d <
FSianC)(cma, vk*)
until d = breakin
(1,1 VKL, (% b VKR), L (i V).)
« F(forge, skj*)
if AggVerify((my, j1,vk1), ..., (M, jn, vkn), ngg) =1
and vk* € {vky,...,vk,} and m* was not queried of
Sign(-,) and 0 < b < j then
return 1 else return 0
end if

adversary does not need to request an oracle of aggrega-
tion. If the adversary outputs an aggregate signature ajgg
where AggVerify((m1, j1, vk1), ..., (Mg, jun, vky), o;gg) =1
and the aggregate signature includes the signature of m*
that was not queried of Sign(-,») and 0 < b < j and
vk* € vk, then the adversary wins the forgery game. A for-
mal security notion is described in Algorithm 6. Formally,

sec

we define AdvaWSSK/TAS’]_-(A) = Pr[FSMAS,]—‘()‘)] where the
game gf;”g‘,@fAS’ 7 1s defined in Algorithm 6.

IV. CONSTRUCTION

A. MAIN IDEA

In this section, we describe a formal construction of the
proposed scheme. We represent intuition of our construction
first then specify details of the construction. Verification of
forward secure signature [5]-[7] checks whether the signature
satisfies the following properties.

« A verification key is generated from a secret signing key
which is implied in the signature.

o The signing key is updated correctly corresponding to a
time period.

« The signing key is connected to a correct message with
the time period.

While it is not easy to construct a signature scheme
which satisfies the above properties simultaneously, it is more
straightforward to devise a circuit to satisfy the above prop-
erties by stating them. Even if more properties are required,
it is not difficult to include them in a circuit. Hence, we devise
a relation circuit to efficiently represent each property in
zk-SNARKS.

In key generation, a signing and verification key pair is
generated with a proof which proves a connectivity between
the signing key and the verification key. When the secret
signing key is updated, the existing key is checked and it is
updated through one-way hash function. In a sign relation,
the secret key should be checked against the verification key,

97711

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

Algorithm 7 Relation Algorithm 8 Forward Secure Signature (FSS) Scheme
update_relation(sy, ', vk; mj, s, /) Setup(Rupdate, Rsig)
if j = 0 then CrSupdate <— T1.8€UP(Rupdate)
vk = H(sjl|r) crssig <— I1.setup(Ry;q)
else return crSypdase, CtSsig
J=ji+1 Keygen()
I.verify(m;, s;, j, vk, crs) = 1 5 (i 7
Sl'/ = H(S/') N 1
end if r <17
sign_relation(¢sie; 7}, 5j, j, vk) vk < H(sol|r)
' j<0

.verify(m;, s;, vk, crs) = 1
bsig = H(ml|jl|vk)

and a signature is a hash output of the message, the time
period, and the verification key. When aggregation of sig-
natures is required, a circuit checks two signatures to be
aggregated and generates a single hash output from two input
data.

B. FORWARD SECURE SIGNATURE CONSTRUCTION

We provide a formal construction of the proposed
forward secure signature scheme. Note that we use
simulation-extractable zk-SNARK IT as a building block in
our signature scheme. We assume that a common reference
string crs is hard-coded as an integer value in algorithm.
Algorithm 7 describes zk-SNARK relation of update and
signing process. In key generation (a time period j is set to
0), a proof that proves a correlation of the signing key and the
verification key is generated. updaterejation describes a key
generation relation and update relation. If the time period j is
0, the proof proves that the verification key vk is a hash output
of signing key s;. When the signer updates the signing key
(the time period j/ > 0), the signer proves that a verification
output of 77; which proves correctness of s; is 1 and an updated
signing key s is hash output of 5;. As described in Signyelation.
the signer should prove verification of the proof ;. Then the
signer proves that the committed value ¢y, is a hash output
of a message m, the time period j and the verification key vk.

Algorithm 8 shows an overall construction of our proposed
forward secure signature. Let H be a collision-resistant hash
function H : {0,1}* — {0, 1} where [is a bit length
of hash function output. In Setup, this algorithm takes as
input a relation for update Rypdare, and relation for sign Ryg.
The algorithm generates all common reference strings for
relations and hardcodes crsypdare, C7Ssig into the algorithms
respectively.

Keygen takes a security parameter A as input. The algo-
rithm sets an initial secret signing key so from Z, randomly
and yields a verification key vk which is a hash output of
concatenation of so and the random value r. An initial time
period j is set to 0. The algorithm computes a proof ;s
which proves the correctness of verification key vk based on
update_relation. Keygen sets (s, ;) to sk; and outputs sk;,
J> vk. Update takes as input a previous signing key sk;, time

97712

Tinit < T1.prove(s;, j, vk, crsupdate)
skj < (sj, Tinir)
return sk;, j, vk
Update(sk;, j, vk)
if TT.verify(m;, s;, j, vk, crSupdare) = 1 then
J<ij+l1
sy < H(sj)
else
abort
end if
my < T1.prove(sy, ', vk, crsupdate; 7, 8, J)
delete sk;
Skj/ < (Sj/, 7Tj/)
return skj, j/
Sign(m, skj, j, vk)
if verify(m;, s;, j, vk, crSupdare) = 1 then
$sig < H(ml|jl|vk)
Tsig < T1.prove(gsiq, crssig; j, 8j, j, vk)
else
abort
end if
type <0
0 < (nsig» ¢sigv type)
return o
Verify(m, j, vk, o)
Check ¢sig = H(m||j||vk)
b < TL.verify(msig, Psig, CrSsig)
return b

period j, and verification key vk. The algorithm verifies the
proof m; that implies the correctness of signing keys in all
previous periods first. If it is verified, it updates the signing
key by computing a new signing key s;1 that is a hash output
of s;. Update generates a proof 7;1 for update_relation
taking s;j11,j + 1, vk as input and 7j, s;, j as witness then
deletes the previous signing key sk;. The algorithm outputs
the updated signing key sk;,1 and the new time period j + 1.
Sign takes as input a message m, a signing key sk;, a time
periodj, and a verification key vk. If the proof 7r; which proves
validity of s; on update_relation is verified, ¢, that is a
hash output of m||j||vk is generated. The algorithm makes
a proof g, taking ¢y, as input based on sign_relation.

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

Algorithm 9 Agg Relation

Algorithm 10 Aggregation Construction

agg_relation(¢age: oi, 07)
Parse o; as (¢;, 7;, type;)
Parse 0 as (¢,), type;)
if type; = O then

CTS < CTSsig
else

CrS <= CTSgeq
end if
I1.verify(sm;, ¢;, crs) = 1
I.verify(z;, ¢, crssig) = 1
¢agg = H(¢l||¢])

And then type that reveals the type of signatures is 0. The
algorithm finally outputs o = (@sig, Tsig, type). Since the
normal signature verification and the aggregate signature ver-
ification have different relations, the type of signature should
be available to a verifier (and an aggregator) for efficient
aggregation. Though a secret signing key is connected with a
message directly in the normal signature scheme, our scheme
connects a message m with the verification key vk to support
aggregation of multi-user signatures.

Verify first checks the correctness of ¢y, by computing
H (m|\|j||vk). Verify calls IT.verify and returns b which is a
verification result of 7y, taking input ¢y;,.

V. EXTENDED CONSTRUCTION
A. FORWARD SECURE AGGREGATE
SIGNATURE CONSTRUCTION
Algorithm 9 represents a relation for the signature aggrega-
tion. We assume that the aggregation proceeds one by one
repeatedly regardless of the signature’s time period, message,
and verification key. The intuitive idea of the aggregation
is that a proof can be an aggregate signature if the proof
proves verification of the multiple signatures. For instance,
when Alice wants to aggregate Bob’s two signatures which
have different time periods and messages, she can aggregate
two signatures by verifying signatures respectively and prov-
ing the verification process. As described in Algorithm 9,
an aggregator verifies two signatures then generates a hash
value that implies all the components of signatures (the
message, the time period, and the verification key).
Algorithm 10 shows a whole construction of aggregation.
AggSetup takes as input a relation R,g, that is described
in Algorithm 9, and generates a common reference string
for aggregation crsug, and it is hardcoded in the algorithm.
The aggregate algorithm Agg takes as input n signature sets
(m1,j1, vk1, 01), ..., (My, ju, Vkn, o) Where m; ji,vk; are the
message, the time period, and the verification key, respec-
tively. The algorithm first checks the validity of ¢y, value
of all o; by computing H (m;||j;||vk;) then verifies first two
signatures by running IT.verify with crsy,. After they are
verified, the algorithm generates a new signature value ¢gq
which is a hash output of (¢yig, ||¢sig,)- The algorithm proves

VOLUME 9, 2021

AggSetup(Rege)
Crsggg < T1.S€tUP(Rugg)
return crs,gg
Agg((ml,jl, vky, o1), ..., (Mg, jn, vky, 01))
parse o; as (@sig;» Tsig;» tYPE;)
Check all ¢yig, = H (m;||ji||vki)
by <~ H.verify(ns,-gl s ¢sig1 s Crssig)
by < T1.Verify(msig, , Psigy» CFSsig)
if b1 &&by = 1 then
bagg < H(Psig, | Psigy)
Tagg < T1.PrOVe(Pugg, Cragg: 01, 02)
type <1
end if
if n < 3 then 0, < (Pagg, Tage, tyPE)
return o,g,
else
fori < 3tondo
Oold < (Pagg> Tagg)
by < TL.verify(mage, Pagg, CrSagg)
by < TL.verify(m;, ¢, crssi)
if b1 &b, # 1 then abort
else
Gagg < H(Paggl|Pi)
Tagg < [1.Prove(¢ugg, Crsage; Oolds 0i)
type <1
Oagg < (Dagg> Tagg, typPe)
end if
end for
end if
return o,
AggVerity((mi, ji, vki), ..., (My, jn, vkn), Oage)
parse Oqgq aS (Puggs Tagg)
¢sig1 <~ H(@m|j111vk1)
Gsigoa < Psig)
fori < 2tondo
Gsig; < H(mljil[vki)
¢sigoh1 <~ H((bsiga]d | |¢sigi)
end for
if ¢Sigold = ¢agg then
b < T1.verify(¢agg, Csage)
end if
return b

the aggregation result according to algorithm 9. If more than
two signatures are aggregated, the aggregator verifies the pre-
vious aggregate signature with crs,g, and input signature o;
with crsy;g. Similarly to the above aggregation, the aggregator
generates a hash output value @,z and proves the verification
results repeatedly. The algorithm returns aggregate signature
(@agg» Tagg, type) lastly.

A verification algorithm AggVerify takes n messages, time
periods, verification keys and the aggregate signature og,.
A verifier first checks the validity of ¢, in 044, using the

97713

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

hash-chain computation, and verifies the aggregate signature
using IT.verify.

V1. SECURITY PROOF

Proof Idea: We construct our signature scheme based on
an extractable hash assumption described in Algorithm 1.
By designing a hash extraction adversary A that utilizes a
signature forgery J as a subroutine to succeed in the extrac-
tion of a hash pre-image, we prove the forward security of
our signature scheme. Intuitively, the adversary A acquires a
trapdoor of a proof in the setup phase and the trapdoor enables
the adversary A to generate a simulated proof in the query
phase. Finally, the adversary A that has a witness extractor of
the proof extracts the hash pre-image from the proof where
the forgery JF outputs as a signature. We describe the formal
security proof as follows.

Theorem 1: Let FSS be our key evolving signature
scheme. Then for parameters modulus size A, the execution
time ¢, the common reference generation time .5, and the
number of sign queries gy,

Advigg (0) < AV () 2)
where t’ =1 4+ topg

Theorem 2: Let FSMAS be our forward secure multi-user
aggregate signature scheme. Then for parameters modulus
size A, the execution time ¢, the common reference generation
time 7.y, and the number of sign queries gy;g,

Adveguas, 7(4) = Adv 3 () 3)

where t’ =t 4 topg

A. PROOF OF THEOREM 1

We construct an adversary A that conducts a hash extraction
game described in Algorithm 1. The adversary A utilizes the
adversary F which executes Q};‘gg 7(2) experiment described

in Algorithm 5 as a subroutine. We suppose the adversary F

succeeds with Adviggg £(1) in execution time 7.

1) INITIAL KEY GENERATION

The adversary A gets a hash value o from the challenger,
and then set o to vk. The adversary runs Setup and acquires
common reference strings crsypdare, and crssig. Note that
since the adversary has a trapdoor of the common refer-
ence string, the adversary can generate simulated proof using
I1.SimProve. Unusually, the adversary does not need to
choose an initial secret signing key s, since the correctness
of vk is guaranteed by a simulated proof which deceives a
relation between vk and the blank input. The adversary runs
subroutine F taking as input vk, crSupdate, and crssig.

2) INTERACTIVE QUERY PHASE
« Update query: When F requests to update the signing
key, A runs IT.SimProve and acquires a simulated proof
on any arbitrary signing key at the queried time period.

97714

Since the simulated proof can prove any relation of false
input, A can update the signing key fraudulently.

« Sign query: A generates a signature dishonestly without
the secret signing key when 4 receives a sign query (a
message m, time period j). A sets H(m||j][vk) as ¢sig
and generates a simulated proof ;. Finally .4 outputs
a signature where o =(7y;q.¢sis.type) to F.

« Break-in query: A randomly chooses a secret signing
key sp that is unrelated to the previous signing key and
the vk. Likewise the above, relation between s, and vk
is proven by simulated proof 7. A outputs current time
period signing key s, and 7, to F.

3) FINAL FORGERY

When F acquires a signing key s, and mp, where b is
the time period at break-in, F outputs forged signature
(Tsig*, Psigr, type) on a new message m* where m* was not
queried of Sign(-,j) and 0 < j < b. After receiving the
forged signature set, .4 runs extractor £ and extracts a secret
signing key s; which is a witness of m;e+. The adversary A
can compute a pre-image of s, through hashing s; repeatedly.

4) SUCCESS PROBABILITY

We analyze a probability of above execution. Note that we
do not need to guess the time period of break-in since all
the signing keys are irrelevant to the signing key at the time
period of break-in via the simulated proof. Likewise, there
is no probability to fail responding the sign query because
all the queries can be responded through the simulated proof.
Therefore, a success probability of A converges on the suc-
cess probability of extractor £ completely.

B. PROOF OF THEOREM 2

A proof of Theorem 2 is almost identical to the proof of
Theorem 1. The adversary F forges an aggregate signature on
behalf of forging the normal forward secure signature. Thus,
all the proof procedure proceeds as subsection VI-A except
for the final forgery. When A is given a forged aggregate
signature, A should run the extractor £ recursively until the
extractor outputs the sk; of signature on message m* where
0 < j < b. Since the aggregate signature proves only the
aggregation result, an inner proof which is a witness of the
forged aggregate signature should be extracted n times in
worst case (n is the number of aggregations). Thus the success
probability of A converges on €” where € is the success proba-
bility of extractor £. Note that if the aggregation is performed
balanced then n becomes O(log(N)) where N denotes the
total number of signatures in an aggregate signature and the
success probability is Ne.

VIl. EXPERIMENT
In this section, we measure the performance of our forward

secure signature. Basically, our forward secure signature
scheme supports the aggregation of multi-user signatures
regardless of their time periods, and all the efficiencies are not
dependent on the time period. In particular, only zk-SNARK

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

I I
—¢o— BM

2,000 H —— &M f
—8— AR
— [TROpt
KO17
Z ——k— Ours
g 1,000 f
oL \ \ \ \ \
216 217 218 219 220
The total time period
(a) Setup time
I I I
—o— BM e *
—&— AR
10 {{ —=— ®opt *
KO17
2 —k— Ours
)
g s5f .
0+ B & |
| ! ! ! !
216 217 218 219 220

The total time period
(c) Update time

400 (| 1
—8&— AR
— [IROpt
KO17
Z —&— Ours
Q | N
g 200
0+) & & &
| | | | |
216 217 218 219 220
The total time period
(b) Signing time
I I T
400 | —o— 1
—&— AR
—F— IROpt
KO17
Z —%— Ours
Q | N
§ 200 //
0 % & 9 i &
| | | | |
216 217 218 219 220

The total time period
(d) Verification time

FIGURE 2. Comparison of time performances with other forward secure signatures.

circuit size affects the time efficiencies of our construction,
and the performance of the construction can differ depending
on the zk-SNARK proof scheme. We implement the forward
secure signature scheme using Plonk [32] proposed by Aztec
as the zero-knowledge proof scheme [49]. We compare the
performance of our signature scheme with BM [5], AR [6],
IR [7], KO17 [12], and KO19 [21]. The experiment is per-
formed on Intel i7 4.2GHz desktop with 64GB RAM under
Ubuntu 18.04.

Figure 2 represents the key setup time, the signing time,
the update time, and the verification time of all comparative
signatures by varying the total time period 7. The security
parameter is fixed to 2048 bits in cases of RSA-based signa-
ture schemes [5]-[7], [12], [21] and 256 bits in our case since
the construction utilizes a pairing function. The message
length is fixed to 160 bits in all cases.

As shown in Figure 2(a), the setup time is proportional
to the total time periods T in BM, AR, and IR (optimized
version). Specifically, the setup time of IROpt reaches about
2000 seconds when the total time period is 2%0. In case
of KO17, while the time complexity is O(IT) originally,
the setup is optimized by using the RSA group order in the
implementation. Our scheme has 19 seconds in all time peri-
ods cases. Figure 2(b) illustrates the signing time of the signa-
ture schemes. IROpt, KO17, and our signature scheme have
a constant signing time. Note that it takes 12 seconds in our

VOLUME 9, 2021

scheme where the circuit size affects the signing time. Mean-
while, BM and AR have a signing time that is proportional
to total time periods 7 in the same manner, the signing time
of AR takes more than those of BM since the computation
in AR is composed of exponentiation. In case of the update
time, as shown in Figure 2(c), all the signature schemes have
a constant update time. Like in the case of the signing time,
our update time is affected by the zk-SNARK circuit size and
it takes 12 seconds identical to the signing time. Figure 2(d)
illustrates the verification time of all signature schemes. Only
IROpt and our signature scheme have a constant verification
time. On the other hand, other signature schemes have a
maximum period dependent verification time. Table 3 shows
detailed data of the performance when 7 = 220, and the
message bits / = 160.

Table 4 represents the experiment results on the forward
secure aggregate schemes. We implement forward secure
aggregate schemes via applying KO19 [21] technique to BM
and AR respectively. The total time period, the message
bits, and the security parameter are equivalent to Table 3
and the number of signatures is two. As shown in Table 4,
the aggregation time in our signature scheme has a relatively
heavy computation compared with the other forward secure
signatures since a large size circuit is required like 1.6M
gates for the aggregation. However, the verification time
of the aggregate signature is equal to the single signature

97715

IEEE Access

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

TABLE 3. Performance experiment results in forward secure signature schemes.
Ours BM [5] AR [6] IR [7] KO17 [12]
Key generation time 19.407s | 642.4375s | 398.9233s | 1970.0101s 4.4893s
Update time 12.874s 0.6ms 0.4ms 43ms 0.4ms
Signing time 12.555s 2.5412s | 398.3939s 1Ims 0.4ms
Verification time 1ms 2.5118s 389.28965s 0.2ms 389.3412s
Signing key size Secret key 1.6KB 66K B 0.2KB 0.bKB 0.2KB
Public parameter | 654M B
Verification key size Veriﬁcation key 32B 65K B 0.5KB 0.5KB 1KB
Public parameter 1KB
Signature size 1.6KB 0.5KB 0.2KB 0.3KB 0.bKB
TABLE 4. Performance experiment results on aggregation.
Ours | BM-FAS [21] | AR-FAS [21]
Setup time 38.54s 1701.22s 1159.04s
Signing time 12.55s 2242.76s 3477.03s
Aggregation time 25.23s 0.004ms 0.004ms
Aggregate signature verification time | 1ms 1680.63s 1739.39s

verification. In addition, the circuit is optimizable using Halo
technique [44] that performs the proof verification outside the
proof circuit via the proof aggregation.

VIil. CONCLUSION

In this paper, we propose a new forward secure multi-user
aggregate signature using zk-SNARK. Our new forward
secure signature scheme supports all constant complexities
and a flexible aggregation where all restrictions that exist
in previous works are eliminated. Specifically, our signa-
ture scheme has constant complexities of setup time, update
time, signing time and verification time. In terms of the
size, signature and key sizes are also constant. Our signature
scheme supports the aggregation of multi-user signatures
with all different messages and different time periods. We use
zk-SNARK as a building block of the forward secure sig-
nature scheme. Through the characteristic of zk-SNARK
that proves any arbitrary relation in key evolving structure,
we remove time period dependent operations and aggregate
multi-user signatures flexibly. The security of the proposed
scheme is formally proven in the random oracle model. Our
experimental results demonstrate the practicality of our sig-
nature scheme. In future, we will extend our methodology
to cover more properties such as group signatures, blind
signatures, etc. and improve the performance in zk-SNARK
computation.

REFERENCES

[1] X. Yang, D. Fan, A. Ren, N. Zhao, and M. Alam, “5G-based user-
centric sensing at C-band,” IEEE Trans. Ind. Informat., vol. 15, no. 5,
pp. 3040-3047, May 2019.

C. Meshram, A. Alsanad, J. V. Tembhurne, S. W. Shende, K. W. Kalare,
S. G. Meshram, M. A. Akbar, and A. Gumaei, “A provably secure
lightweight subtree-based short signature scheme with fuzzy user data
sharing for human-centered I0T,” IEEE Access, vol. 9, pp. 3649-3659,
2021.

[2]

97716

[3]

[4]
[51

[6]

[7

[8]

[91

[10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

X. Yang, L. Guan, Y. Li, W. Wang, Q. Zhang, M. U. Rehman, and
Q. H. Abbasi, “Contactless finger tapping detection at C-band,” IEEE
Sensors J., vol. 21, no. 4, pp. 5249-5258, Feb. 2021.

R. Anderson, “Invited lecture,” in Proc. 4th ACM Comput. Commun.
Secur., 1997.

M. Bellare and S. K. Miner, “A forward-secure digital signature scheme,”
in Proc. 19th Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer,
Aug. 1999, pp. 431-448.

H. Jingxin, “A new forward-secure digital signature scheme,” in Proc.
Int. Workshop Anti-Counterfeiting, Secur. Identificat. (ASID), Apr. 2007,
pp. 116-129.

G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing
and verifying,” in Proc. Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA:
Springer, Aug. 2001, pp. 332-354.

A. Kozlov and L. Reyzin, “Forward-secure signatures with fast key
update,” in Proc. 3rd Int. Conf., SCN. Amalfi, Italy: Springer, Sep. 2002,
pp. 241-256.

X. Boyen, H. Shacham, E. Shen, and B. Waters, “‘Forward-secure signa-
tures with untrusted update,” in Proc. 13th ACM Conf. Comput. Commun.
Secur. (CCS), 2006, pp. 191-200.

T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-secure
signatures with an unbounded number of time periods,” in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. Amsterdam, The Netherlands: Springer,
Apr./May 2002, pp. 400-417.

H. Krawczyk, “Simple forward-secure signatures from any signature
scheme,” in Proc. 7th ACM Conf. Comput. Commun. Secur. (CCS), 2000,
pp. 108-115.

J. Kim and H. Oh, “Forward-secure digital signature schemes with optimal
computation and storage of signers,” in Proc. 32nd IFIP TC 11 Int. Conf.,
SEC. Rome, Italy: Springer, May 2017, pp. 523-537.

S. Hohenberger and B. Waters, ‘“New methods and abstractions for RSA-
based forward secure signatures,” in Proc. 18th Int. Conf., ACNS. Rome,
Italy: Springer, Oct. 2020, pp. 292-312.

K. Qiao, H. Tang, W. You, and Y. Zhao, “Blockchain privacy protection
scheme based on aggregate signature,” in Proc. IEEE 4th Int. Conf. Cloud
Comput. Big Data Anal. (ICCCBDA), Apr. 2019, pp. 492-497.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably
encrypted signatures from bilinear maps,” in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Warsaw, Poland: Springer, May 2003, pp. 416-432.
D. R. Brown and S. A. Vanstone, “Aggregate signature schemes,”
U.S. Patent 8 185 744, May 22, 2012.

H. Xiong, Z. Guan, Z. Chen, and F. Li, “An efficient certificateless
aggregate signature with constant pairing computations,” Inf. Sci., vol. 219,
pp. 225-235, Jan. 2013.

VOLUME 9, 2021

J. Lee et al.: Forward-Secure Multi-User Aggregate Signatures Based on zk-SNARKs

IEEE Access

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

C. Gentry and Z. Ramzan, ‘“‘Identity-based aggregate signatures,” in Proc.
9th Int. Conf. Theory Pract. Public-Key Cryptogr. New York, NY, USA:
Springer, Apr. 2006, pp. 257-273.

S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes, “Comparing
two pairing-based aggregate signature schemes,” Des., Codes Cryptogr.,
vol. 55, nos. 2-3, pp. 141-167, May 2010.

D. Ma and G. Tsudik, “Forward-secure sequential aggregate authentica-
tion,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007, pp. 86-91.

J. Kim and H. Oh, “FAS: Forward secure sequential aggregate signatures
for secure logging,” Inf. Sci., vol. 471, pp. 115-131, Jan. 2019.

D. Ma, “Practical forward secure sequential aggregate signatures,” in
Proc. ACM Symp. Inf., Comput. Commun. Secur. (ASIACCS), 2008,
pp. 341-352.

A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: Efficient and
publicly verifiable cryptographic schemes for secure logging in resource-
constrained systems,” ACM Trans. Inf. Syst. Secur., vol. 15,no. 2, pp. 1-28,
Jul. 2012.

M. Drijvers and G. Neven, ‘“Forward-secure multi-signatures,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 261, Dec. 2019.

J. Groth and M. Maller, “Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable SNARKS,” in Proc. 37th Annu. Int.
Cryptol. Conf., vol. 10402. Santa Barbara, CA, USA: Springer, Aug. 2017,
pp. 581-612.

S. Bowe and A. Gabizon, “Making Groth’s zk-SNARK simulation
extractable in the random oracle model,” IACR Cryptol. ePrint Arch.,
vol. 2018, p. 187, Feb. 2018.

H. Lipmaa, ‘“Simulation-extractable snarks
ePrint Arch., Tech. Rep. 2019/612, 2019.
https://eprint.iacr.org/index.html

J. Kim, J. Lee, and H. Oh, “Qap-based simulation-extractable snark with
a single verification,” Cryptol. ePrint Arch., Tech. Rep. 2019/586, 2019.
[Online]. Available: https://eprint.iacr.org/index.html

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “Recursive composition
and bootstrapping for SNARKS and proof-carrying data,” in Proc. 45th
Annu. ACM Symp. Symp. Theory Comput. (STOC), 2013, pp. 111-120.

J. Kim, J. Lee, and H. Oh, “Simulation-extractable zk-SNARK with a
single verification,” IEEE Access, vol. 8, pp. 156569-156581, 2020.

M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
knowledge SNARKSs from linear-size universal and updatable structured
reference strings,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 2111-2128.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over Lagrange-bases for oecumenical noninteractive arguments of knowl-
edge,” IACR Cryptol. ePrint Arch., vol. 2019, p. 953, Dec. 2019.

B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 315-334.

(2014). Libsnark. Accessed: 2020. [Online]. Available: https://github.
com/scipr-lab/libsnark

J. Baylina. (2020). Iden3/Snarkjs. [Online]. Available: https://github.
com/iden3/snarkjs

J. Li, H. Teng, X. Huang, Y. Zhang, and J. Zhou, “A forward-
secure certificate-based signature scheme,” Comput. J., vol. 58, no. 4,
pp. 853-866, Apr. 2015.

Y. LuandJ. Li, “A forward-secure certificate-based signature scheme with
enhanced security in the standard model,” KSII Trans. Internet Inf. Syst.,
vol. 13, no. 3, pp. 1502-1522, 2019.

J. Li, H. Du, and Y. Zhang, “Certificate-based key-insulated signature in
the standard model,” Comput. J., vol. 59, no. 7, pp. 1028-1039, 2016.

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 238-252.

J. Groth, “On the size of pairing-based non-interactive arguments,” in
Proc. 35th Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Vienna,
Austria: Springer, May 2016, pp. 305-326.

R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span pro-
grams and succinct NIZKs without PCPs,” in Proc. 32nd Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. Athens, Greece: Springer, May 2013,
pp. 626-645.

A. Chiesa and E. Tromer, “Proof-carrying data and hearsay arguments
from signature cards,” in Proc. ICS, vol. 10, 2010, pp. 310-331.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘“Scalable zero
knowledge via cycles of elliptic curves,” Algorithmica, vol. 79, no. 4,
pp. 1102-1160, Dec. 2017.

revisited,”
[Online].

Cryptol.
Available:

VOLUME 9, 2021

(44]

[45]

[46]

(47]

(48]

[49]

S. Bowe, J. Grigg, and D. Hopwood, ‘“Halo: Recursive proof composition
without a trusted setup,” IACR Cryptol. ePrint Arch., vol. 2019, p. 1021,
Feb. 2020.

A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and trans-
parent recursive proofs from holography,” in Proc. 39th Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. Zagreb, Croatia: Springer, May 2020,
pp. 769-793.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proc. 3rd Innov. Theor. Comput. Sci. Conf. (ITCS),
2012, pp. 326-349.

D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno, “Hash first, argue later: Adaptive verifiable computations on
outsourced data,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 1304-1316.

A. Chiesa and E. Tromer, “Proof-carrying data: Secure computation
on untrusted platforms (high-level description),” Next Wave, Nat. Secur.
Agency’s Rev. Emerg. Technol., vol. 19, no. 2, pp. 40-46, 2012.

(2020). Aztecprotocol/Barretenberg. [Online]. Available: https://github.
com/AztecProtocol/barretenberg.git

JEONGHYUK LEE received the B.S. degree in
information systems engineering from Hanyang
University, Seoul, South Korea, where he is cur-
rently pursuing the Ph.D. degree in information
systems engineering. His current research inter-
ests focus on applied cryptography, in particular
on provable security for cryptographic schemes,
including protocols for public-key encryption,
blockchain, and zero-knowledge proof systems.

JIHYE KIM (Member, IEEE) received the B.S.
and M.S. degrees from the School of Com-
puter Science and Engineering, Seoul National
University, South Korea, in 1999 and 2003,
respectively, and the Ph.D. degree in computer
science from the University of California at Irvine,
in 2008. She is currently an Associate Profes-
sor with the Department of Electrical Engineer-
ing, Kookmin University. Her research interests
include network security, applied cryptography,
and zero-knowledge proof.

HYUNOK OH (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer engineer-
ing from Seoul National University, Seoul, South
Korea, in 1996, 1998, and 2003, respectively. He is
currently a Full Professor with the Department of
Information Systems, Hanyang University, Seoul.
His research interests include applied cryptogra-
phy, zero-knowledge proof, and blockchain.

97717

