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ABSTRACT Cyber-Physical Systems (CPS) embed computation and communication capability into its
core to regulate physical processes and seamlessly mediate between the cyber and the physical world for
various control and monitoring tasks. Health CPS, a variant of CPS in the healthcare sector, acts as a
health monitoring system to dynamically capture, process, and analyze health sensor data through integrated
internet of things (IoT)-enabled cyber-physical processes. These systems can suitably support patients
suffering from non-communicable diseases (NCDs) or who are at risk of suffering from those. Identifying the
risk of NCDs, such as heart disease and diabetes, requires artificial intelligence (AI) techniques into the core
of health CPS. Recently, there has been growing interest to incorporate machine learning into CPS, which
can facilitate the disease classification, detection, monitoring, and prediction of several NCDs. However,
there is a shortage of visible work that focus on early-stage risk prediction of these diseases. In this work,
we propose a novel machine learning based health CPS framework that addresses the challenge of effectively
processing the wearable IoT sensor data for early risk prediction of diabetes as an example of NCDs. In the
experiment, a verified diabetic dataset has been used for training, while the testing has been performed on an
artificially generated data collection from sensors. The experiment with several machine learning algorithms
shows the effectiveness of the proposed approach in achieving themaximum precision from the RandomTree
algorithm, which requires a minimum time of 0.01s to construct a model and obtains 94% accuracy to predict
the probability of diabetes at an early point.

INDEX TERMS Cyber-physical systems, Internet of Things, machine learning, disease risk prediction, IoT
data analysis.

I. INTRODUCTION
Cyber-physical systems (CPS) promote the integration of
IoT-enabled physical world with the computation-powered
cyber world through seamless communication between
them [1]–[3]. The interconnection between cyber and phys-
ical world are usually assisted by a feedback-loop control
system [3]–[5], which enables CPS to be more adaptive
to the changes in the physical world as sensed by various
IoT sensing devices. The processing of diverse and dynamic
data sources using different machine learning (ML) algo-
rithms enable the CPS to exhibit higher intelligence [6], [7],
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which supports various application domains, including smart
healthcare [8], transportation and others.

CPS has also emerged as medical CPS (MCPS) [9], [10]
and smart health [11], to foresee the revolution in healthcare
domain. These forms of CPS provide safety-critical function-
ality in patient-centric healthcare [12]. This is accomplished
by collecting heterogeneous physiological parameters from
patients and processing themwith a goal to predict risk, detect
abnormalities, or prevent from various non-communicable
disease (NCD) conditions (e.g. coronary disease, diabetes,
cancer, etc.). Processing of body-worn sensor data in a mean-
ingful way using ML techniques has brought enormous com-
plexity due to the diversity of health data [13], prompting new
research in this domain [7], [14], [15].
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The NCDs are not transferable and non-contagious [16],
although more life-threatening than contagious diseases.
According to the World Health Organization (WHO), NCDs
are responsible for 71% of all deaths globally. However,
the risk factors and determinants of these diseases, which are
commonly known as epidemiological factors, are modifiable
and controllable [17]. For example, obesity is an epidemi-
ological factor that can cause NCDs like diabetes, stroke,
hypertension, and kidney disease [18]. Therefore, the inci-
dence of NCDs can beminimized by controlling these factors.
Epidemiological factors of NCDs generally stem from phys-
ical inactivity, alcoholic habit, diets, and other conditions.
Hence, pre-screening and preventive measures are the keys
to respond to NCDs [19]. The value of health transforma-
tion, the empowerment of wearable sensors, and ML must
be broadly acknowledged in the fight against losses due to
NCDs [20], [21]. However, few research efforts have been
made in MCPS or HCPS domain to conduct early-stage risk
prediction of NCDs, which is important to improve the health
of the people by taking precautionary measures.

Among the many healthcare applications supported by
MCPS and HCPS, patient monitoring from various perspec-
tives has been the dominant one [12], [22], [23]. These
include the work of remote patient observation [24], [25],
activity monitoring [2], home health monitoring [26], heart
health monitoring for cardiovascular disease [27], stroke
detection [28], and epilepsy detection [29], obese monitor-
ing [30]. to list a few. While such systems provide patient
monitoring to a broader extent in a sensor-rich smart environ-
ment [24], [31], these are often used for disease classification
and real-time alerting as a way of avoiding NCDswithout any
emphasis on early prediction of such diseases.

This paper reports our contribution in two-folds: first,
we propose a closed-loop ML-powered HCPS for early-stage
risk prediction of NCDs, considering diabetes as an example;
and second, we incorporate the innovative concept of verified
training dataset and dynamic test dataset, which have paved
theway for applyingMLon real-time data fromwearable sen-
sors. In order to support these contributions, we used different
types of ML classification algorithms including Random For-
est (RF), Decision Tree (DT), Naive Bayes (NB), Bayesian
Net (BN), Multi-layer Perception (MLP), Support Vector
Machine (SVM-Polykernel and SVM-RBFKernel), Logis-
tic Regression (LR), Random Forest (RT), AdaBoost, Bag-
ging, and K-th Nearest Neighbor (KNN). These algorithms
have been suggested for diabetes prediction by researchers
in existing work [32]–[35]. In our proposed work, a par-
ticular real dataset of early-stage diabetes predictability is
used for training purpose, whereas the testing is carried out
using an externally supplied test dataset, which is dynam-
ically generated from sensors in a simulated environment.
We conducted several experiments that demonstrate that the
proposed framework provides an effective mechanism for
ML-based early-prediction of NCDs.

The rest of the work is organized as follows. Section II
comments on the related work, while Section III provides

the details of the proposed method. Section IV shows our
experimental details along with a comparison and discussion
on the results. Finally, Section V concludes the paper with a
highlight to future work directions.

II. RELATED WORK
This section comments on existing work that are relevant to
AI-based approach such as deep learning (DL), ML-based
approach for smart health monitoring, AI-IoT convergence
for healthcare, healthcare Internet of Things [36], CPS for
smart healthcare, ML-based CPS, MCPS or HCPS for NCDs
risk prediction, and more specifically ML in predicting dia-
betes risk with or without HCPS context [26], [37].

The authors of a recent survey [7] highlight the impor-
tance of incorporating intelligence into MCPS. The study
reveals that the emerging health applications increasing need
to include machine intelligence to provide innovative and
smart services. The authors further describe the conversion
of raw physiological inputs into functions and how those
are used in ML, analyze the suitable ML algorithms, and
describe how decisions are made and propagated to the user.
In [22], the authors introduce a detail taxonomy for CPS in
healthcare based on a comparative review of components and
procedures. The taxonomy includes information about HCPS
application, architecture, sensing approaches, data handling,
computation, communication, security, and control, which
can be consulted when developing HCPS applications.

The authors of a smart healthcare framework [11] high-
light the importance of incorporating Gaussian mixture
model-based classification for voice pathology detection that
is used by physician for possible action. The findings of this
study demonstrate how cloud and big data will improve the
efficiency of healthcare system and provide smart healthcare
solutions for the population. However, this work does not
include any information of other disease prediction mech-
anism except for the voice pathology detection. The QoS
issues have been studied in the context of remote healthcare
in [25]. The work discusses the resolution of QoS challenges
in urban healthcare big data system [38]. While it addresses
the problems of healthcare and physical CPS systems, infor-
mation about how IoT-sensor data can be analyzed intelli-
gently for NCD predictions has not been made available.

The author in [23] proposes a CPS that incorporate local-
ization information on the sensing, analyzing and sharing of
patient data for continuous health monitoring, however, there
is no indication of risk prediction of any particular disease
in the work. In the area of general healthcare monitoring,
the work in [24] shows a CPS implementation to monitor
blood pressure (BP), blood glucose (BG), body tempera-
ture (BT), and heart beat rate (HR) based on embedded
and cloud-based technology. This approach interconnects the
communication, computation, and control aspect of CPS for
continuous monitoring of patients and actuate remote treat-
ment method when necessary.

The authors in [28] propose a CPS architecture for timely
detection of stroke, a common NCD in patients, to minimize
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the risk in people. The system analyzes electroencephalog-
raphy (EEG) data and connects to physician when it iden-
tifies stroke occurrence, and sends alerting message to the
concerned personnel. However, it does not focus on early
prediction of stroke.

The processes of data collection, analysis, and visualiza-
tion in CPS for cardiovascular disease have been demon-
strated in [27]. The authors emphasize on constant tracking of
patients’ heart function using a smart phone and web-based
interface. They enable CPS with cardiac signal processing
capabilities based on ML and big data platform. Although
the work does not elaborate on a specific prediction mech-
anism, it highlights the promise of machine and deep learn-
ing based CPS to support the identification and prediction
of NCDs.

The work in [39] proposes a model to predict, monitor,
and control the risk of coronary heart disease in CPS context.
They authors use ANFIS fuzzy inference system to identify
the different levels of risk assessment. They define 800 plus
rules to determine the risk level and the consideration of
additional attributes will require them to add even more rules,
thereby increasing the overhead. Contrary to this work, our
proposed method introduces verified training dataset against
which ML classifier is built to predict the early risk level of
diabetes from wearable sensor data.

As a summary of the above work, a comparative illus-
tration is given in Table 1 that states key information from
the reviewed papers in a convenient manner. It is evident
from Table 1 that existing work focus on diverse aspects of
smart healthcare. For example, the state-of-the art of CPS in
smart healthcare, the architectural challenges of CPS, general
health monitoring via HCPS, and the detection and moni-
toring of NCDs like stroke and cardiovascular disease. The
table also includes the references of some general ML-based
research [32]–[35] that focus on the diagnosis and prediction
of diabetes from different datasets, although not in HCPS
context. We include those work to compare the results of
diabetes prediction accuracy.

While HCPS for healthcare is currently in its early stage of
adoption, there are limited experimental analysis that appears
in existing work. A recent work in [39] does provide detail
analysis for early prediction and monitoring of heart disease,
more is needed to generalize a framework for early-prediction
of other NCDs. The proposed work aims to contribute in
this by providing an ML-enabled HCPS framework for the
early-stage risk prediction of NCDs and demonstrates its
objectives with the early prediction of diabetes.

III. PROPOSED METHOD
A. OVERVIEW
This research proposes an ML-powered HCPS system for
the prediction of diabetes. Unlike traditional ML approach,
which follows a longer training process associated with huge
pre-processing, the proposed approach omits/ minimizes
the pre-processing stage by introducing an epidemiological
knowledge base. This includes the use of a verified training

dataset approved by medical practitioner and rules to extract
health data from raw sensor’s data. For the testing phase,
the proposal prescribes subsequent stages for obtaining a
dynamic test dataset, which is produced from a combina-
tion of sensory and non-sensory data to fit the training data
structure.

It should be noted that the involvement of medical prac-
titioner into creating a knowledge base does not introduce
delay per se in the training process. Rather, the verified
training dataset make the end-user application robust and
reliable, while providing a low-computationalML algorithms
to process raw sensory data in IoT-embedded HCPS envi-
ronment. This low-computational property of this approach
is due to applying a verified training dataset to train the
classifier and using a dynamic test dataset for evaluation.
The detail of system processes relevant to training and testing
phases appears in the following sections.

B. PROCESSES FOR TRAINING PHASE
1) TRAINING DATASET GENERATION
The core of generating training dataset in HCPS is to define
an epidemiology library [19] for disease risk factors from
real patient data. The patient data can be collected from a
direct pre-screening questionnaire or via other means, which
are approved and overseen by the healthcare practitioners,
who also verify the class level of data. The refined data
are stored into a knowledge base. The practitioners-approved
data have the potential to increase the level of acceptance for
risk prediction of NCDs. To predict multiple NCDs through
a single system, the epidemiology library using electronic
healthcare records (EHR) can be constructed as a potential
solution. The electronic healthcare records are used in many
tele-healthcare systems.

2) KNOWLEDGE BASE
A knowledge base includes verified datasets, ontology, and
rules to label data [19]. For example, risk ontology, symptom
and disease ontology, medical rules to determine attribute
value, and other information which can be repeatedly used to
serve data query. The use of an epidemiological knowledge
base can accelerate the performance of the classification
system. The proposed system uses the knowledge base in
both the training and the testing phase. In the training phase,
the verified dataset from the knowledge base has been used to
train the classifier with several ML classification algorithms,
while in testing phase the knowledge base has been used
to assign rules and data labels and to extract features for
predicting NCDs from sensor data.

3) TRAINED CLASSIFIER BUILDING
The verified training dataset is used to train the classifier. Sev-
eral popularML algorithms [41] are used for NCDprediction.
The outcome of the training phase is the trained classifiers.
These classifiers are used to evaluate sensory data in the
testing phase.
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TABLE 1. Comparison of related work.
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FIGURE 1. Proposed ML testing method in closed-loop health CPS environment.

C. PROCESSES FOR TESTING PHASE
The proposed method innovates several processes for the
HCPS testing phase. The goal is to generate a dynamic testing
dataset from the raw sensor data and classify them for predict-
ing diabetes. Similar process can be followed in the case of
predicting other NCDs, depending on the type of data system
records and the classifiers it trains. The processes in this phase
are depicted in Figure 1 and the data flow is marked with
numbers to demonstrate a closed-loop model. The details of
the processes are given as follows.

1) DETECTION OF HEALTH MONITORING SENSORS
The wearable network includes sensors of diverse genres
targeting different goals, such as health monitoring, disorder
prediction, safety monitoring, home rehabilitation, activity
monitoring, treatment assessment, and so on. Information
about these sensors include sensor type, id, record type, man-
ufacturer, and service information. These information can be
extracted using Python command lines or dedicated tools.
To detect whether the sensor is a health monitoring sensor
or not, information about each wearable sensor in a specific
network will be checked. If the model includes n wearable
sensors then W = w1,w2,w3, . . . ,wn is a list of sensors in
an environment. For each wearable sensor w, an information
list is extracted as info_list = i1, i2, .., im. An instantiation of
info_list can be seen in Figure 2.

2) SELECTION OF BIOMEDICAL CORRELATED DATA
The reading of the sensors will be used for selecting biomedi-
cal correlated variables. In particular, the correlation between
sensor readings and the biomedical variable are assessed.
Possible examples of biomedical correlated variables are beat

FIGURE 2. Example of information list of sensors.

per minute (BPM), sweat, step count, etc. To conduct this
step, a pre-defined list containing the biomedical variables is
checked. For example, if the list contains {bpm, step count,
sweat, sleeping time} and the reading from a wearable sensor
w is {bpm:60} then the variable bpm will be selected as a
biomedical correlated variable.

3) DATA LABELING
The data labeling is performed by applying rules from the
epidemiological knowledge base on the sensor data variables.
The epidemiological knowledge base includes the features
NCDs and data from general healthcare records (marked as
3 and 4 on Figure 1). These records provide the selection of
epidemiological factors by the users through user interface
at real time. For example, the knowledge base will include
epidemiological factors (e.g. age, sudden weight-loss, and
palpitation) with rules. These epidemiological factors are the
filtered features. This kind of knowledge-driven feature selec-
tion is a low-computational approach to feature selection.
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Algorithm 1 Algorithm for Dynamic TESTING Data Generation
1: class TESTING
2: feature_name
3: feature_value
4: end class
5: class Rule
6: match_param_name
7: operator
8: match_param_value
9: decision_param_name

10: decision_param_value
11: end class
12: Initialize TESTING list T ;
13: Input list health_sensor_info, RULE list rule;
14: for i=0 to health_sensor_info.length() do
15: \ * Split sensor data which is in ’’data name: value’’ format.
16: \ * find() is a Python function-returns index of a character in string.
17: \ * ’:’ is the delimiter, splitting value before and after ’:’.
18: sensor_data = health_sensor_info[i].sensor_data;
19: bio_cor_var = sensor_data[: sensor_data.find(′:′)];
20: bio_cor_val = Int(sensor_data[sensor_data.find(′:′) + 1 :]);
21: for j=0 to rule.length() do
22: if rule[j].match_param_name == bio_cor_var then

\ *Check the sensor data with knowledge base rule.
23: Compare(bio_cor_val, rule[j].operator, rule[j].match_param_value)
24: if TRUE then
25: T [i].feature_name = rule[j].decision_param_name;
26: T [i].feature_value = rule[j].decision_param_val;
27: end if
28: end if
29: end for
30: end for
31: Return T ;

At this stage, the core contribution of this research has been
introduced. The knowledge base including epidemiological
factors of different NCDs will be applied to the sensor data
variable. This will assign data labels dynamically to the reg-
ular sensor data. For example, if the weekly step count of a
user is less than 2000, the value of obesity feature will be yes.

4) DYNAMIC TEST DATASET GENERATION
The dynamic test data requires data from smart phone apps
and of the labeled sensory data. The apps provide different
information (e.g. age, gender) and other derived data such
as genital thrush from the frequency of drinking time. The
non-sensory data and dynamically labeled data along with the
filtered features generate a dataset as the weekly records of a
user. It should be noted here that non-sensory features such
as age and gender will be used without any modification as it
matches the feature format of verified training dataset.

The process of generating test data dynamically is given
in Algorithm 1. The defined class TESTING has two
attributes, feature_name to contain a feature name of the
training dataset and feature_value to contain the value of

a particular feature. The other defined class RULE has
five attributes, which represent a rule in the knowledge
base. An example of instantiation of an object of this class
is: r=RULE(match_param_name = ’bpm’, operator =>,
match_param_value = 80, decision_param_name =

’Irritability’, decision_param_value = 1).
The algorithm takes health sensor information list as an

input and initialize list T for output. In Python programming,
a list is used as array. Therefore, we have used the term list
and T as the list of TESTING instances. The contents of the
information of sensors is presented in Figure 2. The sensor
data of each sensor is then split into two parts with a delimiter.
For example, sensor data = ’bpm:60’ is split as bpm to be the
biomedical correlated variable and 60 is its value.

Then the biomedical correlated variable is checkedwith the
match_param_name in the list of type RULE by theCompare
function. If the rule is satisfied then decision_param_name
is stored as the feature name of a TESTING instance and
decision_param_value is stored as the feature value. Finally
the list T is returned as the dynamically created training data
record.
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TABLE 2. Training dataset details for the experiment.

5) EVALUATION
Like any ML approach, the proposed model includes the
necessary evaluation process. To evaluate the performance
of the classifiers, we considered the widely accepted ML
evaluation measures against the dynamic test dataset. Finally,
an evaluated version of ML services are provided to the
end user application. The following parameters are used to
measure the early-stage disease risk prediction. The results of
evaluation with these parameters are provided in subsequent
section.
– True Positive (TP) = NCD Risk identified correctly for

those who are at risk.
– False Positive (FP) = NCD Risk free people identified

incorrectly at risk.
– True Negative (TN) = NCD Risk free people identified

correctly as risk free.
– False Negative (FN) = NCD Risk people are identified

incorrectly as risk free.
– Correctly Classified= Percentage of instances classified

correctly.
– Incorrectly Classified = Percentage of instances classi-

fied incorrectly.
– Kappa statistic (or kappa coefficient) = A kappa of 1

indicates perfect agreement, whereas a kappa of 0 indi-
cates agreement equivalent to chance. The more the
value close to 1, the more better the performance.

– Root Mean Square Error (RMSE) = Standard deviation
of the prediction errors. It measures how concentrated
the data is around the line of best fit.

– TP Rate = TP/(TP + FN).
– FP Rate = FP/(FP + TN).
– Precision = TP/(TP + FP)
– Recall = TP /(TP + FN)
– F-measure=2*(Precision*Recall)/(Precision + Recall)
– ROC (Receiver Operating Characteristic) area = ROC

curve is a plot of True positive rate‘and false positive
rate. The closer the ROC area to 1.0, more accurate the
classifier is.

– Accuracy=(TP + TN)/(TP + TN + FP + FN)

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP
Following the method of this research, the experimental setup
is divided into two phases. In the first phase, the training pro-
cedure is performed using a verified dataset of diabetes [42],
[43]. This dataset has been collectedwith ethical approval and
informed consent from real patients from a diabetic hospital.
All data are collected from the patients prescription, where a

medical officer identified a patient as diabetes potential.More
specifically, patients who are recommended for clinical test
are classified as positive. The use of this dataset is to predict
the likelihood of diabetes at early-stage from common sign
and symptoms such that potential loss of valuable life from
diabetes can be minimized.
In the second phase, the test data has been produced from

simulation and prototype to evaluate the performance of dif-
ferent classification algorithms. For the simulation network
of wearable sensors, a sensor network was constructed by
updating examples of cooja simulator using Contiki Oper-
ating System [44]. The sensors have been modified using
Python programming language. Finally, the results have been
compared with other existing works focusing on the context
of diabetes risk prediction using ML.

B. EXPERIMENT FOR THE TRAINING PHASE
At this stage, a verified training dataset [42] is used as ground
truth for the training purpose. There are total 17 attributes,
including one class attribute. The detail information of the
training dataset is provided in Table 2. The 16 attributes
excluding the class attribute are taken from [43], which
appear in Table 3.

TABLE 3. Training dataset attributes.

The distribution of positive (clinical diabetes test pre-
scribed) and negative (clinical diabetes test not prescribed)
class in the training dataset is depicted in Figure 3. It can be
observed that the dataset includes class variation for all the
16 attributes.

Following the attribute distribution, the classifier was
trained with training datasets applying 11 classification algo-
rithms, which are RF, DT, NB, BN, MLP, SVM-Polykernel
and SVM-RBFKernel, LR, RT, AdaBoost, Bagging, and
KNN. The time to build model for each classification algo-
rithm has been shown in Figure 4.
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FIGURE 3. Attribute distribution in the training dataset.

FIGURE 4. Time taken to build classifier with different algorithms during training.

It can be observed from Figure 4 that the minimum time
taken to build classifier is 0.01s for NB, SVM (PolyKernel),
LR, RT, AdaBoost, and Bagging. The maximum time was
required byKNN algorithm at 1.82s. Time to buildmodel was
recorded by using the whole training dataset. The classifier
build time was expected to be minimal due to the use of veri-
fied training dataset, which can change in a different setup.
However, the performance of the classification algorithms
cannot be summarized only from training time, a detail eval-
uation on the test dataset is therefore conducted and provided
in the next section.

C. EXPERIMENT FOR THE TESTING PHASE
The testing phase includes several processes as explained
before. Here we show the experimental aspects of the out-
comes of these processes.

1) IDENTIFYING HEALTH MONITORING SENSOR FROM
SENSOR PAYLOAD
The information of the sensor are updated by the payloads.
There are multiple wearable sensors in the network for

different purposes. Unlike basic sensors like gyroscope or
accelerometer, the modified sensors are able to provide more
meaningful information. Table 4 provides detail information
of the wearable sensors simulated for this work. The sen-
sor_name represents the title of the sensors, which reflects the
purpose of the sensors. The timestamps represent the time of
capturing the sensor records. The sensor_data provides infor-
mation about the reading of the sensors. Further elaboration
of the sensors in Table 4 can be given as the following.
– The heart rate sensor provides bpm record.
– The eating sensor provides information about the num-

ber of food intake time.
– The first light sensor is ON if the battery is charged and

OFF otherwise.
– The Bluetooth sensors provide information about

whether it is connected to the network or not. Another
light sensor is on when the Bluetooth is connected.

– The step count sensor provides information about the
number of steps completed by a person.

– Drink water sensors count the number of time water
drunk by a person.
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TABLE 4. Information list of sensors in the wearable sensor network.

TABLE 5. Detected health sensors.

TABLE 6. Biomedical correlated variable and sample rules from the epidemiological knowledge base to map sensor readings.

– The skin rub sensor provides information about the num-
ber of time the skin is rubbed by a person.

– The blood pressure (bp) sensor provides information
about systolic and diastolic pressure (systolic, diastolic)
in mm (Hg).

– In practice, smartwatch and fitness band has embedded
sensors to provide more meaningful information [45].
These sensors are often made of basic sensors, which
collect regular sensing data like pressure, temperature,
movement, location, etc., and transform these data into
more meaningful information like, drink water time,
food intake, sleep time, etc.

The sensor_name is matched with a pre-defined list of
health sensors and when a match is found the flag is set to
1 in the program to represent it as a health sensor. Based on the
information in Table 4, it can be seen that there are six sensors

found as health sensors in the wearable sensor network as
shown in Table 5.

2) OBTAINING BIOMEDICAL CORRELATED VARIABLE FROM
SENSOR PAYLOAD
The sensor reading is matched with another list to identify the
correlated variables. In Table 6, the identified variables from
the sensor information can be seen, which are bpm, eat_count,
step_count, drink_count, skin_rub_count and bp.

3) LABELING DATA
After extracting the variables from sensors, rule from the
epidemiological knowledge base will be applied. The rules
can be determined by domain experts or existing studies,
such as in [46]. A sample of the rules for the biomedical
correlated variables has been tabulated in Table 6. For our
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TABLE 7. Test dataset details for the experiment.

TABLE 8. Filtered features from the epidemiological knowledge base and source of values.

FIGURE 5. Attribute distribution in the test dataset.

simulation, these rules have been used to label the data of
different attributes.

4) GENERATING DYNAMIC TEST DATASET
At this stage, the dynamic dataset for testing is produced
using one week data from the sensor network, the detail of
which is given in Table 7. More specifically, the features
(attributes) set for predicting diabetes at an early stage in the
diabetes dataset are selected as the filtered features. In the
testing dataset, some of the data are obtained from the sensor
network and some are from health applications. A health
application was prototyped for collecting user responses like
age, gender, and symptoms. In Table 8, the source of the field
value for each filtered feature is shown.

As per the dynamically generated test dataset, the data
distribution in the dynamic test sets is shown in Figure 5,

which matches the attribute list of Figure 3 and shows the
variation in terms of class distribution.

5) EVALUATION
A thorough evaluation has been conducted on the test dataset,
which is dynamically generated to evaluate the classifica-
tion algorithms for early diabetes prediction. To evaluate the
performance in details, several performance measures are
considered as discussed in Section III-C5. First, we represent
the correctly and incorrectly classified instances by each
algorithm shown in Figure 6. It can be observed that RF,
DT, MLP, RT, and KNN classified 91%-94% data correctly.
The lowest correct classification is 81% by the NB and BN
algorithms.

For more details, the confusion matrix for each algorithm
has been given in Table 9. The confusion matrix represents
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FIGURE 6. Correctly and incorrectly classified distribution in the test dataset.

TABLE 9. Confusion matrix for the classification algorithms.

predicted class and actual class of the prediction. The green
color in the tables represent the predicted positive class for
actual positive class, whereas the red color in the tables
represent the predicted negative class for actual negative
class. In this case RF leads again with 69 positive predic-
tion among 81 actual positive class and 134 negative class
among 134 negative class. That means no wrong prediction

in case of negative class. RT also gives a decent outcome.
The measures for NB is again low for this case accounting for
23 wrong prediction for the positive case. However, the MLP
also provides a descent result by predicting actual classes
correctly. The visualization of the MLP network has been
demonstrated in Figure 7. While building this network in
the WEKA tool we set the value of the hidden layers in the

VOLUME 9, 2021 96833



R. Ferdousi et al.: Early-Stage Risk Prediction of NCD

FIGURE 7. Neural network of MLP classification.

FIGURE 8. The tree from decision tree classification.

properties a, 9, 10, 12. Here, a is the default value calculated
by a = (attributes+classes)/2. In our case, a = (16+2)/2 =

9. This setup provided very small error per epoch, which is
0.00049. The first layer in this figure contains the input and
no computation is performed in this layer. The hidden layer
includes computations to predict two classes.

The tree from the DT classification is depicted in Figure 8.
The root of the tree is polydipsia, which then branches to
polyuria and afterwards to reach the class attribute.

The Kappa statistics and RMSE comparison is provided in
the Figure 9. These two statistical measures are considered
widely for ML performance evaluation. The kappa statistics
value of RF, RT, AdaBoost, and KNN is mostly closer to 1,
which indicates the efficiency of these classification algo-
rithms for this problem. On the other hand, the RMSE value
of KNN, RT, MLP, and RF are the least, which proves the
efficiency of those algorithms for the target prediction task.

To get a more detail view of the classifier performance,
other accuracy measures like TP rate, FP rate, Precision,

Recall, ROC area, and F-measure are illustrated in Figure 10.
The highest value of these measures is approximately 0.93,
0.12, 0.94, 0.93, 0.93 and 0.93, respectively for multiple
algorithms like RF and RT. The SVM performs worst among
these algorithms. The SVM (RBFkernel) accounts for the
highest FP rate at 0.23 and the subsequent ones are for NB
and BN at 0.22, and so on.

Based on all the analysis above, it is evident that RT
performed best in terms of model build time during training
and accuracymeasures during testing. The RT take 0.01s time
to build the classifier and exhibits 0.94 precision.

D. COMPARISON WITH EXISTING WORK
Existing work mostly consider clinical dataset for diabetic
prediction, not for early-stage risk prediction of diabetes.
Different work consider different datasets with diverse set
of attributes. However, we took the context of diabetes and
ML to compare our work that considers dataset and corre-
sponding attirbutes for early-stage diabetes risk prediction.
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FIGURE 9. Statistical measures of classification algorithm.

FIGURE 10. Accuracy measures of classification algorithm.

TABLE 10. Comparison of accuracy of our work with existing work.

A comparison of the proposed work with the existing work
has been outlined in Table 10.

The best accuracy for each algorithm is highlighted
in Table 10. It is evident from the table that in most of the
cases our proposed work provides the best accuracy. How-
ever, the work in [35] comes next providing best accuracy for
three algorithms DT, NB, and SVM (Polykernal) and then
in [34] for LR algorithm. Also, the - sign in the table cell

represents that the corresponding algorithm is not used by
the cited work. It can be observed from the table that each of
existing work individually has used 3-4 classification tech-
niques, whereas we analyzed our data with 11 classification
techniques that have been popularly used for diabetes predic-
tion in the literature. Therefore, comparatively the proposed
work justifies the novelty in performance with respect to the
referenced work.
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E. SUMMARY OF RESULTS AND DISCUSSION
Overall, it is evident from the experimental results that
although multiple algorithms built the model in minimum
time within 0.01s, the accuracy of them varied significantly.
For instance, the model is built in 0.01s by applying Bagging,
AdaBoost, RT, LR, SVM(PolyKernel), and NB. However,
the accuracy obtained by RF and RT is nearly 10% higher
at 94% than SVM at 85.14%. Again, the RF provides the
highest accuracy at 94.02% and ROC area at 0.97, but the
time required by RF to build the model is two times more
than RT. Though both RF andRT obtain the same value for TP
rate, FP rate, Precision, Recall, F-measure and ROC accuracy
measures, the less model built time supports RT to be the
best algorithm for this experiment. This diversity of results
provides interesting insights, such as a) Although several
algorithms provide almost similar accuracy, the classification
algorithms may require variable training time and b) For the
prediction of NCDs, performance should be evaluated in both
training and testing phase.

Overall, this research represents a new scope for early
stage NCD prediction with modified wearable sensors. Inter-
estingly, the epidemiological knowledge base made the
approach sophisticated providing knowledge rules and NCD
dataset. The dynamic labeling can solve the data labeling
problem for classification in HCPS, one of the major prob-
lems inHCPS research field. Besides, this work represents the
necessity for developing more advanced healthcare sensors,
which can transform the health monitoring systems to com-
plete healthcare systems. A NCD risk prediction closed-loop
system can predict the risk of developing life-threatening
disease (e.g. diabetes, thyroid, and stroke) at early stage
and the public health of any community can be improved
significantly, which can extend the life span of individuals
as well.

V. CONCLUSION
In this work, the least unexplored field of healthcare,
the early-stage risk prediction of NCDs through wearable
technology in HCPS, has been studied. The use of a medical
practitioner’s verified training dataset in the framework has
reduced the massive pre-processing stage of ML. In addition
to this, a novel approach of dynamic test dataset generation
from IoT sensors’ raw data has been introduced. The mul-
tistage conversion of heterogeneous IoT sensor data into a
meaningful dataset opens new door to predict the risk of
NCDs from the low-level sensor data in HCPS. This has
enabled the ML classification algorithms RF and RT to per-
form with 94% accuracy or more. Due to using perfectly
refined training data, the classifier build time with training
data becomes significantly low at 0.01s. Also, the comparison
of the accuracywith other existing work demonstrates that the
proposed framework performs the best for most of the classi-
fication algorithms considered. This work considers diabetes
as an example of NCD to demonstrate the novelty of the
proposedmechanism. However, other NCDs such as stroke or

thyroid can also be predicted with a proper epidemiological
dataset, which can shape the further extension of this work.
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