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ABSTRACT Because the dual-mass MEMS gyroscope’s output is greatly influenced by temperature, which
can lead to errors that cannot be ignored. To solve this problem, a novel compensation method is proposed:
a parallel processing algorithm, which integrates the Permutation entropy (PE), Local Characteristic-scale
Decomposition (LCD) and Adaptive network-based fuzzy inference system (ANFIS). Firstly, LCD is used
to decompose the output which contains temperature noises and drifts into a trend component and several
intrinsic scale components (ISC), according to autocorrelation and complexity, three different categories will
be obtained by PE: pure noise output, mixed output, and drift output. The different processes are as follows,
the noise output is discarded, the mixed output is filtered by SG (Savitzky-Golay filter), then dual ANFIS is
applied. Since the drift output completely reflects the temperature characteristics, the degree of non-linearity
is high, the ANFIS with complex rules is used for processing. And the mixed output is composed of
intermediate layer modes, containing a relatively small amount of temperature characteristics, simple rule
ANFIS is adopted for processing. Finally, the signal is reconstructed. After that, the temperature error
experiment is carried out, the result shows the method can effectively eliminate the error and compensate
for the drift, it has a fast convergence speed and good effect, and has the advantage of good compensation
efficiency.

INDEX TERMS MEMS gyroscope, compensation, permutation entropy (PE), local characteristic-scale
decomposition (LCD), adaptive network-based fuzzy inference system (ANFIS).

I. INTRODUCTION
A microelectromechanical system (MEMS) gyroscope is an
angular velocity sensor based on the Coriolis force, it has
low power consumption, small size, high performance, good
stability, and it is broadly applied in many fields. The applica-
tion area including altitude controlling, car and railway safety
and navigation, intelligent weapons, micro position, naviga-
tion and timing system, wearable devices, industrial control-
ling system, aerospace systems, inertial navigation, consumer
electronics and so on [1]–[5]. However, the temperature
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characteristics of MEMS gyro are always an important factor
affecting the accuracy and performance [6], therefore, reduce
the gyro temperature errors is very necessary, many works of
literature are dedicated to this.

These techniques can be divided into hardware and
software to compensate for temperature errors. The hard-
ware compensation method is by designing the hardware
configuration and control circuit, thereby reducing the gyro
output error. For example, Cao et al. [7] established a new
equivalent circuit model based on silicon structure at a high
temperature such that the accuracy of the gyroscope has been
improved, the performance becomes more stable. Fu et al.
[8] designed a new circuit and proposed a simpler practical
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effect model of temperature compensation to reduce the influ-
ence of resonance frequency and damping coefficient and
improve the temperature characteristics of the gyroscope.
Yang et al. [9] proposed a new temperature compensation
structure of micro-gyroscope, which uses its on-chip temper-
ature sensor and heater to control the temperature to achieve
the compensation effect, the results show that it has a good
effect, the temperature coefficient has been greatly optimized
(3.95 times for scaling factor, 3.49 times for zero offset coeffi-
cient). Hardware compensation has achieved good results, but
it costs a lot of money. The other is software compensation,
that is, the output signal is processed by signal processing and
mathematical model to eliminate the temperature error. The
MEMS gyroscope’s temperature characteristics are mainly
composed of two parts, namely, low-frequency drift and high-
frequency noise, the temperature error compensation needs to
eliminate both of them.

Serial processing is a common method in software com-
pensation [10]. Firstly, the output signal is denoised by
using a filter, secondly, the drift is compensated by using
the established mathematical model. The serial method has
been widely used, but it is easy to destroy the low-frequency
components and lose the effective components. So parallel
processing is necessary, it can extract the high-frequency
noise and low-frequency drift of the signal to different
scales for different processing and reconstruction, which can
greatly improve the efficiency of compensation [11]. For
example, Shen et al. proposed a parallel model combining
BEEMD (bounded ensemble empirical mode decomposi-
tion) and ELM (Extreme learning machine) to deal with the
temperature error of MEMS gyroscope, which has a high
accuracy [11]. In [12], a model based on EMD (empirical
mode decomposition) and SVM (support vector machine)
is proposed to compensate for the temperature error of the
dynamically tuned gyroscope (DTG), after compensation, the
average drift of the DTG is 0.0029 ◦/h, which is a successful
drift modeling. In [13], to solve the long-term drift of gyro
(CRG20) and improve the adaptability of gyro, a hybrid algo-
rithm based on extreme learning machine (ELM) is proposed,
and a good temperature compensation effect is obtained, the
experimental result shows that the zero-bias index changes
from 0.2779 ◦/s to 0.0046 ◦/s, and the random walk index
changes from 0.0046 ◦/s/

√
Hz to 5.94× 10−4◦/s/

√
Hz.

The signal of the gyroscope changes nonlinearly with the
temperature, and the error is similar to that of white noise.
For the high-frequency noise part, the commonly used multi-
scale analysis methods are WT (wavelet transform), EMD,
and LMD (local mean decomposition) [14], [15]. WT is a
common time-frequency analysis tool, which is often used
in comprehensive denoising, but it lacks certain adaptability
when the initial SNR (signal-noise ratio) of the signal is small,
EMD has a better analysis effect, but there is modal aliasing
in EMD. Therefore, many works of literature have studied the
improved EMD algorithm, such as EEMD (ensemble empir-
ical mode decomposition), CEEMDAN (Complete Ensem-
ble Empirical Mode Decomposition with Adaptive Noise),

etc. [16], [17], which to some extent suppresses modal alias-
ing, but there are still some problems, such as white noise is
difficult to control. LMD is a non-stationary and non-linear
signal processing method proposed by Jonathan S. Smith,
by defining the connection curve in the way of moving aver-
age, the fitting error in EMD can be avoided, and the envelope
signal and pure frequency modulation signal can be obtained
automatically by decomposition. However, LMD itself has
problems such as signal mutation, endpoint effect, and a large
amount of calculation. Here, this paper applied the LCD
algorithm, LCD decomposition is an adaptive time-frequency
analysis method, which is proposed on the basis of EMD
and LMD [18], [19] and applies to the analysis and process-
ing of non-linear non-stationary signals. It can decompose
complicated non-stationary signals into a series of single
components with physical significance, which has high cal-
culation efficiency and it has some advantages in the ability
to suppress mode aliasing and end-point effect [20]. PE is
a function to detect a sequence’s complexity, it can mag-
nify small quantities and is very sensitive to the changes in
sequence, can analyze non-linear sequences well [21], [22].
Through the analysis of various modal components by PE,
we can get the complexity information of modes, to carry out
parallel processing.

The modeling of low-frequency drift is an important part
of software compensation, it is very popular to use machine
learning algorithms. For example, in [23], to solve the prob-
lem of temperature errors of fiber optic gyroscope, Chen pro-
posed a genetic algorithm based on the Elman network, and
the temperature drift problem is solved effectively. Song et al.
used a novel fusion algorithm artificial fish swarm algorithm
and backpropagation (BP) neural network model, and it is
used to deal with the fiber optic gyroscope’s drift character-
istics influenced by temperature [24]. Chong et al. proposed
a multiple-input single-output model based on Elman Neural
Networks and Genetic Algorithm, a plurality of temperature
variations can better describe temperature feature, increasing
the effective dimensions of the model inputs [25]. In this
paper, ANFIS is proposed [26], [27], the neural network is
given fuzzy input signal and fuzzy weight, it is an effective
fusion of neural network learning algorithm and the fuzzy
system’s language reasoning to make up for each deficiency,
which has the characteristics of convenience and efficiency
and has a good prediction effect. This paper will describe it
in detail.

II. STRUCTURE AND DETECTION SYSTEM OF GYROSCOPE
A. STRUCTURE OF DUAL-MASS MEMS GYRO
The gyro studied in this paper is based on the principle of
tuning-fork. As is shown in Figure 1, the structure includes
two modes which are drive mode and sense mode, the drive
mode includes three types: drive comb, driving springs, and
driving frame, the sense mode also includes three types: sense
comb, sense springs, and sense frame. It can be seen from
the structure diagram that the structure of the two modes is
separated, so there is no coupling displacement between the
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FIGURE 1. (a) Dual-mass MEMS gyro structure; (b) Gyro mechanical model.

FIGURE 2. The working modes of the gyroscope (a) Drive mode; (b) Sense mode with Coriolis
force; (c) Sense mode with axial acceleration.

two modes. In addition, the two masses are in the common
part of the two modes, the effect of the mass of this common
part is to generate vibration when there is an electrostatic
drive. Once there is an electrostatic force, the left mass and the
right mass will vibrate in the opposite direction of the x-axis.
With the increase of the angular velocity in the z-axis, when
it reaches a certain value �z, the sense frame in the y-axis
will detect the generated and transmitted Coriolis force, and
the whole process will be monitored by the measurement and
control circuit [28], [29].

Tuning fork theory is the principle of this structural drive
mode. The left and right mass blocks are connected by
U-shaped springs, the drive spring’s x-axis is twisted to
couple the two sensing masses. As shown in Figure 2, the
modes have been simulated by Ansys software, the actual
working drive mode is regarded as a pure inverting mode
(fourth mode) for the following reasons: one is the structure’s
drivingmode, the other is that the quality factor Qx2 of reverse
drive mode is far greater than 2000, and thirdly, the frequency
difference between the reverse phase and normal driving
mode is relatively large (>1000 Hz). Since the second and
third modes of the gyroscope constitute the actual working
sense mode, in the ideal condition, the structural motion
equation is expressed as:

mS̈ + aṠ + bS = E (1)

Here, S = [x, y1, y2]T is the displacement, x represents the
drivemode’s displacement, y1, y2 represent the sense in-phase

and anti-phase mode’s displacement, m = [mx,my,my]T is
the mass,mx is drive mode equivalent mass,my is sense mode
quality, a and b are the damping coefficient and stiffness
respectively, E = [Edsin(ωdt),−2mcψzẋ,−2mcψzẋz]T is the
external force matrix, ψz denotes the input angular velocity,
Ed and ωd represent the excitation drive mode’s amplitude
and frequency, Ry1 and Ry2 are the sense in-phase and anti-
phase mode’s displacement and quality factors respectively.
Through sense mode displacement y = y1 + y2, and we can
get, (2) and (3), as shown at the bottom of the next page.

Here
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Rx2
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2
d

)
 .

B. DETECTION SYSTEM
As shown in Figure 3, this is a gyroscope monitoring system
diagram. Firstly, the differential amplifier obtains the drive
frame displacement x(t), it can also be detected by driving the
sense comb. Then, to meet the corresponding phase require-
ments, the AC drive signal VdacSin(ωdt) is delayed by 90 ◦,
the pickup of VdacSin(ωdt) relies on a low-pass filter and a
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FIGURE 3. Gyro system schematic diagram.

full-wave rectifier, after that, the reference voltages Vref and
Vdac are compared. Next, by the integrator controller, the
acting force of the drivemode is formed by superimposing the
drivingDC signal VDC of VdacSin(ωdt), and the control signal
is also processed by it. The drive circuit and the induction
circuit use the same interface, while the latter is open-loop.
The differential detection amplifier generates the differential
signal again by detecting the two masses’ sense signals, the
purpose of it is to generate the sense mode amplified signal
Vstotal. Finally, the sense modemotion signal VOopen is gener-
ated in two steps: demodulation of VdacSin(ωdt) and low-pass
filter. At the timeVOopen is also used to sense the output signal
of the open-loop (‘‘yellow’’ block in Figure 3).

III. COMPENSATION ALGORITHMS
A. LOCAL CHARACTERISTIC-SCALE DECOMPOSITION
(LCD)
Local Characteristic-scale Decomposition (LCD) is an effec-
tive adaptive analysis technique for non-stationary signals
[30]. It first defines a single component signal called intrinsic
scale component (ISC), which has instantaneous frequency
physical meaning. This method adaptively decomposes a
series into the sum of some ISCs to obtain the original signal’s
complete time-frequency distribution. Here is a brief intro-
duction to ISC.

Suppose any complicated series is comprised of diverse
ISC products, each ISC is an independent component. For any
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signal f (t), the decomposed ISCs need to satisfy the following
two conditions:

(I) In the entire data range, the minimum value is negative,
and the maximum value is positive, there is a monotonic
change between any two adjacent maximum and minimum
values.

(II) In the entire data range, all extreme points are
expressed as Fu, and the corresponding time is tu, u =
1, 2 . . .N , where N is the number of extreme values. The
ratio of functional value Cu+1 to Fu+1 of the straight line
lu(y =

Fu+2−Fu
tu+2−tu

(x− tu)+Fu) determined by any two adjacent
maxima or minima points (tu, Fu), (tu+2, Fu+2) at the moment
of tu+1 corresponding to the extremum Fu+1 between the two
remains unchanged. More generally, it is required to meet the
following requirements:

qCu+1 + (1− q)Fu+1 = 0, q ∈ (0, 1) (4)

Cu+1 = Fu +
tu+1 − tu
tu+2 − tu

(Fu+2 − Fu) (5)

If a single component signal meets the above two con-
ditions, it is called an intrinsic scale component (ISC).
Condition (I) requires monotony between adjacent extremum
points to ensure a single waveform. Condition (II) is to make
the ISC waveform smooth and symmetrical. They guarantee
that the ISC product has a unitary mode among any adjacent
maximum and minimum values, locally coincident with the
cosine curve, and the instantaneous frequency has physical
meaning.

On the basis of ISC, a new signal decomposition method
LCD is proposed. For complex signal f (t) (t > 0), LCD is
used to decompose it, its brief introduction is as follows:

1) Determine the extreme point Fu of signal f (t) and its
corresponding time tu, u = 1, 2 . . .N , and set q in formula (4)
to 0.5.

2) The straight line determined by all adjacent max-
imum (or minimum) points (tu, Fu), (tu+2, Fu+2) is

lu (y = Fu+2−Fu
tu+2−tu

(x − tu) + Fu), calculate the function value
Cu+1 of tu+1 at the time corresponding to the extreme point
Fu+1 between the two points according to the formula (5),
that is the value of Lu+1, wherein

Lu+1 = qCu+1 + (1− q)Fu+1, u = 1, 2, . . .N − 2 (6)

Since the subscripts k of the values of Ck and Lk are
from 2 toN−1, we need to estimate the value of the endpoints
L1 and LN. The common processing method is to extend the
original data, similar to the endpoint extension method in
EMD [31], [32]. By extending the extreme points, the extreme
points (t0, F0), (tN+1, FN+1) are obtained. Let N be equal
to 0 and N−1 respectively, then C1, CN, and L1 and LN can
be obtained according to formula (6).

3) The mean curve (baseline) DL1 (t) is obtained by fitting
all L1, L2 . . . LN with cubic spline function.

4) Separate the baseline signal DL1 (t) from the original
signal f (t).

I1(t) = f (t)− DL1(t) (7)

If I1(t) satisfies conditions (I) and (II), it is an ISC, then
output I1 (t), and make ISC1 = I1(t). Otherwise, take I1(t)
as the original sequence f (t), repeat the above steps u times
until I1,u(t) satisfies ISC conditions, that is:

I1,u(t) = I1,u−1(t)− DI1,u−1(t) (8)

I1,u is the first ISC, recorded as S1(t) = I1,u(u). The
ISC component criterion condition is the standard deviation
method (SD) based on Cauchy criterion [33]–[35], and SD is
defined as:

SD =
N∑
i=0

[∣∣Iiu(t)− Ii(u−1)(t)∣∣2
I2i(u−1)(t)

]
(9)

where N is the number of components. Generally, the value
of SD is not more than 0.3, so the ISC component is more
ideal. When SD ≤ 0.3, it is considered that I1,u (t) satisfies
the ISC component condition, and the iteration stops.

5) The S1 component is separated from the original
sequence f (t), and then the remaining signal R1 (t) is
obtained, that is:

R1(t) = f (t)− S1(t) (10)

Then, R1(t) is regarded as the original sequence, and
repeat the steps 1) to 5) until RN (t) is a constant func-
tion or a monotonic function. Thus, the ISC components
S1(t), S2(t), . . . Sn(t) and the trend term Rn(t) are obtained
successively.

6) The original signal f (t) is decomposed to the sum of n
ISCs and a trend term Rn(t).

f (t) =
n∑
i=1

Si(t)+ Rn(t) (11)

At this point, LCD is completed.

B. PERMUTATION ENTROPY (PE)
After the output signal of the gyroscope is decomposed by
LCD, several ISC components and a trend term Rn (t) are
obtained. They contain different information, so it is neces-
sary to distinguish and classify them and remove the noise
component. Therefore, PE entropy is introduced here. PE is
an effective algorithm that is sensitive to the time series and
small changes in it. It is widely used to measure the complex-
ity of the sequence [36], [37]. Here is a brief introduction to
the PE algorithm [38].

Firstly, a time series {u(t), t = 1, 2, . . . n} is reconstructed:

A =



A(1)
...

A(i)
...

A(R)

 =


u(1) u(1+ δ) · · · u(1+ (b− 1)δ)
...

...
...

...

u(i) u(i+ δ) · · · u(i+ (b− 1)δ)
...

...
...

...

u(R) u(R+ δ) · · · u(R+ (b− 1)δ)


(12)
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where A represents the reconstruction matrix with R compo-
nents, δ is the delay time, b is the dimension, i = 1, 2, . . .R,
R+ (b− 1)δ = n.

After that, each A(i) is arranged in an increasing sequence,
and the positions of elements aremarked as follows according
to a1, a2, . . . ab.

u(i+ (a1 − 1)δ) ≤ u(i+ (a2 − 1)δ)

≤ . . . ≤ u(i+ (ab − 1)δ) (13)

If the elements are of equal size, they are arranged accord-
ing to their subscripts, that is:

u(i+ (am − 1)δ) = u(i+ (al − 1)δ)
am < al
u(i+ (am − 1)δ) ≤ u(i+ (al − 1)δ)

(14)

So we can get a set of sequences C(i) = (a1, a2, . . . ab)
i = 1, 2, . . .R. The index probability of each location is
P1, P2, . . .PR. According to the form of entropy, PE value
is calculated, which contains R different time series indexes,
and then it is standardized to better compare the size:

Hp(b) = −
R∑
i=1

pi ln pi (15)

Hp =
Hp(b)
ln b!

(16)

The value of HP reflects the complexity of the time
series u(t), the larger the value of HP, the more chaotic the
sequence u(t) is.

C. SAVITKY-GOLAY FILTER
SG algorithm can filter out the noise while keeping the shape
of the signal unchanged, that is, it protects the static features
very well. It is a filtering method based on least square fitting,
which is widely applied in signal denoising and data flow
smoothing [39]–[42], its introduction is as follows.

Taking N as the length of the sample near the origin x,
we get 2N + 1 sample points, that is to say, taking x as the
center, we construct a window with a width of 2N + 1. Then,
a polynomial of order n is constructed to fit it.

Q(z) =
n∑
i=0

di · zi (17)

wherein, −N ≤ z ≤ N , n ≤ 2N + 1.
Then, the fitting residual is:

τ =

N∑
z=−N

(Q(z)− x(z))2 =
N∑

z=−N

(
n∑
i=0

di · zi − x(z)

)2

(18)

To obtain the minimum residual τ , the partial derivative of
each parameter of τ is 0.

∂τ

∂dn
=

N∑
z=−N

2zn
(

M∑
i=0

d i · zi − x(z)

)2

(19)

M∑
i=0

(
N∑

z=−N

zn+i
)
di =

N∑
z=−N

znx(z) (20)

This window will always move to get all the original data
fitting points, with the acquisition of the original data points,
the noise data will be deleted from the normal data. In this
paper, an SG filter is used to filter the mixed layer after the
PE-LCD algorithm, and the useful components of the mixed
layer signal are retained.

D. ANFIS ALGORITHM
Adaptive network-based fuzzy inference system was pro-
posed by Jang and Roger Jang [26], [43]. It is a part of
the neural fuzzy inference system, which combines neural
network and fuzzy system, and has good learning and training
ability and fuzzy inference function. Compared with other
neural fuzzy systems, ANFIS is convenient and efficient,
therefore, it is widely used in various fields. In this paper,
ANFIS is used to build the temperature drift model of the
gyroscope, and the structure principle of ANFIS is briefly
introduced below.

In this paper, ANFIS based on Takagi Sugeno (T-S)
fuzzy inference system is adopted, through training, it can
realize nonlinear or linear mapping from input variable to
output variable, and its adaptive network structure will be
introduced [44].

As shown in Figure 4 is a multi-layer forward network,
which consists of five layers in total, among which the block
node represents the parameters that need to be adjusted.

First layer: the first layer is to make the input signal fuzzy,
which is the membership function layer. Node i is a node with
an output function.

D1
i = hAi(x) i = 1, 2 (21)

D1
i = hBi(y) i = 1, 2 (22)

Here, x, y is two variables, Ai and Bi are fuzzy sets, and
D1
i is the membership function value of Ai and Bi, indicating

the degree of x and y belonging to Ai and Bi. The shape of
the membership functions hAi and hBi all depend on the front
part parameters.

Second layer: the second layer is the regular intensity
release layer. In this layer, the nodes are responsible for
multiplying the input signals, each node’s output represents
the credibility of rules.

D2
i = mi = hAi(x)× hBi(y) i = 1, 2 (23)

The third layer: normalize the strength of all rules, and
calculate the normalized credibility value of the i-th rule at
the i-th node.

D3
i = mi =

mi
m1 + m2

i = 1, 2 (24)

The fourth layer: calculate the output of fuzzy rules. Each
node is an adaptive node in this layer, and the i-th node’s
output can be expressed as:

D4
i = miTi = mi(aix + biy+ ci) (25)
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FIGURE 4. ANFIS system structure.

where, m̄i indicates the third layer’s output, {ai, bi, ci} is
the parameter set of the node, which is called the subsequent
parameter.

The fifth layer: it is a nodewith a fixed function to calculate
the overall output of whole outlet signals:

D5
i =

∑
miTi =

∑
miTi∑
mi

i = 1, 2 (26)

Given the front part parameters, theANFIS system’s output
is able to be described as a linear combination of the subse-
quent parameters:

f = (m1x) a1 + (m1y) b1 + (m1) c1
+ (m2x) a2 + (m2y) b2 + (m2) c2 (27)

Therefore, ANFIS can learn and adjust the parameters of
the system’s front part and subsequent part through the BP
hybrid algorithm [26]:

1) First, determine the estimated value of the front part
parameters, and then calculate to the fourth level, and
then adjust the conclusion parameters with the least square
method (LSE) and calculate the optimal estimation, which
can be obtained from the above formula:

f = (m1x) a1 + (m1y) b1 + (m1) c1
+ (m2x) a2 + (m2y) b2 + (m2) c2 = A · X (28)

Among them, the elements of column vector X con-
stitute the subsequent parameter set {a1, b1, c1, a2, b2, c2}.
Assuming that the input and output data pairs have n groups,
and given the front part parameter, the bits of matrix A, X , f
are n×6, 6×1, and n×1. In general, the quantity of samples is
much larger than the number of unknowns (n� 6). Using the
least square method, we can get the best estimate X∗ of the
subsequent parameter vector with the minimum mean square
error, that is:

X∗ =
(
AAT

)−1
AT f (29)

2) Due to the front part parameters are given, a linear
combination of the subsequent parameters can be obtained.

In terms of the subsequent parameters counted in the previous
step, the error is calculated. BP algorithm is applied to trans-
fer the error from the output to the input, and the front part
parameters can be renewed by the gradient descent method,
so as to change the shape of the membership function.

Simply put, in the hybrid algorithm, BP is applied to
adjust the parameters of the front part, then the front part
is calculated to the fourth layer, using LSE to distinguish
the parameters of the back part. In the reverse phase, the
error signal is transferred in the reverse direction, and the
parameters of the front part are updated by the BP algorithm.
When the current part parameters are fixed, the LSE method
is the best method to identify the subsequent part parameters.
The hybrid algorithm not only reduces the search space of BP
but also raises the model’s degree of accuracy [45].

E. PE-LCD-ANFIS PARALLEL MODEL
Figure 5 is the parallel processing model of PE-LCD-ANFIS
proposed in this paper. The brief introduction is as follows:
a. Firstly, LCD is used to decompose the output signal of

the gyroscope to obtain multiple ISCs and R. Then, PE is
employed to analyze and calculate each component, based on
the autocorrelation and complexity of the continuation, three
different characteristic components are divided, namely noise
output, mixed output, and drift output.

b. The signal in the noise output is chaotic, tending to
white noise, and it can be removed directly since there is
no useful component. Because the noise and the trend of
temperature cannot be completely separated, the middle layer
is a mixed output, which contains both noise and drift trends.
It is necessary to extract drift trends and remove noise as
much as possible, so SG smoothing is used. The denoising
signal can be obtained by superposition of the drift output
and the mixed output after SG processing.

c. Through SG, the drift component in the mixed output is
extracted, but only contains a small amount of temperature
characteristics. Different from the drift output, it belongs to
the low-frequency drift part completely, and the output is

95186 VOLUME 9, 2021



H. Cao et al.: Temperature Compensation Approach for Dual-Mass MEMS Gyroscope

FIGURE 5. Flow chart of PE-LCD-ANFIS parallel model.

FIGURE 6. Equipment of temperature experiment.

muchmore dependent on temperature change. To improve the
efficiency and accuracy of the algorithm and further enhance
the generalization ability of the model, ANFIS with simple
rules was used for the mixed output and complex rules for
the drift output. At the same time, the temperature sequence
is processed to form a two-dimensional sequence of tempera-
ture and temperature change rate, which can better reflect the
temperature situation. After training, the gyroscope tempera-
ture compensation model is obtained.

d. By reconstructing the processed mixed output and
drift output, the final compensation signal can be obtained,
which is the result of temperature error processing, in which
high-frequency noise and low-frequency drift are eliminated.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL APPARATUS AND PROCEDURE
Figure 6 shows the sample gyroscope and test equipment.
The metal pins interconnect the mechanical structure and

FIGURE 7. Experimental data1 for training.

FIGURE 8. Experimental data2 for testing.

electronic signals of the monitoring circuit placed in the three
PCBs. The rubber pad encapsulates the PCBs to prevent
the structural chip and the PCBs from being vibrated and
impacted, and then the packaged PCBs are placed in a metal
case, the role of the metal case is to provide electromagnetic
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FIGURE 9. ISCs and R decomposed by Local characteristic-scale decomposition (LCD).

shielding and connect the ‘‘GND’’ signal. The functions of
the three PCBs are different, the first block processes and
interfaces with weak signals and connects the structural chip
at the same time, the second block serves as the closed-loop
of the driver, and the third block serves as the detection
facility.

The test equipment includes GND and a power sup-
ply (Agilent E3631A) that generates ±10 V DC voltage.
The test voltage VTes are generated by a signal generator
(Agilent 33220A), the amplitude and phase of the observa-
tion and measurement signals are measured by a multimeter
(Agilent 34401A) and an oscilloscope (Agilent DSO7104B).
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FIGURE 10. (a) Calculation results according to PE; (b) Pure noise outputs; (c) Mixed outputs; (d) Drift outputs.

The measurement of the actual width of the gyroscope and
maintaining the environment over the entire temperature
range is done through a turntable and a temperature oven.

The gyroscope is energized at room temperature for one
hour, and then the oven temperature needs to be heated at
high speed to 60 ◦C. To keep the temperature inside the
gyroscope housing at 60 ◦C, the oven temperature needs to be
maintained at 60 ◦C for one hour, this method can be proved
correct by the thermal resistance value. So as to keep the
gyroscope’s internal temperature consistent with the oven’s
temperature and maintain stability, the initial temperature of
the data collection needs to be positioned at 60 ◦C, at the
time the oven temperature is set to stop for one hour after
every 10 ◦C change. Finally, the test and all cooling steps are
completed, and the sign is that the oven temperature has been
maintained at −40 ◦C for at least one hour to make sure that
the temperature in the MEMS gyroscope is stable.

After the measurement, we selected two sets of data for
the temperature compensation experiment. One set was used
as the training data of the model, namely the training set
(Figure 7), and the other set was used as the testing set
(Figure 8) to test the validity of the model. Besides, it can
be seen from the experimental results that the output of the
MEMS gyroscope has a clear response to the temperature
change and the output changes with noises, so it is reasonable
to create a drift compensation based on the temperature of the
MEMS gyroscope model.

B. EXPERIMENTAL RESULTS
After the temperature experiment, the input and output data
of the dull mass gyroscope are obtained. For the training
set, we take the temperature range from 51 ◦C to −32 ◦C,
as shown in Figure 7. It is obvious that, first, the dual-
mass gyroscope’s output contains a lot of white noise, and
the noise amplitude and frequency change with the ambient
temperature. This is because there are many sources of noise

in the MEMS gyroscope. Second, the output changes with
the temperature, the results show that the temperature drift
is obvious, and the degree of temperature drift also changes,
which is nonlinear and irregular.

Because of the above features, the serial processingmethod
of direct filtering cannot be used, which will destroy the
drift features of intermediate frequency or even low fre-
quency, resulting in the reduction of compensation accuracy
and effectiveness. Based on this, the LCD decomposition
method is used to extract all kinds of features in the tem-
perature series, and the framework of parallel processing is
constructed.

Figure 9 is the result of LCD decomposition of the training
set output and corresponding frequency spectrum, in which
the number of decomposition layers value is set to 10, thus ten
independent single component signal (ISC) components and
a trend component are obtained. Each ISC is a signal compo-
nent with a physical meaning. According to the frequency dis-
tribution, the frequency decreases from ISC1 to ISC10 to R,
which represents the high-frequency noise and low-frequency
drift component of the gyroscope output signal. The signal
components obtained by decomposition are many, if each
component is processed separately, the workload is huge and
there will be large errors, therefore PE is used to judge each
ISC component, and the regularity is found according to the
complexity of time series, and they are classified.

As shown in Figure 10, the signal components of LCD are
divided into three categories: noise, mixed and drift outputs.
If the value of PE is greater than 0.6, it is considered as a com-
plete interference component. The results show that the gyro-
scope noise tends to be pure white noise that can be removed
directly. If the value of PE is less than 0.4, it is considered to
be the drift component caused by the complete temperature
factor and needs further treatment. If the PE value is between
0.4 and 0.6, it is considered to be the superposition of the tem-
perature characteristic term and the noise, which represents
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FIGURE 11. Noise component, mixed component after SG, and drift
component.

FIGURE 12. Denoised output (training set) and original signal.

the drift as well. It also needs further processing, because it
cannot be completely separated, so SG is used to smooth it
to retain the useful signals first. Overall, we deal with it from
three aspects, and it is shown in Figure 11.

Reconstruct the drift output and mixed output after SG fil-
tering to get the signal after denoising (Figure 12), comparing
the denoising signal with the original signal, the processed
PE-LCD and SG filtering method can remove the noise
influence very well. The same process is then performed on
the output of the testing set, and the denoising results are
shown in Figure 13. And the next is to build the temperature
compensation model.

Firstly, the temperature data of the training set are pro-
cessed to obtain the two-dimensional sequence including
temperature and temperature change rate, and the mapping
relationship of two inputs and one output, which can bet-
ter characterize the temperature, and all the sequences are
normalized.

After that, two ANFIS models are established to construct
the mixed output and the drift output respectively, this is
because they contain different temperature characteristics.
The mixed output has fewer drift components and gentle
variation in amplitude, and still contains useless components,

FIGURE 13. Denoised output (testing set) and original signal.

To prevent over-fitting of the model, simple rule ANFIS is
used to train it as auxiliary compensation. The drift out-
put belongs to the part with pure temperature characteris-
tics and has a strong relationship between gyro output and
temperature, which is the main concern part of temperature
compensation. Therefore, the ANFIS with complex rules is
adopted for training. Dual-ANFIS modeling compensation
can reduce the computational effort and improve the accuracy
and generalization ability of the algorithm.

Figure 15 shows the training and prediction process of
ANFIS for drift output. The drift output has a high degree
of nonlinearity, an ANFIS model with 16 fuzzy rules is
constructed, that is, the temperature characteristic has four
membership functions, and the temperature change rate char-
acteristic has four membership functions. Through three iter-
ations, 30 points are randomly selected for prediction, and the
result is shown in Figure 15 (a), after 50 iterations, the result is
shown in Figure 15 (b). After iterative training, it can be seen
that ANFIS with complex rules has high training accuracy for
drift output and fast convergence speed from Figure 15 (c).

The training and prediction process of ANFIS for mixed
output is shown in Figure 15. The sequence is composed of
ISCs in the middle layer with less temperature drift charac-
teristics, therefore, the ANFIS model with 4 fuzzy rules is
constructed for regression, that is, the temperature character-
istics have corresponding 2 membership functions, and the
temperature change rate characteristics have 2 membership
functions. Similarly, 30 points are randomly selected for
prediction and tested after 3 and 50 iterations, and the results
are shown in Figure 15 (a) and Figure 15 (b) respectively. The
ANFISwith simple rules has obvious training fitting effect on
mixed output. and its iteration error is shown in Figure 15 (c).

After the training of the dual ANFIS model was completed
by using the training set, the temperature compensation was
carried out on the testing set and the compensation results
were obtained by reconstructing the signals, as shown in
Figure 16. It can be concluded that the parallel processing
method of temperature error based on PE-LCD-ANFIS can
effectively remove noise and drift.

Then, Allan analysis of variance was used to make a com-
parison. Allan is a standard performance analysis method
of gyroscopes, it is a time series analysis method, which is
applicable to evaluate every random noise coefficient and it
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FIGURE 14. ANFIS of drift output (a) prediction test (3 epochs); (b) prediction test (50 epochs); (c) Iteration errors.

FIGURE 15. ANFIS of mixed output (a) prediction test (3 epochs); (b) prediction test (50 epochs); (c) Iteration errors.

FIGURE 16. Gyro output signal (testing data) after compensation.

has been widely used [46]. Figure 17 is the Allan variance
curve of the gyro’s output signal (testing set) and the pro-
cessed signal by PE-LCD-ANFIS. At the same time, it is
compared with the compensation results of other classical
machine learning algorithms, compared with BP and ELM
compensation, the performance index of the proposed model
is better, and the effectiveness of the method is proved.
Information can be obtained from the image: for the original
signal, the random walk value of angular velocity is 1.744×
10−4 ◦/s/

√
Hz, the bias stability value is 6.918× 10−5 ◦/s,

after processing by the proposed parallel processing model,
they are 2.141× 10−7 ◦/s/

√
Hz and 2.141×10−7 ◦/s respec-

tively, the performance has been greatly improved, and

FIGURE 17. Allan analysis of variance and comparison.

it proves that the parallel processing method has a good
performance.

This paper adopted a software compensation method based
on parallel processing, which has the characteristics of high
efficiency, low cost. However, software compensation is not
suitable in some cases. The gyroscope itself should be stable.
If the hardware structure of the gyro is consumed or changes
greatly, the processing algorithm needs to be adjusted accord-
ingly, and the test data should be reprocessed and trained,
this is the limitation. In future work, we will continue to
research new efficient algorithms, further research onMEMS
gyroscope structure itself at the same time, combining hard-
ware compensation and software compensation to improve
the stability of long-time temperature compensation.
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V. CONCLUSION
In this paper, the temperature characteristics of the MEMS
gyroscope and the methods of denoising and compensation of
the gyroscope signal are studied. A new parallel processing
method based on PE-LCD and ANFIS is proposed, which
is a hybrid parallel algorithm. Due to the noise and drift
of gyroscope signal are different under different tempera-
ture conditions, LCD is applied to extract the noise and
drift respectively for different processing, and PE divides
the decomposed ISCs and trend term into noise, mixed and
drift output according to the complexity. On the one hand,
it reduces the workload of signal processing and protects
the static characteristics. On the other hand, it can optimize
the ANFIS model: ANFIS with two different fuzzy rules is
applied to predict the drift output and mixed output respec-
tively. According to its characteristics, complex rules are
used for drift output, and simple rules are used for mixed
output, which not only improves the model accuracy and
generalization ability but also greatly reduces the amount of
calculation. The optimized dual ANFIS can compensate for
the temperature drift well. After that, the temperature experi-
ment is carried out, the results of Allan variance analysis show
the effectiveness, and compared with previous algorithms,
it has certain novelty and advantage.
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