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ABSTRACT For the parallel parking problem in narrow space, this paper proposes a trajectory tracking
control method with a novel trajectory planning layer for autonomous parallel parking based on a numerical
optimization algorithm and model predictive control. In the trajectory planning layer, the vehicle kinematics
model suitable for the low-velocity parking scene is established. Considering the vehicle physical constraints,
boundary condition constraints, and obstacle avoidance constraints during the parking process, the parking
trajectory planning task is described as an optimal control problem, further transformed into a nonlinear
programming problem by Gauss pseudo-spectral method. Taking the shortest parking completion time as
the optimization objective function, the parking trajectories of the large, medium and small parking spaces
are obtained, respectively. A parking trajectory tracking controller based on the model predictive control
algorithm is designed in the trajectory tracking control layer. The linear error model is used as the prediction
model, and the quadratic programming is adopted as the rolling optimization algorithm in the tracking
controller. The velocity and front-wheel swing angle are obtained as control signals for parking trajectory
tracking. Through CarSim and Simulink’s co-simulation, the feasibility and effectiveness of the proposed
parallel parking trajectory planning and tracking control method are verified. The co-simulation results show
that the maximum tracking errors of horizontal and longitudinal positions are less than 0.15m. Themaximum
tracking errors of heading angle are less than 2◦ under three different parking spaces. Real vehicle tests are
carried out to verify the effectiveness of the proposed hierarchical control method. The test results show that
the vehicle can park in the parking space safely, quickly and accurately when the actual parking space is
detected. The proposed method can plan the parking trajectory with the constraints and the shortest time and
control the vehicle to complete the parking operation accurately along the planned trajectory.

INDEX TERMS Trajectory planning, trajectory tracking, parallel parking, Gauss pseudo-spectral, model
predictive control.

I. INTRODUCTION
With the continuous improvement of automobile intelligence
and network, assisted driving and autonomous driving tech-
nology have become the research hotspot of major automo-
bile manufacturers at home and abroad. As the key technical
link of autonomous driving technology, autonomous parking
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technology can not only effectively solve the problem of
parking difficulty caused by the lack of driver’s experience
or technology in narrow space, but also significantly improve
the efficiency, safety, and comfort of parking. Therefore,
the research and development of autonomous parking sys-
tems have fundamental practical significance.

An autonomous parking system includes environ-
ment perception, decision-planning, control execution,
and information interaction modules. Among them, the
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decision-planning module mainly uses the information
obtained by the perception device or network to make
decisions and judgments. It then plans the best reference
trajectory or path for vehicles. It is the vehicle’s brain,
the key to the success of the destination, and the core of
the autonomous parking system. It is worth mentioning
that the difference between trajectory and path is that the
planning result of the former is related to time, while the
latter has nothing to do with time parameters. However, both
of them belong to the category of motion planning. Many
scholars and research institutions have carried out a lot of
research in terms of motion planning methods. According
to their implementation in automated driving, these plan-
ning techniques were classified into six groups: geometry
method, graph search method, random sampling method,
curve interpolation method, machine learning method, and
optimization algorithm, such as dynamic optimization. The
most relevant planning algorithms implemented in motion
planning for automated driving are described below. In liter-
ature [1]–[4], according to the geometric relationship among
vehicles, surrounding obstacles, and target parking spaces,
the parking path was obtained by geometric methods such
as multi-section arc or tangent arcs and straight lines. The
advantages were simple algorithms and high solving effi-
ciency, but the discontinuous curvature of the planned path
led to difficulty tracking control. The spline curve method
proposed in the literature [5] and [6] was one of the most
commonly usedmethods to generate a path. Literature [7], [8]
adopted improved heuristic graph search algorithms to gen-
erate safe and smooth autonomous driving paths on com-
plex unstructured roads. In reference [9], the Depth First
Search (DFS) algorithm was used to plan the optimal path
based on processing the vertices of the directed graph. The
path needed to be refined to achieve higher accuracy and be
suitable for tracking control. Literature [10]–[12] adopted
rapid exploration random tree (RRT) to generate required
local paths within the permitted driving area while ensuring
real-time performance in a dynamic environment. The ability
of this algorithm to deal with complex constraints needed
to be further improved. In literature [13]–[17], the curve
interpolation methods such as Bezier curve, clothoid curve,
spline curve, and arctangent polynomial curve were respec-
tively used for parking path planning. The motion path gen-
erated by this method has good continuity, smoothness, and
traceability. However, it had strict requirements on the size
of parking space. Literature [18]–[20] respectively applied
Reinforcement Learning (RL), special deep neural network,
Midden Markov Model (HMM), and other machine learning
methods to motion planning. Their advantages were fast
calculation speed and specific generalization ability, but a
large number of training samples required to be collected.

The state and control parameter values of the planned
trajectory or path will be used as the reference in the con-
trol execution module. The function of the control execution
model is to use an advanced algorithm to control the steering
wheel, accelerator, brake, and other actuators so as to achieve

the purpose of driving, braking, and steering, and finally
make the actual driving trajectory or path of the vehicle
consistent with the planned trajectory or path as much as
possible. In terms of trajectory tracking control algorithm,
reference [21]–[23] designed path tracking controllers based
on feedback linearization control and Sliding Mode Control
(SMC), respectively. In reference [24], the Linear Quadratic
Regulator (LQR) was used to realize the closed-loop optimal
control of path tracking for the parking system. In refer-
ences [25], [26], the path tracking control method based on
nonlinearmodel predictionwas applied to the path tracking of
agricultural vehicles. In reference [27], this method was fur-
ther combined with PID control technology as a hybrid con-
trol strategy for tracking control of intelligent vehicles. The
computational efficiency and adaptability of the path track-
ing control algorithm based on preview theory were further
improved in reference [28]. The above planning and tracking
algorithms are of great positive significance to the realization
of the planning layer and tracking layer of unmanned vehi-
cles. In terms of state estimation, literature [29] proposed a
dual unscented Kalman filter (DUKF) approach, where two
UKFs run in parallel to simultaneously estimate vehicle states
and parameters.

Gauss pseudo-spectral Method (GPM) can transform the
continuous optimal trajectory problem into a nonlinear pro-
gramming problem on the basis of discretization of variables.
The interior-point method is further adopted to solve the
nonlinear programming problem. Many advantages, such as
fast convergence speed and low sensitivity to the initial value,
make this method more suitable for autonomous parking
trajectory planning. The application of model predictive con-
trol (MPC) is more and more in control scenarios, which
requires less model accuracy, but has better control stability
and accuracy. It is more suitable for solving the trajectory
tracking control of autonomous parking with obvious fea-
tures, such as low speed, a significant change of reference
path curvature, and heading; many constraints exist in the
solution process. Under the MPC framework, the longitu-
dinal and lateral control can be transformed into the same
optimization problem with constraints to fully consider the
coupling effect of vehicle motion. Literature [29] proposed
two control architectures based on MPC for vehicle obstacle
avoidance. One was to realize planning and control in double
layers, and the other was to realize planning and control in the
same MPC controller. The advantage of hierarchical control
is that the planning can adopt a relatively simple model,
and the amount of calculation is relatively small, while the
integrated control can avoid planning the infeasible trajectory,
but the real-time application is more complicated. This paper
proposes a GPM-MPC based hierarchical control method for
autonomous parking trajectory planning and tracking accord-
ing to the above architecture.

The entire autonomous parking system is built from several
modules, and simplified system architecture is illustrated
in Fig.1. The trajectory planning and tracking control layers
are marked with blue and green sub modules respectively,
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FIGURE 1. The simplified architecture of the autonomous parking system.

where the method of planning and trajectory tracking control
are considered as the main contributions of this work. The
main work of this paper is as follows: Firstly, the kinematics
model suitable for low-velocity parking scene is established.
Considering the physical constraints, obstacle avoidance con-
straints, and boundary constraints of parking conditions,
the parking trajectory planning task is described in the form of
an optimal control problem, which is further transformed into
a nonlinear programming problem byGPM. Taking the short-
est parking completion time as the optimization objective
function, the parking trajectories of large, medium and small
parking spaces are solved respectively by the interior-point
method. In the trajectory tracking controller based on the
MPC algorithm, the center point of the rear-axle of the vehicle
is taken as the state observation point, and the front wheel
angle and velocity are taken as the control variables. Firstly,
the nonlinear kinematics model is linearized and discretized,
and then the state prediction model is established. In the
prediction horizon, the quadratic programming algorithm is
adopted to solve the control parameter sequence. The Car-
Sim and Simulink co-simulation platforms are used to verify
the trajectory tracking effect, and the deviation between the
actual output by CarSim and the output by the prediction

model is taken as the feedback quantity to correct the MPC
further.

II. ANALYSIS OF VEHICLE PARKING MOVEMENT
PROCESS
A. ESTABLISHMENT OF VEHICLE KINEMATICS MODEL
Under the condition of autonomous parking on a flat road,
the dynamic characteristics such as sideslip caused by tire
lateral force can be ignored due to the low driving velocity.
Instead, vehicle kinematics should be considered. According
to Ackerman’s front-wheel steering principle, a pure rolling
vehicle kinematics model is established in the ground coordi-
nate system with the center point of the vehicle’s rear-axle as
the state observation point for autonomous parking trajectory
planning, as shown in Fig. 2.

FIGURE 2. Vehicle kinematics model.

In the figure, L, f , r and d respectively denote vehi-
cle wheelbase, front suspension, rear suspension and width;
(x, y) is the mid-point of rear-wheel axis(see the refer-
ence point R in figure 2); v denotes the linear velocity of
point R; O denotes the instantaneous rotation center of vehi-
cle; ϕ denotes the steering angle of front wheels; θ denotes
the heading angle; A, B, C and D are the four contour vertices
of vehicle body. Kinematics of a front-steering automobile is
described through differential equations:

d
dt


x(t)
y(t)
v(t)
a(t)
θ (t)
ϕ(t)

 =


v(t) · cos θ(t)
v(t) · sin θ (t)

a(t)
j(t)

v(t) · tanϕ(t)/L
ω(t)

 , t ∈ [t0, tf ] (1)

Herein: a and j stand for vehicle acceleration and the
change rate of acceleration; t0 and tf refer to the starting
and finishing time of parking respectively; ω refers to the
angular velocity corresponding to the ϕ. According to the
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vehicle dimensions, the position of the rear axle center point
and the geometric relationship, the horizontal and vertical
coordinates of 4 contour vertices A, B, C and D can be
deduced as follows:



Ax(t)
Ay(t)
Bx(t)
By(t)
Cx(t)
Cy(t)
Dx(t)
Dy(t)


=



x(t)+ (L + f ) · cos θ (t)−
d
2
· sin θ(t)

y(t)+ (L + f ) · sinθ (t)+
d
2
· cos θ (t)

x(t)+ (L + f ) · cos θ (t)+
d
2
· sin θ(t)

y(t)+ (L + f ) · sin θ (t)−
d
2
· cos θ (t)

x(t)− r · cos θ (t)+
d
2
· sin θ (t)

y(t)− r · sin θ (t)−
d
2
· cos θ (t)

x(t)− r · cos θ (t)−
d
2
· sin θ (t)

y(t)− r · sin θ (t)+
d
2
· cos θ (t)



,

t ∈ [t0, tf ] (2)

B. CONSTRAINT CONDITION
1) VEHICLE PHYSICAL CONSTRAINTS
In the process of autonomous parking, the physical and
mechanical constraints of the vehicle need to be satisfied,
which are transformed into inequality constraints on some
state variables and control variables as follows:

|v(t)| ≤ vmax

|a(t)| ≤ amax

|j(t)| ≤ jmax

|ϕ(t)| ≤ ϕmax

|ω(t)| ≤ ωmax,

t ∈ [t0, tf ] (3)

where vmax, amax, jmax, ϕmax and ωmax refer to the maximum
velocity, the maximum acceleration, the maximum change
rate of acceleration, the maximum steering angle of the front
wheel, the corresponding maximum angular velocity allowed
in the parking process.

2) BOUNDARY CONDITION CONSTRAINTS
In the case of ignoring the dynamic obstacles such as pedes-
trians and other vehicles, the external constraint during the
autonomous parking process is the boundary condition con-
straint, which should be considered first. Taking parallel park-
ing as an example, the schematic diagram of the autonomous
parking area is shown in Fig.3, where Lp and Wp refer to the
length and width of parking spaces; Wr denotes the width of
the road.

At the starting and finishing time of autonomous parking,
the vehicle is considered to be in a static state, and the steering
angle of the front wheel is zero. The coordinate of the point
R at the starting time is (x0, y0) and the heading angle is θ0.
When parking is completed, the state is changed to that the
coordinate of point R is (xf , yf ) and the heading angle is zero.

FIGURE 3. Schematic diagram of autonomous parallel parking area.

The four contour vertices of the vehicle are strictly required
to be within the parking space. To sum up, the state variables,
control variables and contour vertex coordinates should meet
the equation (4) and inequality (5):

v(t0) v(tf )
a(t0) a(tf )
j(t0) j(tf )
ω(t0) ω(tf )
ϕ(t0) ϕ(tf )
θ (t0) θ(tf )
x(t0) x(tf )
y(t0) y(tf )


=



0 0
0 0
0 0
0 0
0 0
θ0 0
x0 xf
y0 yf


(4)


0 < Ax(tf ) < Lp,−Wp < Ay(tf ) < 0
0 < Bx(tf ) < Lp,−Wp < By(tf ) < 0
0 < Cx(tf ) < Lp,−Wp < Cy(tf ) < 0
0 < Dx(tf ) < Lp,−Wp < Dy(tf ) < 0

(5)

3) OBSTACLE AVOIDANCE CONSTRAINTS
In addition to the above constraints, the vehicle should avoid
collision with obstacles and road edges in the parking area
during the whole parking time domain [t0, tf ]. The contour
of the vehicle is similar to that of the rectangle, so it is
better to describe the vehicle as a rectangle for parking scenes
with small activity area. Obstacle avoidance idea is shown
in Fig. 4. Taking vehicle vertex A and the point P4 of the
obstacle for example, the constraint requires that all points
of the obstacle composed of P1, P2, P3, P4 do not contact the
pointA, and the four verticesA,B,C ,D should strictly located
outside the obstacle. The above constraint is expressed by the
following inequality:{
S1AP1P2+S1AP2P3+S1AP3P4+S1AP1P4>α ·SP1P2P3P4
S1P4AB + S1P4BC + S1P4CD + S1P4DA > α · SABCD

(6)

Herein: S1 refer to the area of triangle; SP1P2P3P4 refer to
the area of rectangle P1, P2, P3, P4; SABCD refer to the area of
rectangleA,B,C ,D; α refer to the safety factor greater than 1.
The area of rectangle can be calculated by vehicle dimension
parameters and the area of triangle can be calculated by its
three vertex coordinates. For example, the area of1PiAB can
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FIGURE 4. Diagram of obstacle avoidance constraints in parking process.

be calculated by following equation:

S1PiAB =
1
2
· [Pix · Ay + Ax · By + Bx · Piy − Pix

·By − Ax · Piy − Bx · Ay] (7)

The collision between vehicle and parking obstacles should
be avoided, so as to the edge of the road. To avoid collision
with the road edge, it is equivalent to that the four vertices
of the vehicle are all on one side of the road edge, as the
following inequality:
−Lp ≤ Ax(t) ≤ 2 · Lp,−Wp ≤ Ay(t) ≤ Wr

−Lp ≤ Bx(t) ≤ 2 · Lp,−Wp ≤ By(t) ≤ Wr

−Lp ≤ Cx(t) ≤ 2 · Lp,−Wp ≤ Cy(t) ≤ Wr

−Lp ≤ Dx(t) ≤ 2 · Lp,−Wp ≤ Dy(t) ≤ Wr ,

t ∈ [t0, tf ]

(8)

III. AUTONOMOUS PARKING TRAJECTORY PLANNING
BASED ON GPM
A. DESCRIPTION OF AUTONOMOUS PARKING PROBLEM
Without losing generality, the Bolza problem of nonlinear
optimal control can be described as:

minψ = φ(ξ (t0), t0, ξ (tf ), tf )+
∫ tf

t0
g(ξ (t), µ(t), t)dt (9)

s.t.


ξ̇ (t) = f (ξ (t), µ(t), t)
M (ξ (t), µ(t), t) ≤ 0
N (ξ (t0), t0, ξ (tf ), tf ) = 0

(10)

where: ξ (t) and µ(t) are the state variables and control vari-
ables of the system respectively, and satisfy the following
conditions: ξ (t) ∈ Rn, µ(t) ∈ Rm; minψ is the objective
function of the optimal control problem. In equation (10),
the first row describes the state differential equation of the
system; The second row is the inequality constraint of system
variables in the process of solving the objective function; The
third row is the corresponding equality constraint. Trajectory
planning of autonomous parking is actually a generalized
Bolza problem of nonlinear optimal control. In order to
improve the parking efficiency, reduce the road occupation
time and ensure the road capacity, the objective function of
the optimal control problem is set to achieve the shortest
parking time, that is min tf . Combined with the constraints

above, the nonlinear optimal control problem of autonomous
parking trajectory planning can be described as the following
mathematical model:

min tf (11)

s.t.


Equation (1)
Equation (3), (5), (6), (8)
Equation (4)

(12)

B. SOLUTION OF PARKING TRAJECTORY BASED ON GPM
GPM is a direct method for solving nonlinear optimal
control problems. The continuous optimization problem is
discretized at the Legendre-Gauss (LG) collocation point,
and Lagrange interpolation polynomials are constructed to
approximate the state variables and control variables. Alge-
braic constraints are used to replace the constraints of the
differential equation. As a result, the optimal control problem
can be transformed into a Nonlinear Programming (NLP)
problem. The advantages of GPM are high adaptability to
initial value, fast convergence rate and high accuracy.

1) TIME DOMAIN TRANSFORMATION
The starting and ending time range of autonomous
parking [t0, tf ] is divided into p subintervals, namely{
[t0, t1], [t1, t2], · · · , [tq−1, tq], · · · , [tp−1, tp]

}
, tp = tf , q ∈

[1, p]. In GPM algorithm, the interval of discrete points of the
time variable is τ ∈ [−1, 1], so it is necessary to transform
each sub interval in time domain. Any time t ∈ [tq−1, tq] can
be transformed into τ ∈ [−1, 1] by equation (13).

τ =
2 · t − (tq−1 + tq)

tq − tq−1
(13)

Based on time domain transformation, the optimal control
problem in the subinterval [tq−1, tq] can be described as
follows:

minψ (q)
= φ(q)(ξ (q)(τ0), tq−1, ξ (q)(τf ), tq)

+
tq − tq−1

2

·

∫ τf

τ0

g(ξ (q)(τ ), µ(q)(τ ), τ : tq−1, tq)dτ (14)

s.t.


ξ̇ (q)(τ )=

tq − tq−1
2

·f (ξ (q)(τ ), µ(q)(τ ), τ : tq−1, tq)

M (ξ (q)(τ ), µ(q)(τ ), τ : tq−1, tq) ≤ 0
N (ξ (q)(τ0), τ0, ξ (q)(τf ), τf ) = 0

(15)

where, ξ (q)(τ ) and µ(q)(τ ) refer to the state variables and
control variables which are obtained by transforming the
time t into τ in the q-th subinterval.

2) DISCRETIZATION OF VARIABLES
The state variables and control variables are discretized at
the Legendre-Gauss (LG) collocation point, and the Lagrange
polynomial is constructed to approximate the state variables ξ
and control variables µ. In the interval [τ0, τf ], the Legendre
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polynomials of order N are:

PN (τ ) =
1

2N · N !
·
dN

dτN
· [(τ 2 − 1)N ] (16)

N + 1 collocation points are made up of zero point
(τ1, τ2, · · · , τN ) of equation (16) and the initial point
τ0 = −1, the state variables and control variables at each
collocation point are as follows:{

ξ (τ0), ξ (τ1), · · · , ξ (τN )
µ(τ0), µ(τ1), · · · , µ(τN )

(17)

Lagrange interpolation polynomial is constructed at the
collocation point to interpolate state variables and control
variables. The Lagrange basis functions are as follows:

L(p)i (τ ) = 5N
j=0,j6=i

τ − τ
(p)
j

τi − τ
(p)
j

L̃(p)i (τ ) = 5N
j=1,j6=i

τ − τ
(p)
j

τi − τ
(p)
j

(18)

According to the equations (16)-(18), the approximate
polynomials of state variables and control variables in the
subinterval [tq−1, tq] can be obtained, which are expressed as
follows: 

ξ (q)(τ ) ≈
∑N

i=0
L(p)i (τ ) · ζ (q)(τi)

µ(q)(τ ) ≈
∑N

i=0
L̃(p)i (τ ) · U (q)(τi)

(19)

The differential of the approximate polynomial can be used
to approximate the differential of the state variable by taking
the derivative of Equation (19), such as the derivative of the
state variable at the point τk can be expressed as:

ξ̇ (p)(τk ) ≈
∑N

i=0
L̇(p)i (τk ) · ζ (q)(τi) (20)

Combined with Equations 14, 15 and 20, the kinematic
differential equation constraint can be transformed into alge-
braic equation constraint:

ξ̇ (p)(τk )−
tq − tq−1

2
· f (ζ (τk ),U (τk ), τk ) = 0 (21)

3) CONSTRAINTS UNDER DISCRETE CONDITIONS
The equality and inequality constraints of the system vari-
ables are as follows with discretization:{

M (ζ (q)(τk ),U (q)(τk ), τk : tq−1, tq) ≤ 0
N (ζ (q)(τ0), τ0, ζ (q)(τf ), τf ) = 0

(22)

The curvature of the trajectory needs to be continuous to
adapt to the actual parking process, so the state variables
should also be continuous correspondingly. In short, the value
of the state variables at the end of each sub interval is required
to be the same as that at the initial time of the next sub interval.
However, the change of the control variables could be discon-
tinuous. The specific constraints are shown in equation (23):

ζ (q−1)(τf ) = ζ (q)(τ0) (23)

It can be seen from Equation (17) that the LG collocation
point does not include the terminal time of each subinterval.
Therefore, the value of terminal state can be approximated by
Gauss integral according to equation (23), as follows:

ζ (q)(τf )≈ζ (q)(τ0)+
tq−tq−1

2

∑N

k=0
ρk ·f (ζ (τk ),U (τk ), τk )

(24)

where, the ρk denotes the weight coefficient of Gaussian
integral.

4) THE OBJECTIVE FUNCTION IN THE DISCRETE CASE
Through the above discretization process, the optimal con-
trol problem of autonomous parking trajectory planning
can be transformed into a nonlinear programming problem.
By approximating the integral term of the objective function
by Gauss integral, the objective function in the discrete case
can be obtained:

minψ (q)
= φ(q)(ξ (q)(τ0), tq−1, ξ (q)(τf ), tq)

+
tq−tq−1

2
·

∑N

k=0
ρk ·g(ζ (τk ),U (τk ), τk ) (25)

IV. PARKING TRAJECTORY TRACKING CONTROL BASED
ON MPC
MPC consists of three modules: predictive model, rolling
solution and feedback correction. The advantages of the algo-
rithm are a low requirement on model precision, good robust-
ness and high stability. It is more suitable for solving the
problem of trajectory tracking control of autonomous parking
with obvious features, such as low speed; a large change of
reference path curvature and heading; many constraints exist
in the solution process.

A. LINEARIZATION OF STATE DIFFERENTIAL EQUATIONS
It can be seen from equation (1) that the trajectory tracking
of autonomous parking can be regarded as a nonlinear control
system with control variables µ = [v, ϕ]T and state variables
ξ = [x, y, θ, a, j, ω], and its state differential equation is
expressed as ξ̇ = f (t, ξ, µ). It is necessary to linearize the
state differential equation and use the linearized linear error
model as the MPC prediction model. The state differential
equation is expanded by the Taylor series at the reference
point (ξr , µr ). Ignoring the higher order term, the following
equation can be obtained with the only first-order term:

ξ̇ ≈ f (tr , ξr , µr )+
∂f (t, ξ, µ)

∂ξ

∣∣∣∣∣∣ ξ = ξrµ = µr

(ξ − ξr )

+
∂f (t, ξ, µ)

∂µ

∣∣∣∣∣∣ ξ = ξrµ = µr

(µ− µr ) (26)

By subtracting equation (26) from the planned state param-
eters trajectory ξ̇r = f (tr , ξr , µr ), the state error model can
be obtained:

˙̃
ξ = ξ̇ − ξ̇r = A(t) · ξ̃ + B(t) · µ̃ (27)
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Herein:

A(t) =
∂f (t, ξ, µ)

∂ξ

∣∣∣∣∣∣ ξ = ξrµ = µr

, B(t) =
∂f (t, ξ, µ)

∂µ

∣∣∣∣∣∣ ξ = ξrµ = µr

refer to the Jacobianmatrices of function f relative to ξ andµ;
ξ̃ = ξ − ξr , µ̃ = µ− µr .

B. DISCRETIZATION OF STATE DIFFERENTIAL EQUATIONS
Equation (27) is a linearized equation of state and a linear
time-varying model. However, it cannot be directly used in
the design of model prediction controller due to its continu-
ity. According to the forward Euler equation, the difference
quotient is adopted instead of the differential, which can be
discretized as follows:

A(k) · ξ̃ (k)+ B(k) · µ̃(k)

=
ξ̃ (k + 1)− ξ̃ (k)

T
(28)

ξ̃ (k + 1) = (I + T · A(k)) · ξ̃ (k)+ T · B(k) · µ̃(k) (29)

ξ̃ (k + 1) = Akin(k) · ξ̃ (k)+ Bkin(k) · µ̃(k) (30)

Herein: T is the sampling time.

C. PREDICTION EQUATIONS
According to the discrete and linearized model of equa-
tion (30), state variables and control variables are combined
to make the following settings:

ε(k) =

[
ξ̃ (k)

µ̃(k − 1)

]

Ã(k) =

[
Akin(k) Bkin(k)
0m×n Im

]

B̃(k) =

[
Bkin(k)
Im

]
C̃(k) =

[
C(k) 01×m

]
(31)

Herein: Im is the identity matrix,m and n are the number of
control parameters and state parameters respectively. The lat-
eral displacement x, longitudinal displacement y and heading
angle θ of the rear-axle center vehicle are taken as the system
output, the corresponding C(k) = [1 1 0 0 1 0]. According to
Equations (30) and (31), the incremental equation of state can
be used as the prediction equation. The derivation process is
as follows:

ε(k + 1) =
[
ξ̃ (k + 1)
µ̃(k)

]
=

[
Akin(k)ξ̃ (k)+ Bkin(k) · (µ̃(k − 1)+1µ(k))

µ̃(k − 1)+1µ(k)

]
(32)

1µ(k) = µ̃(k)− µ̃(k − 1) (33){
ε(k + 1) = Ã(k)ε(k)+ B̃(k)1µ(k)
η(k) = C̃(k)ε(k)

(34)

Herein: η(k) is the output of the system at time k . The
prediction horizon and control horizon are set to Np and
Nc(Nc ≤ Np) respectively. As a result, the system output
sequence Y in the prediction horizon can be calculated by the
following equation:

Y (k) = �kε(k |k )+2k1µ(k) (35)

Herein Y (k), 2k , as shown at the bottom of the next page.
By equation (35), the value of the state parameter in the

prediction horizon can be calculated by the value of the cur-
rent state parameter ξ (k |k ) and the control increment1µ(k).
This is also the realization of the ‘‘prediction’’ function in the
model predictive control algorithm.

D. ROLLING SOLUTION
In fact, the control increment of the system is unknown.
The control sequence in the control horizon can be obtained
by solving the appropriate optimization objective. In order
to ensure that the vehicle can track the desired trajectory
smoothly and accurately while minimizing the changes of
input parameters, the objective function includes the devia-
tion of system output and the increment of control as follows:

J (k) =
∑Np

i=1
‖η(k + i |k )− ηr (k + i |k )‖2Q

+

∑Nc−1

i=1
‖1µ(k + i |k )‖2R + λ · σ

2 (36)

Herein: Q and R refer to weight matrix; λ denotes weight
coefficient; σ denotes relaxation factor. In equation (36),
the first item reflects the tracking ability of the system to the
reference trajectory, and the second item reflects the require-
ment for the smooth change of the control parameters. The
second-order difference1µ of the control variable is used to
replace the control variable µ, and the relaxation factor σ is
added, which can not only limit the control variable directly,
but also prevent the situation that there is no feasible solution
in the execution process. At the same time, the system control
parameters and control increment need to meet the following
constraints in actual control:

µmin(k + i) ≤ µ(k + i) ≤ µmax(k + i),
i = 0, 1, · · · ,Nc − 1

1µmin(k + i) ≤ 1µ(k + i) ≤ 1µmax(k + i),
i = 0, 1, · · · ,Nc − 1

(37)

The objective function (36) can be transformed into a
quadratic programming problem in the following form:

J (k) =
1
2
χT (k)H (k)χ (k)+ f T (k)χ (k) (38)

where

χ =

[
1U
σ

]
, H =

[
2TQ2+ R 0

0 λ

]
,

f =
[
2ETQ2 0

]
, E = �kε(k |k )− Yr .
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E. FEEDBACK MECHANISM
By solving equation (36) in each control cycle, a series of con-
trol input increments in the control horizon can be obtained:
1Uk = [1µk ,1µk+1, · · · ,1µk+Nc−1]

T . According to the
basic principle of model predictive control, the first element
of the control sequence is acted on the controlled system.
The sum of the first-order difference µ̃(k) obtained by equa-
tion (33) and the control parameters in reference trajectory
µr (k) acts on the controlled vehicle as the final output, as the
follows equation:

µ(k) = µr (k)+ µ̃(k) (39)

After performing this step, the system enters into the next
control cycle and repeats the above process, which realizes
the tracking control of the reference trajectory.

V. SIMULATION AND VERIFICATION
A. SIMULATION RESULTS OF TRAJECTORY PLANNING
BASED ON GPM
The trajectory solving program based on GPMwas written on
the Matlab platform and embedded in the S-funtion module.
The planning results are saved as data files in MAT format
so that they can be called by the tracking layer at any time.
A certain SUV is taken as the simulation object. The vehicle
parameters and physical constraints are shown in Table 1.

Taking the parallel parking condition as the research scene,
three parking spaces with different lengths are designed in
order to verify the robustness and universal applicability of
the GPM. The length of parking space Lp is 4.85m, 6.17m
and 7.50m, respectively, i.e. 1.1, 1.4 and 1.7 times of the
vehicle length. The center point of the rear-axle is regarded
as the observation point of the parking process and the initial
state is set to x0 = 10; y0 = 1.75; θ0 = 0, which is
consistent in three cases. The width of the parking space Wp
is 2.5m, and the road widthWr is 3.5m according to relevant
legal standards. The boundary conditions of state parameters
and control parameters are described in equation (4), and

TABLE 1. Vehicle parameters and physical constraints.

the corresponding vehicle body position boundary conditions
are defined in equation (5). The planning results are shown
in Fig. 5.

As can be seen from Fig. 5 and the partial enlarged figure,
in the case of three parking spaces, there is no collision
between the vehicle and the road boundary, or between the
vehicle and the obstacles in front of and behind the park-
ing space during the parking process. When the parking is
completed, the vehicle stays in the parking space and the
vehicle body keeps horizontal, which meets the obstacle
avoidance constraints and endpoint constraints of the parking
system. The results show that GPMcan solve the optimal con-
trol problem of autonomous parking trajectory planning and
obtain the parking trajectory satisfying the constraints. When
the length of the parking space is 1.7 times that of the vehi-
cle, the vehicle can complete the parking process with one

Y (k) =



η(k + 1 |k )
η(k + 2 |k )

...

η(k + Nc |k )
...

η(k + Np |k )


�k =



C̃(k)Ã(k)
C̃(k)Ã(k)2

...

C̃(k)Ã(k)Nc
...

C̃(k)Ã(k)Np


1µ(k) =


1µ(k |k )

1µ(k + 1 |k )
...

1µ(k + Nc |k )



2k =



C̃(k)B̃(k) 0 0 0
C̃(k)Ã(k)B̃(k) C̃(k)B̃(k) 0 0

...
...

. . .
...

C̃(k)Ã(k)Nc−1B̃(k) C̃(k)Ã(k)Nc−2B̃(k) · · · C̃(k)B̃(k)
C̃(k)Ã(k)Nc B̃(k) C̃(k)Ã(k)Nc−1B̃(k) · · · C̃(k)Ã(k)B̃(k)

...
...

. . .
...

C̃(k)Ã(k)Np−1B̃(k) C̃(k)Ã(k)Np−2B̃(k) · · · C̃(k)Ã(k)Np−NC−1B̃(k)
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FIGURE 5. Planning results of longitudinal and lateral displacement for
autonomous parallel parking in three parking spaces.

reverse, as the curve of the rear-axle center shown in Fig.5(a),
and the parking trajectory is continuous and smooth, which
is consistent with the negative sign of velocity v in Fig.6(a).
When the length of the parking space is reduced to 6.17m,
the vehicle first enters the parking space through a reverse,
and then completes the parking process through a forward
and backward fine-tuning respectively as the curve of the
rear-axle center shown in Fig.5(b), which is also consistent
with the positive and negative sign change of the velocity v in
Fig.6(b). When the length of the parking space is only 4.85m,
it can be seen from the partial enlarged figure in Fig.5(c) that
the vehicle moves back and forth repeatedly within the range
of horizontal coordinates [0 Lp] and longitudinal coordinates
[−Wp Wr ], and parking is completed through 20 times of

FIGURE 6. Planning results of state parameters and control parameters in
three parking spaces.

fine-tuning. As shown in Fig.6(c), the control parameters
velocity v and front-wheel steering angle present Bang-Bang
control mode, the corresponding parameters a, j and ω are the
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same. This is a typical structure for the solution of the shortest
time optimal control problem, which indirectly demonstrates
the effectiveness of GPM for solving the optimal control
problem. It can be seen in Fig.7 that the planning results of
state parameters and control parameters are strictly limited
in the constraint range of Table 1, which indicates that GPM
strictly implements the constraints in the solution process.

Generally speaking, with the decrease of parking space
length, the number of the forward and backward maneuver
in the range of longitudinal coordinate [0 Lp] and lateral
coordinate [−WpWr ] increases gradually. Accordingly, in the
whole optimization time domain, the number of positive and
negative sign changes of velocity v and the parking comple-
tion time also increase gradually. The parking time and the
number of maneuvers in the three cases are shown in Table 2.
There is a positive correlation between the number of vehicle
maneuvers and the parking completion time. These results are
consistent with the actual driving experience.

TABLE 2. Parking time and number of maneuvers in different parking
spaces.

B. SIMULATION RESULTS OF TRAJECTORY TRACKING
BASED ON MPC
The co-simulation of vehicle dynamics software CarSim and
MATLAB/Simulink is adopted to verify the effectiveness
of MPC based trajectory tracking controller in this section.
As shown in Fig.7, the model includes a coordinate conver-
sion module, gear control module, brake control module and
the embedded CarSim module, which is used to describe the
vehicle dynamics performance. Parking scenes and a tracking
vehicle are built in the CarSim software. The values of vehicle
parameters are shown in Table 1. MPC algorithm program
is also written in the S-funtion module. In the simulation
process, the S-funtion module reads the planning results in
the MAT file format from the workspace in real-time as the
reference trajectory. The prediction horizon Np and control
horizon Nc is set to 30 and 2 respectively. The relaxation
factor σ is set to 10, and the sampling time T is set to 0.05s.
The constraint conditions are consistent with the trajectory
planning process. In order to show the superiority of MPC
algorithm in trajectory tracking control for parallel parking,
PID control method is compared with MPC algorithm. It is
worthmentioning that the reasonwhy it is comparedwith PID
control method is that PID control method is one of the most
representative control methods in classical control theory.

Fig. 8 shows the tracking results of longitudinal and lat-
eral positions of vehicles under three parking spaces. The

FIGURE 7. Co-simulation platform of autonomous parking based on
CarSim and Simulink.

FIGURE 8. Longitudinal and lateral trajectory tracking results based on
MPC.

pink curve is the reference trajectory planned by GPM. The
broken blue curve is the mass center trajectory output by
CarSim based on MPC. The blue dot-and-dash curve is the
corresponding rear-axle center trajectory. The orange dot-
and-dash curve is the rear-axle center trajectory output by
CarSim based on PID. When Lp = 7.50m, both of the two
control methods can make the vehicle quickly and stably
reach the target parking space from the initial position. How-
ever, the consistency between the tracking trajectory and the
reference trajectory of MPC algorithm is better than that of
PID method. Compared with MPC algorithm, the tracking
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error of Y by PID method is obviously larger at the end of the
trajectory. As can be seen from Fig. 8(b) and Fig. 8(c), with
the gradual reduction of parking space length, the tracking
error of Y based on PID method is getting larger and larger,
which eventually leads to the fact that when Lp = 4.85m,
the vehicle does not stop completely in the parking space
when parking is completed. There is no doubt that errors
always exist, even in MPC algorithm. The reason for such
errors is that the vehicle model adopted in the planning layer
is the kinematics model. In contrast, the model described
by CarSim in the tracking layer is the vehicle dynamics
model. Themass center trajectory curve reflects that when the
parking space is medium or small, the vehiclesmove back and
forth to achieve the purpose of parking safely. With the grad-
ual reduction of the length of the parking space, the number
of maneuvers is increasing, which is also consistent with the
planning results. The red ∗ curve is the longitudinal and lateral
position trajectory calculated at each sampling point accord-
ing to the kinematics model and the control signal output by
the MPC. In three cases, the curve is highly consistent with
the reference trajectory and the trajectory output by CarSim.
But errors still exist, which include not only the errors caused
by the differences between the kinematic model and the
dynamic model, but also the differences between the linear
error prediction model and the nonlinear kinematic model
in the MPC algorithm. The green curve is the trajectory of
the longitudinal and lateral position in the prediction horizon
calculated by the predictive model of MPC controller at each
sampling point, which also reflects an essential feature of
MPC. The trajectory in the prediction horizon can be obtained
at any sampling point. Although the deviation between the
predicted trajectory and the reference trajectory is larger and
larger, it does not affect the tracking effect of MPC, because
only the first value in the control signal sequence is taken
to act on the vehicle at each sampling time, and the feedback
correction is carried out according to the output of the vehicle,
so as to reduce the tracking error.

Fig.9 shows the tracking results of vehicle heading angle.
The tracking curve of the heading angle based on MPC is in
better agreement with the reference curve in three cases, and
the car body can be kept level when parking is completed.
That is, the heading angle is finally kept at zero. However,
the maximum deviation of the heading angle tracking based
on PID is larger than that of MPC algorithm, and the heading
angles are not kept at zero in three cases, indicating that
the car body is not kept level. With the decrease of parking
space length, the tracking deviation of heading angle based
on PID control method is larger and larger, which shows
that the tracking effect of PID is poor in the low speed and
large steering condition, while theMPC algorithm has a weak
sensitivity to the length of the parking space. In the place
where the heading angle curve has a big turning point, it is
easy to have a large tracking error, which is mainly due to the
fact that it takes some time for the steering wheel to turn in the
actual control process. This process may cause an inevitable
delay in the heading angle tracking, but the deviation of the

FIGURE 9. Heading angle tracking results in three cases.

heading angle has little influence on the longitudinal and
lateral displacement tracking.

Fig.10 shows the time-variation curve of the tracking error
of the main state parameters in three cases. The maximum
tracking errors of longitudinal and lateral displacement based
on MPC are not more than 0.1m and the corresponding
maximum heading angle errors are not more than 1.5◦ in
medium and large parking spaces. In these two parking
spaces, the longitudinal and lateral errors of MPC algorithm
are less than those of PID algorithm, but this advantage is
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FIGURE 10. Relationship between tracking error of state parameters and
time.

not obvious. While in a small parking space, the tracking
errors of the three state parameters by two control methods
all increase. However, the deviation of PID method increases

more sharply, especially the heading angle. The maximum
errors of longitudinal and lateral displacement based onMPC
are not more than 0.15m, and the corresponding heading
angle errors are not more than 2◦. The longitudinal error
of PID method is 0.3m, and the heading angle deviation
is close to 5◦. The increase of error is mainly due to that
the vehicle need to move back and forth in a narrow space
when the parking space is small. This kind of maneuver has
obvious characteristics, such as the large steering angle and
low velocity, which requires high stability and accuracy of the
steering system and braking system. Consistent with the pre-
vious analysis, MPC algorithm is better than PID algorithm
in the error performance of large, medium and small parking
spaces.

Fig.11 shows the curves of the relationship between the
steering angle of the front wheel and time in three cases.
The steering angle does not exceed the maximum allowable
value of the constraints in three cases based on MPC and
PID. In three cases, MPC algorithm keeps good tracking
performance for steering angle. In contrast, PID algorithm
also has good tracking performance in the early stage, but
the tracking error gradually increases with the passage of
time, especially in small parking spaces. As can be seen from
Fig.11(c), the tracking ability of PID method to a large angle
is limited. In MPC, the output by CarSim and calculation
value keep the same. This indicates that the control signal
output by MPC is strictly implemented in CarSim and the
different models still cause the error with the reference trajec-
tory. In both of the two control methods, the maximum angle
tracking error occurs at the upper and lower boundaries of the
front wheel steering angle during the fore-and-aft maneuver,
where the execution delay of the steering system is easily
caused by a too large angle. However, due to the feedback
mechanism of MPC, the error can be eliminated quickly, and
the trajectory gradually approaches the reference trajectory.
On the contrary, PID method has limited correction ability
due to the uncertainty of its parameters.

Fig.12 shows the curves of the relationship between the
velocity and time in three cases. In large parking spaces,
the velocity tracking results of MPC and PID methods are
basically the same, which is mainly due to the fast velocity
and there is no back and forth maneuver, so the requirements
of the controller are not high. In the medium parking space,
the situation of back and forth maneuver exists, MPC still
shows good tracking performance when the velocity direction
changes, while PID method has a large tracking error at the
velocity switching position. This phenomenon is very obvi-
ous in small parking spaces. In small parking spaces, there
are many back and forth maneuvers, the velocity calculated
by MPC and output by CarSim are basically consistent with
the reference trajectory. MPC shows excellent low velocity
tracking ability. However, some error still exists in the small
space. The reason is similar to the front wheel angle. The
stability and accuracy of the braking system are required to
be higher under low-velocity conditions. However, this small
error has no decisive influence on the success of parking.
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FIGURE 11. Relationship between steering angle of front wheel and time.

In general, the MPC algorithm shows good robustness and
tracking performance in terms of state parameters.

VI. REAL VEHICLE TEST VALIDATION
A medium-sized car was selected to build an autonomous
parking test platform. The ultrasonic radars were regarded as
the environmental sensing sensor, and the idle parking space
could be detected by the lateral sensor. The main task of
the host computer was to run the hierarchical control algo-
rithm for trajectory planning and tracking, including GPM

FIGURE 12. Relationship between velocity and time.

algorithm andMPC algorithm. The control system of the exe-
cution parts of the test vehicle was reformed by wire control,
including steering system, braking system, power system and
gear system, which respectively realized the control functions
of active steering, velocity following and direction control of
movement, so that the lateral and longitudinal movement of
the test vehicle could be directly controlled by signals on
CAN bus. The steering wheel angle signal is provided by
the angle sensor of the electric power steering(EPS) system,
and the wheel speed pulse signal, longitudinal acceleration
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FIGURE 13. The architecture of the real vehicle test system.

FIGURE 14. Installation diagram of ultrasonic radar.

signal and yaw rate signal are provided by the wheel speed
sensor and the acceleration sensor of the braking system.
The host computer processes the above signals and park-
ing space information to obtain the target parking trajectory
information and control variables, including target steering
angle, target velocity and target gear, and sends the target
control signal to each executive control system. The signal
communication between each system is carried out through
the CAN bus. The system architecture is shown in Fig.13.

The test vehicle is equipped with 12 ultrasonic radars,
of which 4 are short-range mode radars at the front and rear,
and 2 are long-range mode radars at the left and right sides.
Elmos e524.3 chip is used to control the sensors to send and
receive signals of ultrasonic radars. As shown in Fig. 14,
the long-range mode radars on both sides in front of the
vehicle are mainly used to detect the parking space. Due to
the considerable depth of the parking space, the long-range
mode radars are required to be able to detect long enough.
Therefore, the detection distance of the radars assembled on
the vehicle in this experiment is 0.3-6m.

For the detection of idle parking space, the edge of the
parking space is determined by judging the mutation of the
return distance data of the radar. As shown in Fig.15, when
the vehicle passes through the idle parking space, the radar
detection distance data shows a falling edge and a rising edge
near point A and point B. Based on this, these two points
can be considered as the starting point and the end point of
the free area respectively. The space size can be calculated
by combining the velocity and driving time of the vehicle
passing through this area, and then whether the idle area is

FIGURE 15. Parking space detection diagram.

FIGURE 16. Real vehicle detection results of parking spaces.

an effective parking space can be determined according to the
requirements of the vehicle for the minimum parking space.
The ultrasonic radar is susceptible to the interference of the
external environment and its own multiple echoes during
the detection process, which leads to the existence of error
measurement values. As a result, it is necessary to smooth and
filter the obtained detection data. In addition, considering the
uncertainty of obstacle contour, invalid inflection points will
appear in the process of parking space detection, which can
be eliminated by the amplitude of the data jump.

The length and width of the selected parallel parking
spaces were 6.2 m and 2.5 m respectively, which represented
the typical medium-size parking space. The vehicle traveled
in a straight line from stationary. After finding multiple effec-
tive parking spaces, the vehicle stopped and maintained idle
conditions. The driving duration was 23.831s, the maximum
driving velocity was 2.564m/s, and the maximum deviation
angle of body heading angle was 3.893◦. Fig.16 shows the
result of real vehicle parking detection. The ultrasonic radar
of the parking system detected multiple inflection points in
the detection process. A total of three free areas were detected
according to the positions of the radar inflection points. The
first two idle areas are determined as effective parking spaces.
The first detected parking space is 6.390 m in length and
2.493 m in width. The space length of the second detection
parking space was 6.388 m, and the width was 2.508 m.
Although there was a certain space in the third idle area,
the space size did not meet the parking space standard, and
it was judged as a non-parking space.

The length of the above detection parking space is more
than 6.2 m, mainly considering the blind area of ultrasonic
radar detection. In order to avoid vehicle collision during
real vehicle test, the effective motion range of vehicle in
parking space should be less than the actual size of the
parking space. Consequently, the effective motion range is
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FIGURE 17. Real vehicle test of autonomous parking under parallel
working conditions.

TABLE 3. Real vehicle test results of autonomous parallel parking.

used as the input parameter in the trajectory planning layer.
Because the detection blind area of the ultrasonic radar in
short range mode is 0 ∼ 0.2 m. Hence, the effective length of
the parking space is 0.2 m shorter than the measured length.
In the opposite sense, it means that the length of the actual
parking space should be increased by 0.2 m compared with
the simulation environment, and other parameter settings are
the same. The vehicle was tested three times from left to right,
and two valid parking spaces can be detected by the radar
in each test. In this way, the reliability of test results can be
guaranteed. The vehicle drove to the initial parking position
and kept the vehicle static, and then the autonomous parking
system takes over the vehicle. The reference trajectory was
planned according to the actual vehicle pose and the size of
the detected parking space. The trajectory information further
guided the vehicle to park. The real vehicle test process is
shown in Fig.17.

At present, there is no unified evaluation standard for the
performance of the parking system. Some parking parameters
are recorded to determine the completion of the parking,
such as the measured length of the parking space, whether
the vehicle collides with the obstacle in the parking process,

the longitudinal positions of the contour vertices A and D,
and the body attitude angle after the completion of the park-
ing. The test results are shown in Table 3.

The experimental results show that although the measured
length of the parking space was smaller than the actual length
due to the physical characteristics of the beam angle of the
ultrasonic sensor, taking the actual measured length as the
input parameter of the trajectory planning algorithm also
ensured the safety of the parking process. During the three
tests, the vehicle did not collide with any obstacle and was
safely parked into the target parking space, i.e., the four
contour vertices were all in the parking space, and the body
heading angle was within the range of±1◦. The final parking
effect was acceptable.

VII. CONCLUSION
The innovation of this paper is to propose a hierarchical
control method for autonomous parallel parking trajectory
planning and trajectory tracking. The GPM algorithm is
adopted in the planning layer to realize the rapid planning of
autonomous parallel parking trajectory. The collision avoid-
ance constraint is considered in the algorithm to effectively
improve the safety of parking, which is characterized by fast
convergence, good robustness. The planning result is trajec-
tory, which is easier to track for the actuator. The tracking
layer uses MPC algorithm to achieve accurate and stable tra-
jectory tracking. The algorithm considers various constraints
of spatial state variables, and takes the minimum error of
vehicle position and heading angle as the objective function,
which improves the trajectory tracking accuracy and adapt-
ability, so that its tracking performance is better than that of
traditional PID. In the practical application process, under
the condition of fully obtaining the parking environment
information, the double-layer algorithm can simultaneously
solve the decision planning technology and control execution
technology in the key technologies of autonomous parking.

1) According to the development architecture of
autonomous parking system with hierarchical control of
trajectory planning and tracking, this paper proposes an
autonomous parking trajectory planning and tracking con-
trol method based on GPM-MPC. In the planning layer,
by establishing the vehicle kinematics model, physical sys-
tem constraints, boundary constraints and obstacle avoidance
constraints, the parking trajectory planning problem is trans-
formed into the optimal control problem, and the shortest
parking completion time is taken as the optimal objective
function, and GPM is applied to solve the optimal control
problem. Three parallel autonomous parking conditions with
different lengths of parking spaces are selected for trajectory
planning simulation. The results show that GPMcan converge
to obtain the parking trajectory without collision in three
cases. The algorithm can realize parking trajectory planning
in a narrow space, and the obtained trajectory is smooth,
which is conducive to trajectory tracking control and can
improve the success rate of parking.
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2) In the trajectory tracking control layer, a parking tra-
jectory tracking controller based on the MPC algorithm is
designed. Velocity and steering angle of the front wheel
sequence is obtained as the control signals for trajectory
tracking by MPC. The effectiveness of the tracking control
method based on MPC was verified by the co-simulation of
CarSim and Simulink. Compared with the simulation results
based on PID control method, the simulation results show that
the tracking errors of longitudinal and lateral displacement
are less than 0.15m and the errors of heading angle are less
than 2◦ in three cases. MPC based trajectory tracking control
has higher accuracy and better robustness.

3) Real vehicle test is implemented to further verify the
feasibility and effectiveness of the proposed hierarchical con-
trol algorithm for trajectory planning and tracking based on
GPM and MPC. Through three tests, a total of six effective
parking spaces were detected by vehicle-borne ultrasonic
radar, and the vehicle can park into the parking spaces safely
and quickly without collision. The errors of vehicle contour
vertex and heading angle are small. The test results show
that the proposed method is suitable for different parking
scenarios. However, this method still has some errors and
requires a large amount of computation. Reducing the error
and improving the computational efficiency would be further
research.
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