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ABSTRACT In this paper, the non-fragile robust attitude control problem is investigated for flexible
microsatellite close-proximity inspection, with external disturbances, parameter uncertainties and input
constraints. Firstly, the attitude motion model of microsatellite with flexible appendages is established.
Secondly, a non-fragile robust dynamic output feedback controller (RDOFC) with multiplicative gain
variations (MGV) is designed to satisfy the multi-objective requirements, including pole assignment, H∞
disturbances attenuation and input constraints. Based on the Lyapunov stability theory, the design of the
non-fragile robustH∞ attitude control is formulated as the linear matrix inequality (LMI) condition. Finally,
numerical simulations are performed to demonstrate the effectiveness of the proposed controller.

INDEX TERMS Attitude control, non-fragile H∞, flexible microsatellite, multi-objective, dynamic output
feedback.

I. INTRODUCTION
The capability of space target inspection in close proximity is
the premise of space situational awareness and approaching
operations. Due to the inherent advantages of small size
and high cost-effectiveness, microsatellites are applied into
several space close-proximity inspection missions, such as
XSS-11 [1], MiTEx [2], and BX1 [3]. Those missions have
stimulated the demand for attitude control capabilities of
microsatellites, including higher pointing performance and
better robustness.

In order to achieve the attitude control performance, three
major problems should be considered. Firstly, the microsatel-
lite is generally equipped with flexible appendages like large
antennas and solar array, and the generated vibration will
make the high-accuracy attitude control more complicated.
Secondly, in practice engineering, the microsatellite suffers
from external disturbances in space environments [4], and
parameter uncertainties caused by the change of moment of
inertia [5]. The disturbances and uncertainties will deterio-
rate the closed-loop stability and attitude control accuracy.
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Thirdly, the attitude control input torque is limited because of
the constraint of the reactor wheel output torque [6]. Besides,
in order to achieve desired transient control performance,
the closed-loop poles of the attitude control system (ACS)
should lie in a specified disc region of the stable half-
plane. Thus, the microsatellite attitude controller design is
a multi-objective problem. In recent years, the problem of
attitude control for flexible satellite has attracted consider-
able attention, and many control methods have been elabo-
rately designed, such as fault-tolerant-based control [7]–[9],
disturbance-observer-based control [10]–[13] and adaptive-
backstepping-based control [14]. However, the above papers
do not consider all of the mentioned problems. On the
other hand, as a systematic and effective method to deal
with multi-objective problem, robust H∞ control theory has
been successfully utilized into various systems [15], [16].
In [5], a mixed H2/H∞ attitude control design is proposed
for microsatellite system with the external disturbances and
parameter uncertainties considered. In [17], a robust H∞
state feedback controller with additive gain variations (AGV)
is proposed for spacecraft attitude control subject to exter-
nal disturbances and parameter uncertainties. However,
in [5], [17], it supposed that the relative attitude angle and
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angular velocity are available. Note that in several space
missions, the precise measurements of angular velocity are
not always satisfied because of the absence or the failure
of the gyroscopes [18]. So it is desirable to develop an
output feedback methodology by using only attitude angle
information.

In [19], a mixed H2/H∞ output feedback attitude con-
troller with parameter uncertainties, space environmental dis-
turbances and pole placement constraints is proposed. Based
on LMI, Wu and Wen [20] propose a RDOFC for flexible
satellite attitude stabilization with external disturbances and
model uncertainties. Furthermore, in view of the imprecise
collocation, an integrated robust H∞ attitude controller, con-
sisting of a feedforward component and an output feed-
back component, is presented to handle the multi-objective
problem for flexible spacecraft [21]. However, due to the
control gain parameter drifts and the deviations of the mea-
sured output caused by the sensor, the parameters in con-
troller gain matrices may be uncertain. The small parameter
perturbations of the controller gain matrices may degrade
the attitude control precision or destabilize the closed-loop
system [22]. Hence, it is required to propose the non-fragile
RDOFC. Notice that the non-fragile control problem has
been addressed by a number of papers [22]–[27], and also
utilized into ACS successfully [28], [29]. Liu et al. [28]
address the non-fragile attitude control problem for rigid
spacecraft, the non-fragile RDOFC is designed with respect
to the additive perturbation and multiplicative perturbation.
Based on [28], the non-fragile fault tolerant attitude control
problem for rigid spacecraft is investigated, and the corre-
sponding controller is designed by conducting a stochasti-
cally intermediate observer [29]. Nevertheless, to the best of
our knowledge, very few researches have been devoted to the
non-fragile RDOFC design method for flexible microsatellite
attitude to satisfy the multi-objective requirements, which
motivate our present study. The main contributions are sum-
marized as follows.

i). In contrast to [19], [21], a non-fragile RDOFC with
MGV for the microsatellite attitude is designed to satisfy
the multi-objective requirements, including flexible modes,
external disturbances, parameter uncertainties, input con-
straints and poles assignment. Besides, compared with [30],
the state-derivative-dependent uncertain term in the proposed
rigid -flexible coupling model is handled directly, which can
decrease the complexity of the controller design.

ii). Based on the Lyapunov stability theory, the existence
conditions of admissible controller under multi-objective
requirements are formulated as the nonlinear matrix inequal-
ities (NLMIs), and the NLMIs are transformed into linear
matrix inequalities (LMIs) by performing a set of changing
variable process. Thus, the non-fragile controller design prob-
lem can be transformed as a convex optimization problem
with LMI constraints.

iii). For the nonconvex problem caused by the cou-
pling term in matrix inequality, compared with the
two-step procedure solution performed in [25], we propose

a less conservative method by constructing a Lyapunov
matrix with some structure, which makes the transformation
from the NLMIs to the LMIs more easily.

The rest of this paper is organized as follows. In Section II,
the attitude motion control model of microsatellite with
flexible appendages is established, and the multi-objective
control requirements are formulated. Based on Lyapunov
theorem, a non-fragile RDOFC is proposed to achieve the
multi-objective requirements in section III. Section IV illus-
trates the numerical simulation results. Finally, the conclu-
sions are given.

Notations: Throughout this paper, matrix transposition
and matrix inverse are represented as the superscript T and
−1, respectively; Rn stands for the n-dimensional Euclidean
space, and Rn×m denote the set of all n × m real matrices;
‖·‖ refers to the Euclidean vector norm or the induced matrix
2-norm. The symmetric and negative definite real matrix X
is represented as X < 0; An ellipsis for terms induced by
symmetry in complex matrix expressions is denoted as ∗.
0 and I denote zero matrix and the identity matrix with
compatible dimension, respectively.

II. PROBLEM FORMULATION
A. ATTITUDE DYNAMICS OF MICROSATELLITE WITH
FLEXIBLE APPENDAGES
Many different coordinate reference frames are introduced
to describe the attitude control model of microsatellite with
flexible appendages. One can refer to Fig. 1 for the spatial
directions of different frames.

FIGURE 1. Coordinate axes of microsatellite in a circular orbit.

1) The LVLH reference frame: the frame is described
by FL , and its origin located at the mass center of microsatel-
lite and the unit vectors (a1, a2, a3) defined as a1 along the
microsatellite’s velocity direction in orbit plane, a3 toward
the earth, and a2 is completed by a right-handed Cartesian
frame.

2) The body-fixed frame: the frame is described by Fb, its
origin is also fixed in the mass center of the microsatellite,
and three basic unit vectors (b1, b2, b3) are along the inertia
principal axes.

In the body reference frame Fb, the attitude dynamic
equations for microsatellite with flexible appendages are
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given by [31]

J ẇ+ FTη̈ = −w×Jw+ u+ Tg + d

η̈ + Cmη̇ +3η + Fẇ = 0, (1)

where J = diag(J1, J2, J3) is the moment of inertial, w =
[w1,w2,w3]T ∈ R3 is the angular velocity, u is the control
torque acting on the microsatellite, Tg = [Tg1,Tg2,Tg3]T

donates the gravity-gradient torque presented as [32], d is
the external disturbances torque, η and F are the flexi-
ble modal coordinate and the rigid-elastic coupling matrix,
respectively. Cm = diag(2ζ1$1, · · · , 2ζN$N ) represent
the modal damping matrix, with the damping ratio ζi(i =
1, · · · ,N ) and the modal frequency $i(i = 1, · · · ,N ).
3 = diag($ 2

1 , · · · ,$
2
N ) denotes stiffness matrix, N is the

number of elastic mode.
In the motion of microsatellite, the velocity direction of

microsatellite is not consistent with the thrust orientation,
which results that the output of thrust cannot be used fully.
Therefore, the ACS is required to achieve the space missions.
In this article, the attitude of the microsatellite is described by
the Euler angles. The orientation of the frame Fb relative to
FL is defined through the yaw-pitch-roll (ψ → θ → φ) suc-
cessive rotations, and the resulting coordinate transformation
is described as b1b2

b3

 = RbL

a1a2
a3

 , (2)

where

RbL =

 cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθcψ cφcθ


with cθ ≡ cosθ, sθ ≡ sinθ , etc. Further, the angular velocity
of the reference frame Fb relative to the LVLH frame FL can
be described by

wbL = wbL,xb1 + wbL,yb2 + wbL,zb3, (3)

where wbL,xwbL,y
wbL,z

 =
1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

φ̇θ̇
ψ̇

 .
Assuming that the microsatellite motion is in a circular

orbit. Then the angular velocity of the frame Fb relative to
the inertial reference frame Fi is expressed as

w = wbi = wbL + wLi = wbL − na2 (4)

where n represents the orbit angular rate of the microsatellite.
Substituting (2) and (3) into (4), we obtainw = w1b1+w2b2+
w3b3 in whichw1
w2
w3

 =
1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

φ̇θ̇
ψ̇

− n
 cθsψ
sφsθsψ + cφcψ
cφsθsψ − sφcψ

 .
We consider the situation that the attitude deviation from

the frame FL is small, and attitude kinematics equations

can be simplified considerably. At this point, the coordinate
transformation matrix RbL can be simplified as

RbL ≈

 1 ψ −θ

−ψ 1 φ

θ −φ 1

 .
Moreover, based on equation (3), the angular velocity of

Fb relative to FL can be simplified as

wbL,x ≈ φ̇, wbL,y ≈ θ̇ , wbL,z ≈ ψ̇.

Hence, from equation (4), we have

w1 = φ̇ − nψ

w2 = θ̇ − n

w3 = ψ̇ + nφ. (5)

For the situation of the small attitude deviation, substitut-
ing (5) into (1), and ignoring the second order small terms,
the attitude motion model of microsatellite with flexible
appendages are described by

J q̈+ Dq̇+ Gq+ FTη̈ = u+ d

η̈ + Cmη̇ +3η + F(q̈+ N̄ q̇) = 0, (6)

where q =
[
φ, θ, ψ

]T
G =

4n2(J2 − J3) 0 0
0 3n2(J1 − J3) 0
0 0 n2(J2 − J1)


D =

 0 0 −n(J1 + J3 − J2)
0 0 0

n(J1 + J3 − J2) 0 0


N̄ =

0 0 −n
0 0 0
n 0 0

 .
Remark 1: The attitude model mentioned above is only

valid for small angle attitude deviation. It is assumed that the
attitude deviation relative to the desired attitude orientation
is small. The same assumption can be seen in [5], [19].
Moreover, since the roll and yaw dynamic are coupled and
affected mutually in the attitude control, the three axis atti-
tude model (6) is relatively effective comparing with only
singular-axis attitude mode considered in [33].

B. MULTI-OBJECTIVE CONTROL REQUIREMENTS
Due to the displacement deviation of payload in the space
motion of the microsatellite, the principal moment of inertia
will cause the perturbations, which can be described as

Ji = Ji0 +1Jiδi |δi| ≤ 1, i = 1, 2, 3,

where Ji0 is the nominal value,1Ji is the known perturbation
envelope of Ji, and δi denotes the normalized uncertainty.
The matrices J ,D and G with the perturbation terms can be
described as

J = J0 +1J , D = D0 +1D, G = G0 +1G,
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where

1J = 4J1J0J , 1D = 4D1D0D, 1G = 4G1G0G

J0 =

J10 0 0
0 J20 0
0 0 J30

 , 4J =

1J1 0 0
0 1J2 0
0 0 1J3


D0 =

 0 0 −n(J10 + J30 − J20)
0 0 0

n(J10 + J30 − J20) 0 0


G0 =

4n2(J20 − J30) 0 0
0 3n2(J10 − J30) 0
0 0 n2J20 − J10


1J = diag(δ1, δ2, δ3), 0J = diag(1, 1, 1)

4D = n

 0 −1J1 0 −1J3 0 −1J2
0 0 0 0 0 0
1J1 0 1J3 0 1J2 0


0D =

1 0 1 0 −1 0
0 0 0 0 0 0
0 1 0 1 0 −1

T

1D = diag(δ1, δ1, δ3, δ3, δ2, δ2)

4G = n2

1J2 0 0 0 −41J3 0
0 0 31J1 31J3 0 0
0 1J2 0 0 0 −1J1


0G =

4 0 0 0 1 0
0 0 1 −1 0 0
0 1 0 0 0 1

T

1G = diag(δ2, δ2, δ1, δ3, δ3, δ1).

In view of the state vector x = [qT, q̇T]T, the linearized
attitude model of microsatellite with flexible appendages can
be rewritten as

ẋ+ Ee(ẋ) = Ax+ B1u+ B2d̃

y = Cx, (7)

where

e(ẋ) =
[

0
1J ẋ2

]
, ‖e(ẋ)‖ ≤ ‖W0ẋ‖, W0 =

[
0 0
0 4J

]
A = A0 +1A, A0 =

[
0 I

−M−10 G0 −M
−1
0 (D0 − FTFN̄ )

]
1A = L1HK , L =

[
0 0

−M−10 4G −M
−1
0 4D

]
E =

[
0 0
0 M−10

]
, M0 = J0 − FTF, K = diag(0G, 0D)

1H = diag(1G, 1D), 1HT1H ≤ I

B1 = B2 =
[

0
M−10

]
, C =

[
I 0
]

d̃ = FTCmη̇ + FT3η + d.

Remark 2: It is noted that the uncertain term Ee(ẋ) is the
term on the state derivative which will be handled directly in
this paper. For the ACS, in general, the parameter uncertainty

can be transformed into the parameter uncertainty in the sys-
tem matrix and control input matrix by the matrix inversion
operation [30]. That operation increases the complexity of
the control design. Moreover, it is difficult to design the
non-fragile controller due to the multiple uncertainties in the
control input matrix.

For dynamic equation (7), a full order non-fragile RDOFC
is designed as

ẋf = A1f xf + B1f y

u = C1f xf , (8)

where xf is the controller state. A1f = Af + 1Af , B1f =
Bf +1Bf , C1f = Cf +1Cf . Af ,Bf and Cf are the nominal
controller gain matrices to be determined. 1Af ,1Bf and
1Cf denote the MGV matrices resulting from the control
parameter drifts and other uncertain factors, and satisfy the
following hypothesis.
Assumption 1: The controller gain variations matrices

1Af ,1Bf and 1Cf are described by

1Af = Af F1, 1Bf = Bf F2, 1Cf = F3Cf , (9)

where

F1 = diag(δa1, δa2, . . . , δa6) |δai| ≤ δm i = 1, . . . , 6

F2 = diag(δb1, δb2, δb3) |δbi| ≤ δm i = 1, 2, 3

F3 = diag(δc1, δc2, δc3) |δci| ≤ δm i = 1, 2, 3.

Remark 3: In assumption 1, 1Af means that the identical
relative percentage drift δai from the nominal entries of every
column of Af is admissible, and so to 1Bf . In practice, 1Bf
and 1Cf are described to the degradation of sensors and
actuators [34]. 1Af can be used to describe the errors due
to the controller state error [23].

Combining system (7) and non-fragile RDOFC (8),
we obtain the closed-loop system

ξ̇ = Ãξ + B̃d̃ − Ẽe(ẋ)

y = C̃ξ , (10)

where

ξ =

[
x
xf

]
, ‖e(ẋ)‖ ≤ ‖W0ẋ‖ = ‖W̄0ξ̇‖

W̄0 =
[
W0 0

]
, Ã =

[
A B1C1f

B1f C A1f

]
B̃ =

[
B2
0

]
, Ẽ =

[
E
0

]
, C̃ =

[
C 0

]
.

Therefore, we can write the actual control input as

u = C1f xf =
[
0 C1f

] [ x
xf

]
= K̃ξ . (11)

Our goal is to design a non-fragile RDOFC (8) such that the
closed-loop system (10) satisfies the following requirements.

1) All the closed-loop poles lie in a prescribed the disk
region D(a, b) (centered in −a + j0 with the radius
b(b < a)).
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2) The closed-loop system (10) is asymptotically stable,
and the H∞ norm of the closed-loop transfer func-
tion from the disturbances d̃ to the output y satisfies
‖Tyd̃‖ ≤ γ .

3) The control input torque should be limited into a certain
range, which can be described as ‖u‖ ≤ umax , where
umax denotes the upper bound of input torque.

We first give the following two lemmas before presenting our
main results.
Lemma 1 ( [35]): Let Ȳ = Ȳ T, H̄ and Ē be matrices of

appropriate dimensions, then Ȳ+H̄ F̄ Ē+ĒTF̄TH̄T < 0 holds
for all F̄ satisfying F̄TF̄ ≤ I , if and only if there exists any
scalar µ such that Ȳ + µ−1H̄H̄T

+ µĒTĒ < 0.
Lemma 2 ( [36]): Let�,2 and 0 be matrices of appropri-

ate dimensions, and � is symmetric matrix, then

�+20T
+ 02T < 0,

if there exist a scalar λ̄ > 0 satisfying[
� λ̄−12+ λ̄0

∗ −2I

]
< 0.

III. NON-FRAGILE ROBUST CONTROL SYNTHESIS
In this section, we devote to designing a multi-objective
non-fragile RDOFC for microsatellite attitude with flexi-
ble appendages. The requirements (1) − (2) are considered
simultaneously, and the sufficient conditions are obtained,
under which there exists a non-fragile RDOFC such that the
requirements (1)− (2) can be achieved. The input saturation
is further considered in the control design.
Lemma 3: Consider a disk D(a, b) and positive scalars

λ, γ , if there exists a symmetric matrix P > 0 such that the
following matrix inequality holds
−
b2
a P −PẼ PB̃ λÃTW̄T

0 C̃T (Ã+ aI )TP
∗ −λ2I 0 −λẼTW̄T

0 0 0
∗ ∗ −γ 2I λB̃TW̄T

0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −aP

 < 0. (12)

Then, it is concluded that the closed-loop system (10)
satisfies the requirements (1)− (2).

Proof: See Appendix A. �
Remark 4: It should be pointed out that the Lyapunov

matrix P in (A.1) and (A.2) should be two independent
matrix variable. In this paper, the common Lyapunov matrix
variable P is selected, which can be seen in the proof of
Theorem 1, whichmay bring in some conservatism. However,
the conservatism can be paid by the following merits. Firstly,
the common Lyapunov matrix variable P makes the NLMIs
(A.1) and (A.4) tractable and solvable by transforming the
NLMIs into the LMIs, which can be seen in the following
results. Secondly, all degrees of freedom in choosing the com-
mon Lyapunov matrix P are exploited until the requirements
(1)− (2) are satisfied [37].

The matrix inequality (12) employs the matrix P, the nom-
inal controller parameter matrices Af ,Bf ,Cf , and the uncer-
tain terms contained in the matrix Ã as unknown variables,
and then the coupling nonlinear terms occur. Thus, the matrix
inequality (12) is not considered as a LMI problem. It is
essential to transform the NLMI (12) into the LMI in the later
development.
Theorem 1: Consider a disk D(a, b) and positive scalars

ε1, ε2, λ, γ, δm, if there exist matrices S > 0,N < 0,Fa,Fb
such that the following inequality holds

(1, 1) (1, 2) (1, 3) (1, 4)
∗ −λ2I 0 −λETWT

0
∗ ∗ −γ 2I λBT2W

T
0

∗ ∗ ∗ −I
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(1, 5) (1, 6) 0 ε2ψ3 0
0 0 0 0 0
0 0 0 0 0
0 0 ψ1 0 ψ4

(5, 5) 0 ψ2 0 ψ5
∗ −ε1I 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε2I


< 0 (13)

where

Fa = NAf , Fb = NBf

(1, 1) =

[
−
b2
a S + C

TC −
b2
a S + C

TC

∗ −
b2
a (S − N )+ CTC

]

(1, 2) =
[
−SE

−(S − N )E

]
, (1, 3) =

[
SB2

(S − N )B2

]
(1, 4) =

[
λAT0W

T
0 + λC

T
f B

T
1W

T
0

λAT0W
T
0

]
(1, 5) =

[
AT0S + C

T
f B

T
1S + aS

AT0S + aS

AT0 (S − N )+ CTFT
b + C

T
f B

T
1 (S − N )+ FT

a + aS
AT0 (S − N )+ CTFT

b + a(S− N )

]
(5, 5) =

[
−aS −aS
−aS −a(S − N )

]
, (1, 6) =

[
ε1KT

ε1KT

]
ψ1 = λW0L, ψ2 =

[
SL

(S − N )L

]
ψ3 =

[
I CT CT

f
0 CT 0

]
, ψ4 =

[
0 0 λδmW0B1

]
ψ5 =

[
0 0 δmSB1

δmFa δmFb δm(S − N )B1

]
.

Then, the closed-loop system (10) satisfies the require-
ments (1) − (2) with the proposed non-fragile RDOFC (8),
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Cf and

Af = N−1Fa, Bf = N−1Fb. (14)

Proof: Based on Lemma 3, system (10) satisfies the
requirements (1) − (2) if the matrix inequality (12) are sat-
isfied. Define

P =
[
Y N
N −N

]
, 01 =

[
I I
I 0

]
0T
1P01 =

[
S S
S Y

]
where S = Y + N . Then, based on the Schur Complement
Formula, it is obvious that P > 0 is equivalent to S > 0 and
N < 0. Post- and pre-multiplying (12) by diag(01, I , I , I , I ,
01) and its transpose, respectively, can yield

(1, 1) (1, 2) (1, 3) ψ14 ψ15
∗ −λ2I 0 −λETWT

0 0
∗ ∗ −γ 2I λBT2W

T
0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ (5, 5)

 < 0 (15)

where (1, 1), (1, 2), (1, 3), (5, 5) are defined in (13),

ψ14 =

[
λATWT

0 + λC
T
1f B

T
1W

T
0

λATWT
0

]
ψ15 =

[
ATS + CT

1f B
T
1S + aS

ATS + aS

ATY + CTBT1f N + C
T
1f B

T
1Y + A

T
1f N + aS

ATY + CTBT1f N + aY

]
.

Further, the matrix inequality (15) can be rewritten as

Q1 +

[
M̄1
0

]
1H

[
0 N̄1

]
+

[
0
N̄T
1

]
1HT [M̄T

1 0
]

+

[
M̄2
0

]
F̃
[
0 N̄2

]
+

[
0
N̄T
2

]
F̃T [M̄T

2 0
]
≤ 0,

(16)

where

Q1 =


(1, 1) (1, 2) (1, 3) ψ̂14 ψ̂15
∗ −λ2I 0 −λETWT

0 0
∗ ∗ −γ 2I λBT2W

T
0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ (5, 5)


ψ̂14 =

[
λAT0W

T
0 + λC

T
f B

T
1W

T
0

λAT0W
T
0

]
ψ̂15 =

[
AT0S + C

T
f B

T
1S + aS

AT0S + aS

AT0Y + C
TBTf N + C

T
f B

T
1Y + A

T
f N + aS

AT0Y + C
TBTf N + aY

]

M̄1 =

[
KT

KT

]
, M̄2 =

[
I CT CT

f
0 CT 0

]
N̄1 =

[
λLTWT

0 LTS LTY
]

N̄2 =

 0 0 ATf N
0 0 BTf N

λBT1W
T
0 BT1S BT1Y


F̃ = diag(FT

1 ,F
T
2 ,F

T
3 ), F̃TF̃ ≤ δ2mI .

It follows from Lemma 1 that (16) is equivalent to the matrix
inequality (13). �

Note that the matrix inequality (13) is not a LMI due to the
coupling term CT

f B
T
1 (S − N ) in (1, 5). To solve the problem,

a two-step procedure method is proposed in [25], which is
assumed that the controller gain matrix Cf is prior given, and
the actual controller gain matrix Cf will be designed later.
However, the two-step procedure with given matrix Cf will
cause more conservatism due to the reduction in the freedom
variable. Based on Lemma 2, the less conservative method
which solves the problem of the existence of the coupling
term is proposed in the following Theorem.
Theorem 2: Consider a disk D(a, b) and positive scalars

ε1, ε2, λ, λ1, γ, δm, system (10) satisfies the requirements
(1) − (2) with the proposed non-fragile RDOFC (8) if there
exist matrices S > 0,N < 0,Fa,Fb,Cf such that the
following LMI holds.[

4 λ−11 8+ λ19

∗ −2I

]
< 0, (17)

where

4 =



(1, 1) (1, 2) (1, 3) (1, 4)
∗ −λ2I 0 −λETWT

0
∗ ∗ −γ 2I λBT2W

T
0

∗ ∗ ∗ −I
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

ψ̃15 (1, 6) 0 ε2ψ3 0
0 0 0 0 0
0 0 0 0 0
0 0 ψ1 0 ψ4

(5, 5) 0 ψ2 0 ψ5
∗ −ε1I 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε2I


ψ̃15 =

[
AT0S + aS AT0 (S − N )+ CTFT

b + F
T
a + aS

AT0S + aS A
T
0 (S − N )+ CTFT

b + a(S − N )

]
8 =

[[
Cf 0

]
0 0 0 0 0 0 0 0

]T
9 =

[
0 0 0 0

[
BT1S B

T
1 (S − N )

]
0 0 0 0

]T
with (1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (5, 5),ψ1, ψ2, ψ3,ψ4,

ψ5 are defined as in Theorem 1. Thus, the desired nominal
non-fragile RDOFC can be obtained byCf and equation (14).

Proof: By Lemma 2 and the Schur Complement For-
mula, if the LMI (17) holds, then we have

4+89T
+98T < 0. (18)

It can be easily verified that the inequality (17) is
equivalent to the inequality (13). Thus, based on Theo-
rem 2, the closed-loop system (10) satisfies the requirements
(1)− (2) if the LMI (17) holds. �
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Lemma 4: Consider system (10) with the non-fragile con-
troller given in (8), it is assumed that the initial state ξ (0) =[
x(0)
0

]
is known. With the matrices S > 0,N < 0 and Cf

presented in Theorem 1, then the input constraint ‖u‖ ≤ umax
can be satisfied if there exist scalars ϑ > 0 and ε3 > 0 such
that 

−u2maxI + ε3δ
2
mI −Cf 0 0

∗ −
1
ϑ
S −

1
ϑ
S CT

f
∗ ∗ −

1
ϑ
(S − N ) 0

∗ ∗ ∗ −ε3I

 ≤ 0 (19)

−ϑI −xT(0) −xT(0)∗ −S −S
∗ ∗ −(S − N )

 ≤ 0. (20)

Proof: See Appendix B. �
Theorem 3: Consider a disk D(a, b), initial state ξ (0) and

positive scalars ε1, ε2, ε3, λ, λ1, γ, δm, the closed-loop sys-
tem (10) with non-fragile RDOFC (8) satisfies the require-
ments (1) − (3) if there exist matrices S > 0,N <

0,Fa,Fb,Cf such that the LMIs (17), (19) and (20) are
satisfied.

Proof: Based on the results of Theorem 2 and Lemma 4,
if there exists a feasible solution S > 0,N < 0,Fa,Fb,Cf
such that the matrix inequalities (17), (19) and (20) are sat-
isfied, the non-fragile RDOFC can be obtained such that the
closed-loop system satisfies the poles, H∞ norm and input
constraint requirements. �

FIGURE 2. Block diagram of the non-fragile RDOFC.

As a summary, the matrix inequalities (17), (19) and (20)
are the LMIs about the matrices S > 0,N < 0,Fa,Fb,Cf ,
which can be solved efficiently by convex optimization using
the LMI tool [38]. Therefore, by solving the matrix inequal-
ities (17), (19) and (20), we can obtain the feasible solution
of the matrices S > 0,N < 0,Fa,Fb,Cf , and the desired
nominal non-fragile dynamic output feedback gain matrix
Af = N−1Fa and Bf = N−1Fb can be computed easily,
the control logical diagram of the whole system is illustrated
in Fig. 2.
Remark 5: In [24], [36], the non-fragile output feed-

back control problems with AGV have been investigated.

However, for MGV in the output feedback controller, there
are few results in the existing literatures. Compared with
AGV, MGV is more consisted with the factual situation,
which can be seen in Remark 3. Moreover, For MGV, 1Af ,
1Bf and 1Cf in the output feedback controller (8), it is
difficult to transform the NLMI (13) into LMI using chang-
ing variable method [39], [40], which results that the LMI
approach cannot be used and the non-fragile dynamic output
feedback controller cannot be found. Based on Lemma 2,
the less conservative and simpler method is proposed than
the results in [25], which can transform the NLMI into LMI
successfully.

IV. SIMULATION RESULTS
In this section, math simulation about attitude control for
microsatellite with flexible appendages is presented to verify
the stability and performance of the non-fragile RDOFC.
The microsatellite is moving along a geosynchronous orbit
of radius 42241 km with an orbital period of 24 h. Thus,
the orbital rate microsatellite can be computed as n =
7.2722 × 10−5rad/s. The initial conditions and microsatel-
lite main parameters referred to [19], [31] is summarized
in Table 1.

TABLE 1. System parameters and initial condition.

The following multi-objective requirements are satisfied
with the proposed non-fragile dynamic output feedback con-
troller (8):

(1) All the closed-loop poles lie within a disk region
D(1.01, 1);

(2) The closed-loop system is stable, and the closed-loop
transfer function ‖Tyd̃‖ < γ ;
(3) The control input ‖u‖ ≤ umax .
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FIGURE 3. Poles of the open-loop and closed-loop system.

FIGURE 4. The transition processes of the euler angle.

We consider the closed-loop system (10) with the
non-fragile RDOFC (8). WithH∞ performance index and the
system control parameters as shown in Table 1, the associated
matrices S > 0,N < 0,Fa,Fb,Cf can be obtained by solv-
ing the LMIs (17), (19), (20). The gain matrices Af ,Bf ,Cf in
the non-fragile RDOFC (8) can be obtained, as shown at the
bottom of the page.

The poles placement of the open-loop system (7) and the
closed-loop system (10) in the complex plane are presented
in Fig. 3. It can be seen that all open-loop poles are near the
origin, among which are located in the right half plane. It is

FIGURE 5. The transition processes of the euler rate.

FIGURE 6. The required control torque u.

illustrated that the open-loop system (7) is unstable. With the
proposed non-fragile RDOFC (8), all the closed-loop poles
lie in a prescribed disk region D(1.01, 1). So the requirement
of poles placement is satisfied by the designed controller.

With the proposed non-fragile RDOFC (8), the Euler angle
and Euler rate for microsatellite with flexible appendages are
shown in Fig. 4 and Fig. 5. It demonstrates that the Euler angle
and Euler rate converge to a small set containing the origin
even though in the presence of the multiple perturbations
including the parameter uncertainties, external disturbances,
flexible mode and the controller gain variations. The required

Af =


−1.7436 −0.0414 −0.0345 0.8259 0.0045 0.0355
−0.0391 −1.7468 −0.0378 −0.0109 0.8404 0.0395
−0.0266 −0.0322 −1.7870 −0.0223 −0.0031 0.9072
−0.9915 −0.0835 −0.0603 −0.9275 −0.1709 −0.0419
−0.0860 −0.9930 −0.0663 −0.2251 −0.9062 −0.0577
−0.0734 −0.0767 −1.0442 −0.2533 −0.2149 −0.8746

 , Bf =


1.7617 0.0464 0.0453
0.0404 1.7653 0.0466
0.0230 0.0302 1.8053
0.8236 0.0514 0.0508
0.0430 0.8235 0.0485
0.0193 0.0252 0.8477


Cf =

−4.4942 −0.8019 −0.2853 −20.9548 −3.4785 −0.8402−0.8950 −4.1983 −0.2066 −3.96817 −19.1590 −0.2567
−0.6417 −0.4734 −3.2429 −2.6142 −1.5703 −12.9845

 .
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FIGURE 7. The flexible modal coordinate.

control torque is depicted in Fig. 6.We can see that the largest
required control torque is below the upper bound of the output
torque generated by reaction wheels. So the requirement (2)
and (3) can be satisfied. Meanwhile, the modal displacements
are illustrated in Fig. 7, which shows that the vibration of the
flexible appendage is suppressed effectively.

In addition, to highlight the performance of the proposed
non-fragile RDOFC (8), we compare it with the existing
robust controller given in [39]. Considering the flexible
microsatellite system (6) and the same H∞ performance
index, we obtain the following gain matrices Af ,Bf ,Cf , as
shown at the bottom of the page.

In such a case, each of the elements of the parameter per-
turbation terms F1,F2 and F3 are random numbers belonging
to a uniform distribution on the interval (0,1). The responses
curves of three Euler angles under the proposed non-fragile
RDOFC (8) and robust controller given in [39] are shown
in Figs. 8 and 9, respectively. Compared with the results
in Figs. 8 and 9, we can observe that the proposed non-fragile
RDOFC (8) guarantees that the Euler angles converge into a
smaller convergent region than the robust controller in [39].
It is illustrated that the proposed non-fragile RDOFC (8) has
better robustness performance and can achieve high control
accuracy in the presence of the gain parameter perturbations.

FIGURE 8. The transition processes of the euler angle under the proposed
controller with uniformly distributed gain perturbation.

FIGURE 9. The transition processes of the euler angle under the robust
controller in [39] with uniformly distributed gain perturbation.

V. CONCLUSION
In this article, we have proposed a non-fragile RDOFC with
the MGV for flexible microsatellite close-proximity inspec-
tion mission in presence of flexible mode, parameter uncer-
tainties and external disturbances. The controller is successful
to satisfy the multi-objective requirements simultaneously,
including poles assignment, H∞ norm and input constraint.
On the basis of the Lyapunov stability theory and LMI tech-
nique, the multi-objective attitude control problem for the
microsatellite is reduced to a convex optimization problem,

Af =


−1.6216 0.0001 −0.0003 −7.0776 1.1269 −0.2834
0.0001 −1.624 −0.0003 1.0201 7.1427 −0.2254
−0.0007 −0.0005 −1.6480 −0.0807 0.0960 8.0078
0.2101 −0.0314 0.0037 −1.9273 0.0111 −0.0197
−0.0318 −0.2089 −0.0042 0.0108 −1.9315 0.0198
0.0052 0.0043 −0.2013 −0.0141 0.0147 −1.9813

 , Bf =


22.7536 0.9123 −1.5473
−1.2782 22.4673 −4.4155
−1.2252 −4.4756 −23.0957
−16.0443 1.6823 0.8288
1.5634 15.5300 −3.4306
−1.2205 −3.1685 −14.1571


Cf =

 0.5574 −0.0326 −0.0189 4.7734 −0.4647 0.3537
0.0196 0.5218 −0.06889 −0.4881 −4.5021 0.8142
−0.0370 −0.1017 −0.3530 −0.2292 0.9723 3.4230

 .
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and the desired non-fragile RDOFC can be obtained by
solving the LMIs constraints. The final simulation results
verify the high-accuracy and good robustness of the proposed
controller.

APPENDIX I. PROOF OF LEMMA 3
Suppose that there exists a solution P > 0 satisfying the
matrix inequality (12). Based on the Schur complement, then
we have

(Ã+ aI )T
P
a
(Ã+ aI )−

b2

a
P < 0. (A.1)

Based on the Lyapunov stability theory, it is concluded that
σ (Ã) ∈ D(a, b). Therefore, system (10) satisfies the require-
ment (1). Further, Let us consider the following Lyapunov
function

V (ξ ) = ξTPξ +

∫ T

0
λ2‖W̄0ξ̇‖

2
− λ2‖e(ẋ)‖2dτ. (A.2)

Calculating the time derivative of V (ξ ) along the trajectory
of system (10), we have

9 = V̇ (ξ )+ yTy− γ 2d̃
T
d̃

= (Ãξ + B̃d̃ − Ẽe)TPξ + ξTP(Ãξ + B̃d̃ − Ẽe)

+ξTC̃TC̃ξ + λ2‖W̄0(Ãξ + B̃d̃ − Ẽe)‖2

−λ2‖e(ẋ)‖2 − γ 2d̃
T
d̃

= ξT(ÃTP+ PÃ+ λ2ÃTW̄T
0 W̄0Ã+ C̃TC̃)ξ

−(ξTPẼe+ λ2ξ ÃTW̄T
0 W̄0Ẽe)

−(ξTPẼe+ λ2ξ ÃTW̄T
0 W̄0Ẽe)T

+(ξTPB̃d̃ + λ2ξ ÃTW̄T
0 W̄0B̃d̃)

+(ξTPB̃d̃ + λ2ξ ÃTW̄T
0 W̄0B̃d̃)T

+λ2eT(ẼTW̄T
0 W̄0Ẽ − I )e

−2λ2eTẼTW̄T
0 W̄0B̃d̃

+d̃
T
(λ2B̃TW̄T

0 W̄0B̃− γ 2)d̃

= M̄81M̄T, (A.3)

where M̄ =
[
ξT eT d̃

T
]
, 81 satisfies (A.4), as shown at the

bottom of the page.
On the other hand, the matrix inequality (12) can be rewrit-

ten as (A.5), as shown at the bottom of the page.
The inequality (A.5) implies that 81 < 0. Based on the

Lyapunov stability theory, system (10) is asymptotically sta-
ble (when d̃ = 0 ). Moreover, integrating both sides of (A.3)

from zero to infinity, we have
∫
∞

0 yTydτ <
∫
∞

0 γ 2d̃
T
d̃dτ ,

which implies that ‖Tyd̃‖ < γ . Hence, the closed-loop system
(10) satisfies the requirement (2). This completes the proof.

APPENDIX II. PROOF OF LEMMA 4
Consider the Lyapunov function candidate U (ξ ) = ξTPξ ,
which has the same Lyapunov matrix P as Lemma 3, and
satisfies

U (ξ ) ≤ ϑ,

where ϑ is a positive scalar. Define the ellipsoid 5(P, ϑ) =
{ξ |ξTPξ ≤ ϑ}. For input constraint ‖u‖ ≤ umax , substituting
the control input (11), another ellipsoid5(K̃ ) = {ξTK̃TK̃ξ ≤

u2max} is presented, where the input constraint can be satisfied.
Hence, the input constraint can be ensured by

5(P, ϑ) ⊂ 5(K̃ ). (B.1)

According to [39], it is concluded that (B.1) can be guaran-
teed if and only if the following matrix inequality is satisfied[

−u2maxI −K̃
∗ −

1
ϑ
P

]
≤ 0. (B.2)

Post- and pre-multiplying (B.2) by the matrix diag(I , 01)
and its transpose, respectively, the inequality (B.2) can be
transformed as−u2maxI −C1f 0

∗ −
1
ϑ
S −

1
ϑ
S

∗ ∗ −
1
ϑ
(S − N )

 ≤ 0. (B.3)

Denote

Q2 =

−u2maxI −Cf 0
∗ −

1
ϑ
S −

1
ϑ
S

∗ ∗ −
1
ϑ
(S − N )

 .
Based on Assumption 1 about the uncertain term in the

control gain matrix C1f , then (B.3) can be written as

Q2 +

I0
0

F3 [0 Cf 0
]
+

 0
CT
f
0

FT
3
[
I 0 0

]
≤ 0. (B.4)

It follows from Lemma 1 that (B.4) is equivalent to (19).
On the other hand, for P introduced by Lemma 3, it is

guaranteed that U̇ (ξ ) < 0 is satisfied. Then we have ξTPξ ≤

ξT(0)Pξ (0) for ∀t > 0. Thus, the condition ξTPξ ≤ ϑ can be
guaranteed by ξT(0)Pξ (0) ≤ ϑ , which can be written as[

−ϑI −ξT(0)
∗ −P

]
≤ 0. (B.5)

81 =

ÃTP+ PÃ+ λ2ÃTW̄T
0 W̄0Ã+ C̃TC̃ −PẼ − λ2ÃT W̄ T

0 W̄0Ẽ PB̃+ λ2ÃT W̄ T
0 W̄0B̃

∗ λ2ẼT W̄ T
0 W̄0Ẽ − λ2I −λ2ẼT W̄ T

0 W̄0B̃
∗ ∗ λ2B̃T W̄ T

0 W̄0B̃− γ 2I

 (A.4)

 1
a Ã

TPÃ+ a2−b2
a P+ ÃTP+ PÃ+ λ2ÃTW̄T

0 W̄0Ã+ C̃TC̃ −PẼ − λ2ÃT W̄ T
0 W̄0Ẽ PB̃+ λ2ÃT W̄ T

0 W̄0B̃
∗ λ2ẼT W̄ T

0 W̄0Ẽ − λ2I −λ2ẼT W̄ T
0 W̄0B̃

∗ ∗ λ2B̃T W̄ T
0 W̄0B̃− γ 2I

 < 0 (A.5)
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Post- and pre-multiplying (B.5) by diag(I , 01) and its
transpose, respectively, (B.5) can be written as (20). Thus,
the input constraint can be satisfied.
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