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ABSTRACT Distance metric learning aims to find the most appropriate distance metric parameters to
improve similarity-based models such as k-Nearest Neighbors or k-Means. In this paper, we apply distance
metric learning to the problem of malware detection. We focus on two tasks: (1) to classify malware and
benign files with a minimal error rate, (2) to detect as much malware as possible while maintaining a
low false positive rate. We propose a malware detection system using Particle Swarm Optimization that
finds the feature weights to optimize the similarity measure. We compare the performance of the approach
with three state-of-the-art distance metric learning techniques. We find that metrics trained in this way
lead to significant improvements in the k-Nearest Neighbors classification. We conducted and evaluated
experiments with more than 150,000 Windows-based malware and benign samples. Features consisted of
metadata contained in the headers of executable files in the portable executable file format. Our experimental
results show that our malware detection system based on distance metric learning achieves a 1.09 % error
rate at 0.74 % false positive rate (FPR) and outperforms all machine learning algorithms considered in the
experiment. Considering the second task related to keeping minimal FPR, we achieved a 1.15 % error rate
at only 0.13 % FPR.

INDEX TERMS Distance metric learning, malware detection, particle swarm optimization, k-nearest
neighbors.

I. INTRODUCTION
The term malware, or malicious software, is defined as any
software that does something that causes damage to the
user. Malware includes viruses, worms, trojan horses, rootk-
its, spyware, and any other program that exhibits malicious
behavior [1]. In information security, malware attacks have
been one of the main threats over the past several decades.
While malware developers continuously find new exploitable
vulnerabilities, create more and more sophisticated tech-
niques to avoid detection and find new infection vectors,
malware analysts and researchers continually improve their
defenses. This game seems to have an infinite number of
rounds.

The attacker’s purpose is no longer to cause dam-
age, such as damaging a computer system without getting
money. Nowadays, malware has become a rather profitable
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business. Malware writers use a variety of techniques to
distribute malicious programs and infect devices. They can
use self-propagation mechanisms based on various vulner-
abilities or use social engineering to trick the user into
installing the malware. Malware writers usually employ
obfuscation techniques [2] such as encryption, binary pack-
ers, or self-modifying code to evade malware classifiers.
Many malware researchers have focused on data mining and
machine learning (ML) algorithms to defeat these techniques
and to detect unknown malware [3]. The performance of
many ML algorithms, such as k-Nearest Neighbors (KNN)
or k-Means, depends on the distance metric used to measure
dissimilarity between samples over some input space. The
distance between two samples having the same class label
must be minimized while the distance between two samples
of different classes must be maximized.

Distance metric learning (DML) aims to automatically
learn distance metric parameters from data to improve
the performance of classification and clustering algorithms.
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Finding the most appropriate parameters of the metric con-
cerning some optimization criterion is typically formulated
as an optimization problem. Evolutionary algorithms, swarm
algorithms, and other heuristics [4] are suitable for solving
this problem. In this work, we used a biologically-motivated
algorithm, Particle SwarmOptimization (PSO), to handle this
problem related to malware detection.

Most distancemetric learningmethods learn aMahalanobis
distance with respect to some objective function. The def-
inition of this objective function depends on the training
dataset and specific tasks, such as classification or clustering.
Malware detection can be defined as a classification problem
with two classes: malware and benign samples. The more
challenging problem is to cluster malware into malware fam-
ilies [5]. This work empirically demonstrates how to apply
distance metric learning to malware detection using a KNN
classifier. We experimented with different distance metric
learning methods and evaluated them concerning various
optimization criteria, such as error rate or its modification.

In this work, we consider portable executables (PE) in the
Windows environment. Features consist of metadata from the
PE file format [6]. Our proposed detection model is based
exclusively on static analysis, aiming to search for informa-
tion about the file structure without running a program.While
the static analysis can be evaded by anti-malware-detection
techniques such as obfuscation, it still has a place in the mal-
ware detection system since it is much faster than dynamic
analysis, which involves running the program.

Malware detection systems that use features originating
only from the static analysis can be evaded by obfuscation
techniques such as packing [7]. For this reason, we do not
suggest using the proposed malware detection system as a
standalone and independent application. In order to achieve
the highest possible accuracy, it is necessary to use vari-
ous types of features (byte sequences, API & system calls,
opcodes, strings, entropy, instruction traces,. . . ) from both the
static and the dynamic analysis. Our work can be used as
one component of such a more complex malware detection
system.

Note that minimizing the error rate is not the only goal
of this work. Another goal is to detect as much malware as
possible while maintaining a low false positive rate. From the
antivirus vendors’ perspective, a false positive error is con-
sidered a serious problem. For example, if some legitimate
programs integrated into the operating system are detected
as malware, then the system could be rendered unusable.
False positives can also frustrate developers of the legitimate
application that was accidentally blocked by an antimalware
system. Since false positives can have serious consequences,
we proposed an optimization criterion that takes the cost of
false positives into account.

The main contributions of our work are:
Architecture of amalware detection system:Wepropose

the architecture of the malware detection model based on
distance metric learning. The detection system processes the
data from the PE file format where numeric features are

normalized and nominal features are turned into conditional
probabilities. Training samples are first used to train the dis-
tance metric and then they are used in a KNN classifier with
the learned distance metric to classify the testing samples.

Scalable optimization criterion for PSO-based model:
To reflect the higher cost of a false positive, we constructed
a cost function called weighted error rate which we use as a
fitness function in the PSO algorithm to minimize error rate
and false positive rate.

Application of DML algorithms to malware detection:
We explored the use of three state-of-the-art distance metric
learning algorithms, namely LargeMargin Nearest Neighbor,
Neighborhood Component Analysis, and Metric Learning
for Kernel Regression, for KNN classification of malware
and legitimate software. We compare these models with the
PSO-based model and provide practical information concern-
ing performance, computational time and resource usage.
We show that the DML-based methods might improve mal-
ware classification results even when standard methods such
as feature selection or algorithm tuning had already been
applied.

The rest of the paper is organized as follows: Section II
reviews recent works on malware detection based onmachine
learning techniques. In Section III, we define the distance
metric learning problem and give some theoretical back-
ground. Our proposed malware detection model is presented
in Section IV. Section V provides an experimental setup.
Detailed information about experiments and results is pre-
sented in Section VI. Conclusion and future work are given
in Section VII.

II. RELATED WORK
The application of machine learning techniques to malware
detection has been an active research area for about twenty
years. Researchers have tried to apply various well-known
techniques such as Neural Networks, Decision Trees, Support
Vector Machines (SVM), ensemble methods and many other
popular machine learning algorithms. Recent survey papers
[8], [9] provide comprehensive information on malware
detection techniques using machine learning algorithms.

A. RECENT WORKS
This section briefly reviews some recent works related to
malware detection based on machine learning techniques.
We mainly focus on works that use the static analysis of
Windows PE files, focusing on features extracted from the
PE file format.

Wadkar et al. [10] proposed a system based on the static
features extracted from PE files for detecting evolutionary
modifications within malware families. SVM models were
trained over a sliding time window, and the differences in
SVM weights were quantified using χ2 statistic. For most
of the 13 malware families considered in the experiments,
the system detected significant changes.

Yang and Liu [13] proposed a detection model called
TuningMalconv with two layers: a raw bytes model in the
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TABLE 1. Machine learning-based malware detection systems that are related to this work.

first layer and a gradient boosting classifier in the second
layer. The feature set was based on static analysis and con-
sisted of raw bytes, n-grams of byte codes, string patterns,
and information in the PE header. The experimental results
of the TuningMalconv detection model on the dataset with
41,065 samples showed an accuracy of 98.69 %.

Another malware detection model based on static analysis
was proposed byGao et al. [15]. The detectionmodel is based
on semi-supervised transfer learning and was deployed in the
cloud as a SaaS (Software as a Service). The detection model
was evaluated on Kaggle malware datasets and improved the
classification accuracy from 94.72 % to 96.90 %.

Xue et al. [17] proposed a classification system, Malscore,
which combines static and dynamic analysis. In static
analysis, grayscale images were processed by the Convo-
lutional Neural Network. In dynamic analysis, API call
sequences were represented as n-grams and analyzed using
five machine learning algorithms: Support Vector Machine,
Random Forest, Adaboost, Naïve Bayes, and KNN. The
authors performed experiments on more than 170,000 mal-
ware samples from 63 malware families and achieved an
accuracy of 98.82 %.

Zhong and Gu [19] improved the performance of deep
learning models by organizing them in a tree structure called
Multiple-Level Deep Learning System. Each deep learning
model focuses on a specific malware family. As a result,
the Multiple-Level Deep Learning System can handle com-
plex malware data distribution. Experimental results indicate
that the proposed method outperforms the Support Vector
Machine, Decision Tree, the single Deep Learning method
and an ensemble-based approach.

All information on executables used in the work proposed
byRaff et al. [23] came from the PE header, more specifically,
from theMS-DOS, the COFF (Common Object File Format),
and the Optional Header. Neural networks were trained from
raw bytes which were not parsed for explicit features, and as a
result, no preprocessing or feature engineering was required.
More than 400,000 samples were used for training, and the
Fully Connected Neural Network model achieved the highest
accuracy.

Kumar et al. [26] proposed a malware detection system
which uses machine learning techniques and is based exclu-
sively on static analysis. The dataset contained 2,722 mal-
ware and 2,488 benign program samples, and the original
feature set consisted of 53 PE file header fields from the
DOS header, File header, and Optional header. These features
were then processed, and 68 integrated features were derived.
In the experiments, six machine learning algorithms Logistic
Regression, Linear Discriminant Analysis, Random Forest,
k-Nearest Neighbors, Decision Tree, and Gaussian Naïve
Bayes were used. The highest classification accuracy, 98.4 %,
was achieved by Random Forest.

Kolosnjaji et al. [25] proposed a neural network archi-
tecture that combines convolutional and feed-forward neural
layers. The authors used only the static malware analysis
where inputs to feed-forward layers were the fields of the PE
header while inputs to the convolutional layers were assem-
bly opcode sequences. The proposed hybrid neural network
achieved 93 % on precision and recall.

Table 1 summarizes related works and our work in terms
of the number of classes, the size of the dataset, the type of
analysis, features used, and the source of the dataset.

B. DISTANCE METRIC LEARNING-BASED WORKS
Surprisingly, there is a distinct lack of experimentation with
distance metric learning techniques applied on large and
real-world datasets from the Windows environment. In the
rest of the section, we briefly mention two of our previous
works on malware detection methods that rely on distance
metric learning. This paper can be considered as an extension
of them. In [27], we applied the Particle Swarm Optimiza-
tion algorithm to the problem of finding the appropriate
feature weights used in the heterogeneous distance function
[28] specifically defined for the PE file format to classify
malware and benign files. We showed that the error rate of
the KNN classifier could be decreased by 12.77 % using the
weighted distance function. Our other work [5] focused on the
application of three distance metric learning methods applied
to the multiclass classification problem with seven classes:
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six prevalent malware families and the benign files. Using
Metric Learning for Kernel Regression method to learn the
Mahalanobis distance metric, we achieved average precision
and recall of 97.04 %, both using the KNN classifier.

III. PROBLEM STATEMENT AND BACKGROUND
This section provides basic information on distance metric
learning and briefly discusses three selected distance metric
learning methods used in our experiments.

Euclidean distance is by far the most commonly used
distance. Let x and y be two feature vectors from real
n−dimensional space Rn, and let wi, i = 1, . . . , n, be a
non-negative real number associated with the i-th feature. The
weighted Euclidean distance is defined as:

dw(x, y) =

√√√√ n∑
i=1

w2
i (xi − yi)

2 (1)

The goal of learning the weighted Euclidean distance is to
find the best weight vector w = (w1, . . . ,wn) with respect to
some optimization criterion, usually the minimal error rate.
Several other distance functions have been presented [29].
In order to improve results, many weighting schemes were
proposed. A review of feature weighting methods for lazy
learning algorithms was proposed in [30].

Mahalanobis distance is another popular distance. It is
defined for two vectors x, y ∈ Rn of dimension n as

dM (x, y) =
√
(x − y)>M (x − y) , (2)

where M is a positive semidefinite matrix. Mahalanobis dis-
tance can be considered as a generalization of Euclidean
distance since the Euclidean distance can be expressed as a
Mahalanobis distance whereM is the identity matrix. IfM is
diagonal, then this corresponds to learning the featureweights
Mii = wi defined for weighted Euclidean distance in Eq. (1).
The goal of learning the Mahalanobis distance is to find

the best matrix M with respect to some optimization crite-
rion. Regarding the KNN classifier employed in this work,
the main goal is to find a matrix M which is estimated from
the training set that leads to the lowest error rate of the KNN
classifier. Another goal of this work is to minimize the error
rate taking into account the cost of false positives. Since a
positive semidefinite matrix M can always be decomposed
as M = L>L, the distance metric learning problem can
be viewed as finding either M or L = M

1
2 . Therefore,

Mahalanobis distance defined in Eq. (2) can be expressed in
terms of the matrix L as

dM (x, y) = dL(x, y) = ‖L>(x − y)‖2 (3)

Another application of distance metric learning is dimen-
sionality reduction. The matrix L can be used to project the
original feature space into a new embedding feature space.
This projection is a linear transformation defined for feature
vector x as

x′ = Lx (4)

Mahalanobis distance of two points x, y from the original
space defined in Eq. (2) corresponds to the Euclidean distance
between transformed points x ′ = Lx, y′ = Ly defined as
follows:

dL(x, y) = ‖L>(x − y)‖2 =
√
(x ′ − y′)> (x ′ − y′) (5)

This transformation is useful since the computation of
Euclidean distance has lower time complexity than that of the
Mahalanobis distance.

Distance metric learning has attracted a lot of atten-
tion in the machine learning field and is still an active
research area [31]. There have been many proposed
methods [32]–[34]. Next, we briefly describe three state-of-
the-art distance metric learning methods that we used in our
experiments. Specifically, the weighted Euclidean distance
was learned by the Particle Swarm Optimization algorithm,
and the Mahalanobis distance was learned by the distance
metric learning methods described in the rest of this section.

A. LARGE MARGIN NEAREST NEIGHBOR
Large Margin Nearest Neighbor (LMNN) [35] is one of the
state-of-the-art distance metric learning algorithms used to
learn a Mahalanobis distance metric for a KNN classifi-
cation. LMNN consists of two steps. In the first step, for
each instance x a set of k nearest instances belonging to the
same class as x (referred as target neighbors) is identified.
In the second step, we adapt the Mahalanobis distance to
reach the goal that the target neighbors are closer to x than
instances from different classes separated by a large margin.
The Mahalanobis distance metric is estimated by solving the
semidefinite programming problem defined as:

min
L

∑
i,j:j i

(
dL(xi, xj)2+µ

∑
k:yi 6=yk

[1+dL(xi, xj)2−dL(xi, xk )2]+
)

(6)

The notation j  i refers that the sample xj is a target
neighbor of the sample xi, and yi denotes the class of xi. The
parameter µ defines a trade-off between the two objectives:

1) to minimize the distances between samples xi and their
target neghbors xj,

2) to maximize the distances between samples xi and their
impostors xk which are samples which belong among
the nearest neighbors of xi but have different class
labels (i.e. yi 6= yk ).

Finally, [x]+ is defined as the hinge-loss,
i.e. [x]+ = max{0, x}. In [36], LMNN was extended to
multiple local metrics and the learning time of LMNN was
reduced using metric ball trees.

B. NEIGHBORHOOD COMPONENT ANALYSIS
Goldberger et al. [37] proposed the Neighborhood Com-
ponent Analysis (NCA), which is a distance metric learn-
ing algorithm specially designed to improve the KNN
classification.
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Let pij be the probability that the sample xi is the neighbor
of the sample xj belonging to the same class as xi. This
probability is defined as:

pij =
exp(−||Lxi − Lxj||22)∑
l 6=i exp(−||Lxi − Lxl ||22)

, pii = 0 (7)

The goal of NCA is to find the matrix L that maximizes
the sum of probabilities pi:

argmax
L

∑
i

∑
j:j 6=i,yj=yi

pij (8)

The gradient ascent algorithm solves this optimization
problem. Neither LMNN nor NCA algorithms make any
assumptions on the class distributions.

C. METRIC LEARNING FOR KERNEL REGRESSION
Weinberger et al. proposed Metric Learning for Ker-
nel Regression (MLKR) [38] which aims at training the
Mahalanobis matrix by minimizing the error loss over the
training samples:

L =
∑
i

(yi − ŷi)2, (9)

where the prediction class ŷi is derived from kernel regression
by calculating a weighted average of the training samples:

ŷi =

∑
j 6=i yjK (xi, xj)∑
j6=i K (xi, xj)

(10)

MLKR can be applied to many types of kernel functions
K (xi, xj) and distance metrics d(xi, xj).

Recall that the mentioned distance metric learning algo-
rithms can be used as supervised dimensionality reduction
algorithms. Considering the matrix L ∈ Rd×n with d < n
then the dimension of transformed sample x ′ = Lx is reduced
to d .

IV. PROPOSED MODEL
In this section, we describe our proposed malware detection
model based on distance metric learning. First, the features
description and engineering are provided. Then we describe
the modification of the Particle Swarm Optimization algo-
rithm, which we used to find appropriate feature weights
of weighted Euclidean distance. Finally, we complete this
section by proposing the architecture of the malware detec-
tion model.

A. FEATURE DESCRIPTION
The features used in our experiments are extracted from the
PE file format [6] which is the file format used for executa-
bles, DLLs, object code and other files used in the 32 and
64-bit versions of the Windows operating system. The PE
file format is the most widely used file format for malware
samples that run on desktop platforms. Before describing the
features used in our experiments, let us first examine the short
outline of the PE file format.

A PE file consists of headers and sections that encapsulate
the information necessary to manage the executable code.
The PE file header provides all the descriptive information
concerning the locations and sizes of structures in the PE
file to the loader process. The header of a PE file consists
of the DOS header, the PE signature, the COFF file header,
the optional header and the section headers. The optional file
header is immediately followed by the section headers which
provide information about sections, including their locations,
sizes, and characteristics.

Sections divide the file content into code, resources and
various types of data. The order of the sections is not the
same for each PE file. Moreover, malware authors can change
the names of the sections. Therefore, we prefer to consider
only the order of sections rather than the name of the sections
(such as.text,.data,.rsrc). The last section of a PE file may be
of particular importance. It may contain useful information,
especially for some types of malware, e.g., the file infector
which typically attaches malicious code at the end of the file.
To deal with a various number of sections across the samples,
we have decided to consider only the first four sections and
the last section.

Based on our empirical studies and the PE format analysis,
we selected a set of static features that help to distinguish
malware and benign files. The features used in our experi-
ments are of three types: nominal, numeric, and bit fields.
In the following section, we describe how these three types
of features were preprocessed.

Let T = {(x1, c1), . . . , (xm, cm)} be the training set, where
xi is a feature vector and ci = cl(xi) is the corresponding class
label. In our binary classification task, we will consider two
classes C andM, where C denotes the class of benign samples
and M denotes the class of malware. Let each sample be
represented by the feature set {f1, . . . , fn}. Let the feature fj be
nominal and let s be the feature vector corresponding to some
unknown sample. Then P(cl(s) = M|fj = h) denotes the
conditional probability that the output class of s is malware
given that feature fj has the value h. Using data from training
set T , we estimate this probability as

P(cl(s) =M|fj = h) =
nfj,h,M
nfj,h

, (11)

where
• nf ,x,c is the number of samples in the training set T
which have value x for feature f and the sample belongs
to class c,

• nf ,x is the number of samples in T that have value x for
feature f .

If some feature vector s from the testing set would have
previously unseen value h of some feature fj then we set

P(cl(s) =M|fj = h) = P(cl(s) =M) ≈ 1/2

with respect to our dataset.
Following this approach, for each sample s, we transform

each value h of each nominal attribute fj according to the
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following rule:

h 7−→ P(cl(s) =M|fj = h) (12)

Regarding numeric features, it is necessary to take into
account their different ranges. Therefore the following data
normalization method is employed on each numeric feature f
to rescale its original value h using min-max normalization.
For each feature vector s, we transform each value h of each
numeric feature f according to the following rule:

hnorm =
h− fmin
fmax − fmin

, (13)

where fmin, resp. fmax , is the minimal, resp. the maximal value
among all known values of the feature f .
To handle features that are bit arrays (b1, . . . , bk ), we split

up each component bi from the array and consider it as
an independent feature. Finally, after preprocessing all three
types of features, we apply several feature selection and
extraction algorithms and select the most relevant features.

B. FINDING THE FEATURE WEIGHTS USING PARTICLE
SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) [39] is a biologically-
motivated stochastic optimization algorithm based on swarm
intelligence. Each particle is represented as a point in the
search space, and a fitness function determines the quality
of each point. Each particle updates its position, which is
influenced by the current velocity, the previous best particle’s
position, and the most successful particle in the swarm.

The concept and notation of the PSO elements for finding
the feature weights used in the weighted Euclidean distance
Eq. (1) in the KNN classification is as follows:
• A particle is represented as a vector of weights w. The
current position of i-th particle is denoted by xi and vi
denotes its current velocity.

• A swarm or population is an array of all particles con-
sidered in the PSO algorithm.

• The local best position pi of i-th particle is its best
position among all positions visited so far, and pbesti
is the corresponding value of the fitness function f , i.e.
pbesti = f (pi).

• The global best position pg is the position of the most
successful particle in the swarm, and gbesti = f (pg).

• The fitness function f is an objective function used to
measure the quality of a particle. In our malware detec-
tion problem, the optimization criterion can be defined
as the error rate of the KNN classifier. In this work,
we will also consider another optimization criterion
focused on minimizing the false positive rate.

The PSO algorithm has three inputs: the fitness func-
tion f , a training set Tpso, and vector p of feature importance
scores [40] obtained by the feature selection algorithm. The
pseudocode of the modified PSO algorithm is presented in
Algorithm 1.

Rand(0, ε) represents a vector of random numbers uni-
formly distributed in [0, ε] where ε is a small constant.

Algorithm 1 PSO Algorithm
Input: fitness function f , Tpso, p
Output: vector of weights
1: initialize particles:

xi = p⊗ Rand(0, ε1)
vi = Rand(−ε2, ε2)

2: repeat
3: for each particle xi do
4: compute fitness function f (xi)
5: if f (xi) > pbesti then
6: pbesti = f (xi)
7: pi = xi
8: end if
9: end for
10: select the most successful particle in swarm so far, and

denote it by pg
11: for each particle xi do
12: vi = ωvi+Rand(0, φ1)⊗ (pi− xi)+Rand(0, φ2)⊗

(pg − xi)
13: xi = xi + vi
14: end for
15: until maximum number of iterations is attained
16: return global best position

Operation ⊗ denotes a component-wise multiplication. Note
that each particle canmemorize its best previous position, and
it also knows the best position of thewhole swarm so far. Each
component of velocity v is kept in the range [−Vmax ,Vmax],
where the parameter Vmax influences search ability of the
particles. An inertia weight ω is used to better control the
search scope and reduce the importance of Vmax . Higher
values ofω tend to prefer the global search while lower values
tend to prefer the local search. Parameters φ1 and φ2 represent
the weights and are used to balance the global and the local
search. The purpose of the initialization is in the acceleration
of PSO, i.e., reducing the searching space is done using the
feature selection algorithm results.

This work concerns the classification problem where the
definition of the fitness function depends on the KNN clas-
sifier. The fitness function of the clustering problem can
alternatively be defined using purity or silhouette coefficient.

The PSO was chosen among other optimization heuristics
because its convergence rate is fast and the algorithm is easy
to implement and execute in parallel. The drawback of the
algorithm is that it is vulnerable to getting stuck in the local
minima.

In the rest of this section, we propose the optimization
criteria for detecting as much malware as possible while
keeping a low false positive rate. To consider the different
costs of a false positive and false negative, we adjust the loss
function that penalizes false positives.

Since our dataset is well-balanced, we consider the error
rate as the appropriate measure of performance. The error
rate is defined as the percentage of incorrectly classified
instances.We can rewrite the error rate in terms of the number
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FIGURE 1. Architecture of our proposed malware detection model using distance metric learning.

of false positives (FP) and number of false negatives (FN) as

ERR =
FP+ FN
|Ttest |

, (14)

where |Ttest | is the number of testing samples. We modify
Eq. (14) by adding the parameter c > 1 which corresponds to
the cost for false positive. Then we define the optimization
criterion called weighted error rate (WERR), which takes
into account the cost of the false positive:

WERR =
c FP+ FN
|T | + (c− 1)FP

(15)

One interpretation of WERR is that if we would change
the parameters of the classifier and achieve the same error
rate (with possibly different FPnew and FNnew compared to
the original values of FPold and FNold ) then these results will
be better with respect to WERR if

c FPnew − FPold < FNold − FNnew (16)

One aspect of the WERR criterion is that we can
’’exchange’’ one false positive for c false negatives while
keeping the error rate unchanged. Note that when c = 1,
then WERR is equal to the error rate. In all experiments,
we used the WERR criterion as a fitness function of the PSO
algorithm. When not mentioned, the value of the parameter c
was set to one.

C. ARCHITECTURE
We present the malware detection system based on dis-
tance metric learning. The system uses static analysis of
PE file headers and sections. The proposed architecture is
depicted in Figure 1 and outlined in the following seven basic
steps:

Step 1: Splitting the data. The set of samples is randomly
divided into the training set and the testing set. The training
set is used for training a distance metric (see step 5) and a
classifier (see step 6). The testing set is used for testing the
classifier with the learned distance metric.

Step 2: Parsing binaries. For each sample from the train-
ing and the testing set, we extract and store information from
the PE file format. We use Python module pefile [41] for
extracting the features. These features will be preprocessed in
the step 3. In step 4, only the relevant features will be selected
and considered in experiments.

Step 3:Preprocessing of features.Conditional probability
P(x is malware|xi = h) is computed for each nominal feature
xi and for each value h of the feature xi that appears in training
set. Numeric features are normalized according to min-max
normalization. Bit arrays are split up into single boolean
features.

Step 4: Feature selection. The feature selection algorithm
is used to determine the relevant features and produce the
final version of the feature set.

Step 5:Learning the distancemetric. The distance metric
learning method is applied to the training feature vectors in
order to produce the appropriate distance metric parameters.
In the case of high computational complexity, only a subset
of training vectors can be used to learn the distance metric.

Steps 6:Classification. The distance metric learned in step
5 is used in the KNN classifier to classify samples from the
testing set.

Steps 7: Evaluation: Performance metrics, such as true
positive, false positive and error rate, are used to measure the
classification results.

The computation of the conditional probabilities for nom-
inal features and the execution of the feature selection algo-
rithm for all three types of features is only performed on the
training samples. The corresponding conditional probabilities
and selected features are applied to design both the training
and testing feature vectors.

V. EXPERIMENTAL SETUP
In this section, we present a detailed description of the exper-
imental setup. First, we introduce the dataset used in our
experiments. Then, we describe performance metrics and
present the results of feature selection.
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A. DATASET AND IMPLEMENTATION
We validated our approach using datasets containing
real-world data from 150,145 Windows programs in the
PE file format, out of which 74,978 were malicious, and
75,167 were benign. The malicious and benign programs
were obtained from the industrial partner’s laboratory and
from the Virusshare repository [12]. Our dataset contains
both obfuscated (e.g., packed and/or polymorphic) and
non-obfuscated samples. We confirm that all malicious sam-
ples considered in our experiments match known signatures
from anti-virus companies. Also, none of our benign pro-
grams were detected as malware.

We used Python module pefile [41] for extracting
features from the PE files. This module extracts all PE
file attributes into an object making them easily accessible.
We extracted 370 features based on static information only,
i.e., without running the program. The dimensionality is high
since in each section each flag of each kind of characteristic
was considered as a single feature.

Our implementations of the feature selection algorithms,
DML algorithms, the ML classifiers and the classification
metrics are based on the Scikit-learn library [42]. If not
specifically mentioned, the hyperparameters of the ML clas-
sifiers and the DML methods were set to their default values
in the Scikit-learn library.

Our implementation was executed on a single com-
puter with two processors (Intel Xeon Gold 6136, 3.0GHz,
12 cores each), with 64 GB of RAM running the
Ubuntu server 18.04 LTS operating system. Memory usage
was not exceeded in any experiment conducted in this
work.

B. PERFORMANCE METRICS
This section presents the performance metrics we used
to measure the accuracy of our proposed approach. For
evaluation purposes, the following classical quantities are
employed:

• True Positive (TP) represents the number of malicious
samples classified as malware.

• True Negative (TN) represents the number of benign
samples classified as benign.

• False Positive (FP) represents the number of benign
samples classified as malware.

• False Negative (FN) represents the number of malicious
samples classified as benign.

The performance of our classifier on the test set is mea-
sured using three standard metrics. The most intuitive and
commonly used evaluation metric in machine learning is the
error rate (ERR):

ERR =
FP+ FN

TP+ TN+ FP+ FN
(17)

It is defined on a given test set as the percentage of incor-
rectly classified instances. An alternative for ERR is accuracy
defined as ACC = 1−ERR. The second parameter, True

FIGURE 2. Evaluation of the feature selection algorithms in terms of error
rates of the KNN (k = 3) classifier. The abbreviation SFM refers to
procedure feature_selection.SelectFromModel, and the
abbreviation RFE refers to Recursive Feature Elimination implemented in
feature_selection.RFE, both from the Scikit-learn library.

Positive Rate (TPR) (or detection rate), is defined as:

TPR =
TP

TP+ FN
(18)

TPR is the percentage of truly malicious samples that were
classified as malware. The third parameter is False Positive
Rate (FPR), and it is defined as follows:

FPR =
FP

TN+ FP
(19)

FPR is the percentage of benign samples that were incor-
rectly classified as malware.

C. FEATURE SELECTION ALGORITHMS
To reduce the high dimension of the feature vector we used
a feature selection algorithm to select the most relevant sub-
set of features. We applied six feature selection algorithms
and evaluated them using the KNN (k = 3) classifier.
Figure 2 shows that the highest accuracy was achieved with
the Recursive Feature Elimination (RFE) Logistic Regression
for 75 selected features. The feature selection algorithms
were evaluated on the whole training data, that is, 70% of
samples of all 150,145 samples. To make our results repro-
ducible, Table 7 in Appendix A summarizes the 75 selected
features used in our experiments. We kept the name of the
fields in the same form as in the documentation [43] so
that the reader can easily find detailed description. In all
following experiments, we used the dataset processed by the
RFE logistic regression, which reduced the dimensionality
from 370 to 75.

VI. EXPERIMENTAL RESULTS
A collection of experiments concerning distancemetric learn-
ing techniques has been conducted. Firstly, we compared the
DML techniques and performed additional experiments with
the two most successful techniques. Then we focused on
minimizing the false positive rate, and finally we compared
our approach based on PSO to the state-of-the-art machine
learning algorithms.
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We first searched for the hyper-parameters of the DML
methods. Appropriate hyper-parameters can have large
impact on the predictive or computation performance. Tun-
ing the hyper-parameters of the LMNN algorithm using
grid search exhaustively considers all parameter combi-
nations. The following searching grids were explored:
Number of nearest neigbors k ∈ {1, 3, 5, 7, . . . , 21}, Max-
imum number of iterations of the optimization procedure
nmax ∈ {500, 1000, 1500, 2000, 2500, 3000}, learning rate
of the optimization procedure r ∈ {10−2, 10−3, 10−4,
10−5, 10−6, 10−7, 10−8}. Note that in all experiments with
LMNN we used the parameter µ = 1 defined in Eq. (6)
as the trade-off between the two objectives. The lowest
error rate was achieved with the following LMNN hyper-
parameters: number of neighbors k = 3, maximum num-
ber of iterations nmax = 1000 and learning rate r = 10−6.
These hyper-parameters were used in all successive exper-
iments. We left the hyper-parameters of NCA and MLKR
at the default values provided by in the Scikit-learn library.
Regarding the PSO algorithm, we explored the following
PSO parameters: φ1, φ2 ∈ {0.5, 1, 1.5, 2}, and Vmax ∈
{0.5, 1, 2, 4}. The lowest error rate was achieved with the
following hyper-parameters: φ1 = φ2 = 1, and Vmax = 2.
The rest of the PSO parameters were as follows: population
size is 40 and number of iterations is 30. For the first iteration,
inertia weight ω is set to one and it linearly decreases at each
iteration to the valueωmin = 0.8. All of these PSO parameters
were chosen according to guidelines from [44].

FIGURE 3. Average classification error with the standard deviation is
illustrated as a function of the maximum number of iteration in the PSO
algorithm.

We ran the PSO algorithm ten times. Figure 3 illustrates the
mean and standard deviation of the error rate corresponding
to the various number of iterations. The PSO algorithm was
runwith 50 iterations, however, in each run the algorithm con-
verged to the local minima before reaching 30 iterations. Note
that even after the first iteration, PSO outperforms LMNN.
The reason lies in the initialization step of the Algorithm 1.
Positions of particles in the initialization step of PSO were
set according to the feature importance score computed in
the feature selection step rather than randomly. As a result,
PSO was accelerated and better classification results were
achieved.

TABLE 2. The performance of three selected distance metric learning
algorithms compared with the performance of the PSO-based model and
the non-learned model referred to Euclidean.

A. COMPARISON OF DISTANCE METRIC LEARNING
ALGORITHMS
Several distance metric learning algorithms such as LMNN,
NCA, and MLKR were designed to improve the KNN classi-
fier. For this reason, these three algorithms were included in
our experiments. Table 2 shows the performance of the KNN
classifier (k = 3) using the common Euclidean distance,
the Mahalanobis distance learned by three selected DML
algorithms, and the weighted Euclidean distance learned by
the PSO algorithm. The KNN classifier achieved the lowest
error rate for the weighted Euclidean metric learned by the
PSO algorithm.

Recall that while PSO aims at learning a diagonal matrix,
the goal of LMNN, NCA, and MLKR is to learn a full
matrix. Due to the high computational complexity of the
DML algorithms, we conducted the experiment for the ran-
domly chosen subset of the training dataset. Distance met-
ric learning algorithms were trained on 50,000 samples,
and the KNN classifier with learned distance was tested on
21,430 samples. These numbers of samples follow the ratio
of 70:30 in the sizes of training and testing sets. Based on
the trade-off between minimizing the error rate and execution
time, we chose only LMNN and PSO for the rest of the
experiments.

B. ADDITIONAL EXPERIMENTS FOR LMNN AND PSO
1) COMPARISON OF LMNN AND PSO
In the first experiment, we explored the performance of the
LMNN-based model and the PSO-based model for different
sizes of datasets. The experiment was conducted ten times
for randomly chosen training and testing datasets keeping the
70:30 ratio of their sizes. The number of training samples,
the learning method, and the average learning times, TPR,
FPR, and ERR estimated on the testing set are summarized
in Table 3. The number of nearest neighbors considered in
both LMNN-based and PSO-based models was k = 3.
For smaller datasets (i.e., a few thousand samples),

the LMNN-based model achieved a lower error rate with
approximately the same learning time as the PSO-based
model. The results indicate that with the increasing volume
of data the ratio of computing time and error rate decreases
in favor of PSO.

2) THE EFFECT OF PARAMETER k
We discuss how different parameter settings of k (i.e., number
of neighbors) affect the performance of the KNN classifier.
We explored the variation of error rates for the following
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TABLE 3. Comparison of the LMNN-based model and the PSO-based model for various sizes of datasets.

FIGURE 4. The relation between the number of neighbors and the
performance of KNN using various distances.

three variants: Euclidean distance (without feature weights),
Mahalanobis distance learned by LMNN, and weighted
Euclidean distance where the weights were computing using
PSO. For these three variants, the KNN was trained on
50,000 training samples, and the error rates were estimated
on 21,430 testing samples. The experiment was performed ten
times, and Figure 4 shows the averaged results of the KNN
classifier for various values of the parameter k from the set
{1, 3, 5, . . . , 21}.
In the additional experiments, we explored the relation

between the number of neighbors and the learning time.
Figure 5 shows that with the increasing number of neighbors
the learning time of PSO increases only negligibly compared
to the learning time of LMNN.

3) LMNN PROJECTION OF THE ORIGINAL FEATURE SPACE
In the next experiment, we used the weight matrix L, defined
in Eq. (3) and learned by LMNN, to project the original
feature space into a new embedding feature space. We fol-
lowed the goal that the k nearest neighbors of each instance
belong to the same class while a large margin separates
instances from different classes. Recall that this projection
is a linear transformation defined as x ′ = Lx. This exper-
iment aims to illustrate the difference between the original
(non-transformed) data and the LMNN-transformed data.
Two-dimensional embedding of 700 samples using the t-SNE
algorithm [45] is shown in Figure 6 where similarity plots for
four scenarios are compared.

FIGURE 5. Learning time of LMNN and PSO (with 30 iterations). The
experiment was conducted ten times, and the computational times were
averaged.

4) LIMITATIONS OF LMNN FOR LARGER DATASETS
The result of the DML algorithms for the Mahalanobis dis-
tance metric is a n× nmatrix where n is the dimension of the
feature vector. Since the number of components of the matrix
grows at a quadratic rate with n and the size of the training
data is fixed, we can expect that the size of training data stops
being sufficient for high values of n. Note that the PSO-based
model using the weighted Euclidean distance needs only n
parameters to be learned.

In the next experiment, we used the Principal Component
Analysis [46] to reduce the data’s dimension and examine
the learning ability of the LMNN-based model for various
dimensions of the feature vectors. We defined performance
improvement expressed in percent as

100 (1−
ERRlmnn
ERReuclid

), (20)

where ERRlmnn denotes the error rate of the KNN classifier
(k = 3) using the Mahalanobis distance learned by LMNN,
and ERReuclid denotes the error rate for the (non-learned)
Euclidean distance.

Our fixed-size dataset consisted of 50,000 training samples
and 21,430 testing samples. Figure 7 illustrates performance
improvement for the LMNN-basedmodel. The result of linear
regression represented by the red dashed line shows that the
improvement of error rate declines with increasing dimen-
sion. This result may indicate that for higher dimensions,
the size of our dataset may be a limiting factor.

96160 VOLUME 9, 2021



M. Jureček, R. Lórencz: Application of DML to Automated Malware Detection

FIGURE 6. Visualization of the impact on similarities of samples achieved by LMNN using the t-SNE algorithm. Red crosses represent malicious files,
while blue dots represent benign files. There are two different datasets, both consisted of 700 samples. For dataset A transformed by LMNN that was
trained on the same dataset A we achieved the error rate of 1.43 %, while for dataset B transformed by LMNN that was trained on the different
dataset we achieved an error rate of 2.29 %. All results were achieved using the KNN classifier (k = 3).

FIGURE 7. The relation between the dimensionality of the feature vector
and performance improvement achieved using the KNN classifier with
Mahalanobis distance metric learned by LMNN.

C. MINIMIZING OF THE FALSE POSITIVE RATE
This section concerns the problem of detecting as much
malware as possible while maintaining a low false positive
rate.We first focus onminimizing the false positive rate using
the PSO algorithm. We analyzed how the coefficient c in
the WERR criterion defined in Eq. (15) influences the false
positive rate and the error rate.

TABLE 4. Results of the experiment with the modified LMNN and the
PSO-based method with emphasis on low false positive rate.

In this experiment, we performed PSO with WERR opti-
mization criterion for c ∈ {1, . . . , 10}. The relation between
the coefficient c and the false positive rate and the error rate
achieved by the KNN classifier (k = 3) is presented in
Figure 8. The PSO was performed ten times for randomly
chosen 50,000 training samples and 21,430 testing samples.
The figure shows the mean values of FPR and ERR with the
standard deviation.

As expected, with increasing coefficient c the correspond-
ing FPR decreases. However, for c > 8, FPR does not
decrease anymore since KNNusing theMahanalobis distance
produces only 20 to 30 false positives. Given the size of our
dataset, the lowest FPR, 0.13 %, was achieved for c = 8.
Note that with increasing coefficient c the corresponding
ERR increases as well while c ≤ 8.
While 0.13% FPR with 1.15 % error rate achieved in

our experiment seems reasonable, it can still be impractical
in real-world applications. It is undesirable that antivirus
programs would delete a benign sample once in every
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FIGURE 8. The relation between the coefficient c defined in the WERR criterion and false positive rate and error rate.

TABLE 5. List of machine learning classifiers with the corresponding names of algorithms from the Scikit-learn library and the corresponding parameters.
For some classifiers, we used parameters with default values as stated in the Scikit-learn library.

769 scanned samples on average. However, our proposed
malware detection model can be used as one component of
a more complex system relying on more data types from both
the static and the dynamic analysis.

As for minimizing FPR using LMNN, we modified Eq. (6)
by adding the parameter ηk which corresponds to the cost of
false positive. Thismodification aims tominimize the number
of impostors belonging to the class of benign files. Let T be
a training set and let Ni denote the set of k target neighbors of
xi. Then the modification of LMNN focusing on minimizing
the false positives is:

min
L

∑
xi∈T

∑
xj∈Ni

(
dL(xi, xj)2

+µ
∑

xk∈T :yi 6=yk

ηk [1+ dL(xi, xj)2 − dL(xi, xk )2]+
)

(21)

where ηk denotes the cost of false positive and it is defined
as:

ηk =

{
1 if yk is class of benign files,
c ≥ 1 if yk is class of malware.

Similarly to the WERR optimization criterion, the pur-
pose of the parameter c in the definition of ηk is to set the
amount of penalization for one false positive. The difference
between the modification of LMNN and WERR criterion
is that the modification of LMNN takes into account the
distance between a sample and its impostor.

To summarize the result, Table 4 shows the performance
of the modified LMNN according to Eq. (21) and the PSO
methods with the WERR criterion.

TABLE 6. Averaged classification results.

Note that the PSO-based method resulted in a lower false
positive rate when compared to the LMNN-based method.

D. COMPARISON TO THE STATE-OF-THE-ART MACHINE
LEARNING ALGORITHMS
In the last experiment, we compared several state-of-the-art
machine learning algorithms with our proposed method
which refers to the KNN classifier with weighted Euclidean
distance where the weights were learned by the PSO algo-
rithm with WERR criterion.

A list of machine learning classifiers considered, together
with implementation details, is presented in Table 5.
We briefly describe the machine learning techniques applied
in the experiment.

The k-Nearest Neighbors classifier [47] is one of the most
popular supervised learning methods. It is a non-parametric
method that assigns a class label to each tested sample by a
majority vote of its k nearest neighbors.
Support Vector Machine method (SVM) [48] is mainly

defined for two-class classification problems. The core idea
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TABLE 7. List of 75 features selected by RFE Logistic Regression algorithm. Some numeric fields were considered as nominal since they have a low
number of different values.

is to maximize the margin, which is the smallest distance
between the training data and the decision boundary. The
SVM method can also be applied in multiclass classifica-
tion problems using a binary classifier in a one-against-all
situation.

Logistic Regression [49] is a parametric binary classifier
that estimates the coefficients from the training data using the
maximum-likelihood estimation. Similar to SVM, the One-
against-all strategy can also be applied to multiclass classifi-
cation problems.

The Naïve Bayes classifier [50] is a probabilistic algorithm
based on Bayes’ theorem that predicts the class with the
highest a posteriori probability. The Naïve Bayes classifier
is based on the assumption that the features are condition-
ally independent of one another, which is often not valid in
practice.

The Decision Tree classifier [51] is represented as a tree
where the internal nodes correspond to features and the leaf
nodes correspond to class labels. Edges leading to children
node correspond to the feature values. The feature vector
determines the path from the root node to the leaf node.

Deep Neural network [52] is a feed-forward artificial neu-
ral network that consists of three types of interconnected
layers of perceptrons. The input layer takes a feature vector,
which is then processed in hidden layers, and finally, percep-
trons in the output layer output a result.

Adaboost [53] is one of the most popular boosting algo-
rithms. It runs several weak classifiers and assigns them
weights that are based on the corresponding error rates. These
weights are then used to predict the output class.

Random forest [54] is an ensemble learning method that
combines the results made by several decision trees using a
voting mechanism.

Table 6 provides average classification results of the
selected supervised machine learning algorithms compared
with the results of our proposed method defined as the KNN
classifier using the weighted Euclidean distance learned by
the PSO algorithm as described in Section IV.

All machine learning algorithms were run 20 times on a
randomly chosen training and testing set with 50,000 samples
and 21,430 samples, respectively. Our proposed method out-
performed all the machine learning classifiers achieving the
lowest FPR and the lowest error rate. Deep Neural Network
and Ada Boost were the only ML algorithms having a higher
TPR than the PSO-based model; however, they both achieved
a significantly higher FPR.

VII. CONCLUSION
This paper proposed a malware detection system based
on the k-Nearest Neighbor classifier using the weighted
Euclidean distance learned by the Particle Swarm Opti-
mization algorithm. We empirically demonstrated that our
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approach achieved the lowest error rate and the lowest
false positive rate among all state-of-the-art machine learn-
ing algorithms considered in our experiment. We described
the architecture of the detection system based on structural
information from the static analysis of Windows PE files.
This approach can also be applied to executable formats of
other operating systems, such as macOS or Linux.

In addition, we focused on the problem of detecting as
much malware as possible while keeping a low false positive
rate because a high false positive error is considered seriously
in the antivirus industry. We proposed an optimization crite-
rion based on a weighted error rate to penalize false positives.
Using this criterion as a fitness function in the Particle Swarm
Optimization algorithm, which was used to learn the feature
weights of the weighted Euclidean distance, we achieved
0.13 % false positive rate with an error rate of 1.15 %.

Ongoing work is focused in two directions. First, we are
working on learning multiple local distance metrics for dif-
ferent malware families. We plan to investigate both unsu-
pervised and supervised methods. Secondly, it would be
interesting to experiment with other distance metric learning
algorithms with various optimization criteria to achieve an
even lower FPR with an acceptable error rate.

APPENDIX A
FEATURES USED IN EXPERIMENTS
Table 7 summarizes the list of 75 features all extracted from
the PE file format. For each feature from a section header,
we considered the order of the section rather than the name
of the section (such as.text,.data,.rsrc). While the sections’
order turns out to be important for malware detection, this
kind of information is often not mentioned in research papers.
We keep the name of the fields in the same form as in the do-
cumentation [43] so that the reader can easily find a detailed
description in the documentation [6].
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