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ABSTRACT In this paper, we propose a distributed Gaussian mixture cardinalized probability hypothesis
density (GM-CPHD) filter based on generalized inverse covariance intersection that fuses multiple node
information effectively for multi-target tracking applications. Covariance intersection (CI) is a well-known
fusion method that produces a conservative estimate of the joint covariance regardless of the actual
correlation between the different nodes. Inverse covariance intersection (ICI) is the updated version to obtain
fusion results that guarantee consistency and less conservative than CI. However, the ICI is not extended to
multi-sensor multi-target tracking system yet. Since the ICI formula can be re-structured as naïve fusion
with covariance inflation in Gaussian pdf, this method was applied to the GM-CPHD with generalization.
The formula for random finite set (RFS) fusion was derived in the same way as the conventional generalized
covariance intersection (GCI) based fusion. The simulation results for multi-target tracking show that the
proposed algorithm has smaller optimal sub-pattern assignment (OSPA) errors than naïve fusion and the
GCI-based fusions.

INDEX TERMS Multi-target tracking, GM-CPHD filter, inverse covariance intersection, covariance
inflation.

I. INTRODUCTION
Multi-target tracking (MTT) is the research that tracks mul-
tiple targets with their states, such as position and velocity.
MTT problem can be solved by finite set statistics (FISST)
without complicated data association, which is based on
a random finite set (RFS) [1]. The probability hypothesis
density (PHD) filter is the first RFS filter that propagates
the filter’s first-order moment [2]. To improve the cardi-
nality estimation performance of the PHD filter, a cardi-
nalized PHD (CPHD) filter is introduced, which jointly
estimates intensity and cardinality distribution [3]. Unlike
the suboptimal filters like PHD and CPHD, the first optimal
multi-target Bayesian filter is proposed using labeled multi-
Bernoulli RFS, which is called δ-generalized labeled multi-
Bernoulli filter (δ-GLMB) [4]. In addition, labeled
multi-Bernoulli (LMB) and Gibbs sampling based LMB
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filters are proposed to reduce the computation complex-
ity of the δ-GLMB filter with some approximations [5].
These RFS-based filters are widely used in surveil-
lance systems, autonomous vehicles, and computer vision
applications [6]–[9].

Recently, single-sensor multi-target RFS filters are
extended to multi-sensor multi-target (MS-MT) RFS filters
to improve tracking accuracy and robustness. Multi-sensor
architecture is mainly divided into a centralized system and
distributed system. Centralized system is generally known
to provide an optimal solution, and it is applied to many
RFS filters, which result in centralized MS-CPHD [10],
MS-MeMBer [11], and MS-GLMB [12]. However, a cen-
tralized MS-MT system needs partitioning of the sensor
measurements into disjoint subsets, which is computationally
intractable [13]. On the other hand, distributed systems have
low computational load and conservative to the unknown
correlation between nodes [13]–[16]. Also, it is relatively
easy to manage the tracks and tolerant to the fault of the
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sensor. Especially, average consensus drew attention in the
distributed fusion research area, which is flexible and scalable
[13], [17]–[20]. The linear arithmetic average (AA) and the
log-linear geometric average (GA) are widely used among
average consensus. According to the previous works, AA
performs better than GA when the detection probability is
low, and targets are close [17], [21]. On the opposite, GA
performs better than AA in high clutter density and high false
alarm rate.

After the research on centralized MS-MT system, dis-
tributed MS-MT system with Gaussian mixture (GM) imple-
mentation was proposed, including average consensus-based
GM-CPHD [22], [23] and GM-MB [24], [25]. In particular,
GA with optimized weights is called generalized covari-
ance intersection (GCI) [26], [27], which is a generaliza-
tion version of covariance intersection (CI) [28] to fuse
non-Gaussian pdf. GCI has various names, such as Cher-
noff fusion, geometric mean density, and Kullack-Leibler
average [29]. The aforementioned GCI-based researches
[22]–[25] use pseudo-Chernoff fusion [30] for GM imple-
mentation. To approximate a non-integer power of a Gaussian
mixture more accurately, sigma-point Chernoff fusion was
developed [29]. A partial consensus approach for distributed
GM-PHD, which exchanges only highly-weighted Gaussian
components, was proposed [19].

CI is a well-known fusion method that produces a conser-
vative estimate of the joint covariance regardless of the actual
correlation between the different nodes. Ellipsoidal intersec-
tion (EI) [31] was proposed to achieve a less conservative
result than CI, but it does not guarantee consistency [32].
To obtain a fusion result that guarantees consistency and
less conservative than CI, inverse covariance intersection
(ICI) was proposed [32]. It was proved that the covariance
of the ICI is smaller than CI [32], [33]. As CI has been
extended to GCI, both the EI and ICI are also extended
to a generalized ellipsoidal intersection [34] and nonlinear
inverse covariance intersection (NICI) [35] to fuse arbi-
trary pdfs, respectively. To unify the terms, we will call the
NICI as generalized inverse covariance intersection (GICI).
Besides, to apply the generalized fusion to MS-MT, fusion
formulation on RFS must be defined which was done in
CI [27]. However, EI and ICI are not extended to the MS-MT
system yet.

In this paper, we propose a distributed GM-CPHD fil-
ter based on GICI. To extend GICI to the MS-MT system,
we suggest a new approach to GICI, which is different from
the conventional GICI [35]. The suggested method uses the
covariance inflation technique to naïve fusion, which will
be discussed in the next section. Notice that it is based on
covariance inflation of the CI fusion without feedback which
is different from the information sharing of the federated
Kalman filter [36], [37]. By this approach, we can formulate
GICI based GM-CPHD filter.

This paper is organized as follows. In section II, the
MS-CPHD filter and GCI fusion are explained briefly.
The proposed GICI based GM-CPHD filter is described

in section III. The simulation results are presented in
section IV, and the conclusion is written in section V.

II. BACKGROUND
When tracking multi-target, which estimates both the state
vectors and the cardinality, RFS-based trackers are preferred
to the multiple independent single-target trackers since they
jointly solve both problems [22]. In addition, a mathematical
tool called FISST is widely used to formulate multi-target
tracking using Bayesian filtering problems in the RFS frame-
work. This section reviews the background of FISST [1].
Also, based on FISST, CPHD filter [3], and GCI fusion for
GM-CPHD [27] are reviewed briefly.

A. FINITE SET STATISTICS
Amulti-object density function f (X) is a real-valued function
of an RFS X = {x1, · · · , xn}, and a multi-object density
function characterizes the RFS. The set integral of the multi-
object density function is defined as [1],∫
f (X)δX, f (φ)+

∞∑
n=1

1
n!

∫
f ({x1, · · ·, xn}) d x1 · · · dxn.

(1)

Besides, probability generating functional (PGFL) G[h]
and probability hypothesis density D(x) are defined as

G[h] ,
∫
f (X)hX δX, (2)

hX ,
∏
x∈X

h(x), (3)

D(x) ,
δ

δx
G[h]

∣∣∣∣
h=1

, (4)

where h is the test function. PGFL uniquely determines the
multi-object density, and it can be interpreted as one of the
transforms to solve problems inMTT easily. Otherwise, PHD
is the first-order moment of multi-object density. By inte-
grating the PHD function in some regions, we can obtain the
expected number of targets in the region.

B. CPHD FILTER
CPHDfilter is defined by themulti-object distributionwith an
independent, identically distributed (i.i.d.) process. Let p(n)
be the cardinality distribution of the point process |X| = n,
then [27]

f (X) , n! · p(n) · f (x1) · · · f (xn). (5)

The PGFL of an i.i.d. process is

G[h] =
∞∑
n=0

p(n)
(∫

h(u) · f (u)du
)n
. (6)

The intensity function of an i.i.d. process is found with

D(x) =
δ

δx
G[h]

∣∣∣∣
h=1
= f ( x)

∞∑
n=1

n · p(n). (7)
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which is the product of the single-object density f (x), and the

expected number of objects
∞∑
n=1

n · p(n).

C. GCI FUSION FOR CPHD FILTER
Assume two Gaussian distributions x ∼ N (x̂a, P̂a) and
x ∼ N (x̂b, P̂b), where subscript a and b are the node numbers.
Then, fusion by CI can be applied as

NP̂ω
(x− x̂ω) =

NP̂a/ω
(x− x̂a)NP̂b/(1−ω)

(x− x̂b)∫
NP̂a/ω

(x− x̂a)NP̂b/(1−ω)
(x− x̂b)dx

=

NP̂a
(x− x̂a)ωNP̂b

(x− x̂b)1−ω∫
NP̂a

(x− x̂a)ωNP̂b
(x− x̂b)1−ωdx

, (8)

where ω ∈ (0, 1) is a weight.
GCI is the generalized rule of CI formula (8) to fuse multi-

object densities with arbitrary density, which is also known
for Chernoff fusion,

fω(x|Zka,Z
k
b) ,

fa( x|Zka)
ωfb(x|Zkb)

1−ω∫
fa(x|Zka)ωfb( x|Z

k
b)

1−ωdx
. (9)

In reverse, CI is a special case of GCI when distributions
to be fused are Gaussian [38]. GCI is proved to minimize the
Kullbeck-Leibler divergence(KLD) [22],

fKLA(X) = arg inf
f

∑
i

ωiDKL

(
f ||f i

)

=

∏
i

[
f i(X)

]ωi
∫ ∏

i

[
f i(X)

]ωid X
, (10)

DKL(pi||pj)
∫
pi , (X) log

pi(X)
pj(X)

dX. (11)

Now, consider the local multi-object densities of the CPHD
filter that should be fused are

fa(X) = n! · pa (n)
∏
x∈ X

sa(x),

fb(X) = n! · pb (n)
∏
x∈ X

sb(x), (12)

where s(x) means local density.
By applying GCI, the results of the fused multi-object

density and cardinality are [27],

s̄(x) =
sωa (x)s

1−ω
b ( x)∫

sωa (x)s
1−ω
b (x)d x

, (13)

p̄(n) =
pωa (n)p

1−ω
b (n)

(∫
sωa ( x)s

1−ω
b (x)dx

)n
∞∑
m=0

pωa (m)p
1−ω
b (m)

(∫
sωa (x)s

1−ω
b ( x)dx

)m . (14)

D. GAUSSIAN MIXTURE IMPLEMENTATION
For Gaussian mixture form of the local density

sa(x) =
N a
G∑

j=1

α
(a)
j N (x̂(a)j ,P

(a)
j ), (15)

If the Gaussian components are well-separated as(
x̂i − x̂j

)T P−1i
(
x̂i − x̂j

)
� 1, (16)(

x̂i − x̂j
)T P−1j

(
x̂i − x̂j

)
� 1. (17)

Following approximation can be applied

sωa (x) =

 N a
G∑

j=1

α
(a)
j N (x̂(a)j ,P

(a)
j )

ω

∼=

N (a)
G∑
j=1

[
α
(a)
j N (x̂(a)j ,P

(a)
j )
]ω

=

N a
G∑

j=1

(α(a)j )ωκ(ω,P(a)
j )N (x̂(a)j ,

P(a)
j

ω
), (18)

where κ(ω,P) , ω−
n
2 det(2πP)

1−ω
2 . The approximation is

from pseudo-Chernoff fusion [30] and is widely used in
GM-GCI approaches.

By using (18), fused multi-object density (13) can be
obtained in closed form,

s̄GCI(x) =
sωa (x)s

1−ω
b (x)∫

sωa (x)s
1−ω
b (x)d x

=

N a
G∑

i=1

N b
G∑

j=1
α
(ab)
ij N (x̂(ab)ij ,P(ab)

ij )

N a
G∑

i=1

N b
G∑

j=1
α
(ab)
ij

, (19)

P(ab)
ij =

[
ω
(
P(a)
i

)−1
+ (1− ω)

(
P(b)
j

)−1]−1
, (20)

x̂(ab)ij = P(ab)
ij

[
ω
(
P(a)
i

)−1
x̂(a)i + (1− ω)

(
P(b)
j

)−1
x̂(b)j

]
,

(21)

α
(ab)
ij =

(
α
(a)
i

)ω (
α
(b)
j

)1−ω
κ
(
ω, P(a)

i

)
κ
(
1− ω, P(b)

j

)
·N

(
x̂(a)i − x̂(b)j ; 0,

P(a)
i

ω
+

P(b)
j

1− ω

)
. (22)

III. DISTRIBUTED FUSION BASED ON GENERALIZED
NAÏVE FUSION WITH COVARIANCE INFLATION
To apply ICI to multi-object density fusion, naïve fusion with
covariance inflation is proposed in this section.

A. THREE COMMON DISTRIBUTED FUSION RULES
Let us consider the fusion of two nodes x ∼ N (xA, PA),
x ∼ N (xB, PB) which follow Gaussian distribution. Since
EI is proven to be inconsistent [26], it is not dealt with in this
paper.

Firstly, naïve fusion [39], which is optimal when there is
no correlation,

xnaive = Pnaive(P−1A xA + P−1B x B), (23)

Pnaive =
(
P−1A + P−1B

)−1
. (24)
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Meanwhile, CI is the fusion rule that keeps consistency
under unknown correlation of the nodes

xCI = PCI(ωCIP−1A xA + (1− ω CI)P−1B xB)

= PCI(P−1A,CI xA + P−1B,CI xB), (25)

PCI =
(
ωCIP−1A + (1− ωCI)P−1B

)−1
=

(
P−1A,CI + P−1B, CI

)−1
, (26)

P−1A,CI , ωCI P−1A , (27)

P−1B,CI , (1− ωCI) P−1B , (28)

where ωCI ∈ (0, 1) is a weight and often obtained by
min
ω
(det (PCI)) or min

ω
(trace (PCI)). Since the optimization

procedure for calculating ωCI is computationally intensive,
ωCI can be obtained by various fast covariance intersection
methods which provide a closed-form solution without opti-
mization [40]–[43].

The thing to note (25-28) is, by changing covariance PA
and PB to PA,CI and PB,CI respectively, the CI formula is
transformed to naïve fusion.

Recently, ICI is proposed to obtain fusion results, which
guarantee consistency and less conservative than CI [32].
It is proved that the covariance of the ICI is smaller than
CI [32], [33]. The ICI formula can be written as [32],

xICI = KICIx A + LICIxB, (29)

P−1ICI = P−1A,ICI + P−1B,ICI − (ωICI PA

+ (1− ωICI)PB)−1, (30)

KICI = PICI(P−1A − ωICI(ωICIP A

+ (1− ωICI)PB)−1), (31)

LICI = PICI(P−1B − (1− ωICI)(ωICIP A

+ (1− ωICI)PB)−1). (32)

B. INVERSE COVARIANCE INTERSECTION FROM THE
PERSPECTIVE OF COVARIANCE INFLATION
To apply ICI to the MS-MT, we changed the structure of the
original ICI formula (29)-(32) as,

xICI = PICI(P−1A,ICIxA + P−1B, ICIxB), (33)

PICI =
(
P−1A + P−1B − (ωICIPA + (1− ωICI)PB)−1

)−1
=

(
P−1A,ICI + P−1B,ICI

)−1
, (34)

P−1A,ICI , P−1A − ωICI(ωICIP A + (1− ωICI)PB)−1, (35)

P−1B,ICI , P−1B − (1− ωICI)(ωICIP A + (1− ωICI)PB)−1,

(36)

where ωICI ∈ (0, 1) is a weight and obtained by
min
ω
(det (PICI)) or min

ω
(trace (PICI)). In the extreme case

ωICI = 0, it becomes xICI = xA,PICI = PA. In the opposite
caseωICI = 1, it becomes xICI = x B,PICI = P B. Since they
are not fusion and only result from one node, we defined ωICI
in the open interval (0, 1).

As shown in (35-36), the ICI formula can also be trans-
formed to naïve fusion by changing the nodes’ covariance.

Since ω ∈ (0, 1) it is clear that

PA,CI > PA, PB,CI > PB, (37)
PA, ICI > PA, PB,ICI > PB, (38)

where Px > Py means P x − Py is positive definite. (37-38)
means that CI and ICI can be represented by naïve fusion with
inflated covariance.

Since (35-36) have aminus operator that seemsmathemati-
cally unstable, wewill prove the positive definiteness (35-36).
The equation (26) of the [44] is

(A+ UBV)−1 = A−1 − A−1 UBVA−1(I+ UBVA−1)−1.
(39)

By substituting A = X, U = Y, B = V = I, the inverse
of a sum of matrices can be represented as

(X+ Y)−1 = X−1 − X−1 YX−1(I+ YX−1)−1

= X−1 − (X+ XY−1X)−1. (40)

Substitute X = PA, Y = ω
1−ωPAP−1B PA and remove

subscript ICI from ωICI for simplicity,

(PA +
ω

1− ω
PA P−1B PA)−1

= P−1A − (PA +
1− ω
ω

PB)−1

= P−1A − ω(ωPA + (1− ω)PB)−1

= P−1A,ICI. (41)

Hence,

PA,ICI = PA +
ω

1− ω
PAP−1B PA. (42)

For the positive definite matrix PB, its inverse P−1B is also
positive definite since eigenvalue P−1B is inverse to that of
P B which is also positive. Hence, for xTPAx > 0 and
yT P−1B y > 0, set y = PAx then

xTPA,ICIx = xTPAx+
ω

1− ω
xTPAP−1B PAx

= xTPAx+
ω

1− ω
yTP−1B y

> 0. (43)

It means PA,ICI it is also positive definite and PB,ICI can
be proved positive definite in the same way. To sum up,
CI and ICI can be represented in naïve fusion with inflated
covariance, which is also positive definite.

C. GENERALIZED INVERSE COVARIANCE INTERSECTION
FOR MULTI TARGET TRACKING
As GCI is defined on the fusion of arbitrary pdfs, naïve fusion
is defined as [38],

f (x|Zka,Z
k
b) ,

fa( x|Zka)fb(x|Z
k
b)∫

fa( x|Zka)fb(x| Z
k
b)dx

. (44)

Since GICI proposed in [35] includes convolution opera-
tion, it cannot be easily applied to the fusion of the finite sets.
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Therefore, we will propose the GICI rule for the GM-CPHD
by inflating the naïve fusion formula’s covariance. The
GM-naïve-CPHD formulas listed in (45-51) are the same
from sections II-C, D except for erasing weight component
of the CI.

fnaive(X) =
fa(X)fb(X)∫
fa( X)fb(X)dX

=

n! · pa(n)pb(n)
n∏
i=1

sa(xi) sb( xi)

∞∑
m=0

pa(m)pb(m)
(∫
sa(x)sb( x)dx

)m
= n! · p̄ (n)

∏
x∈X

s̄( x), (45)

s̄naive(x) =
sa(x)sb(x)∫
sa(x)sb(x)dx

, (46)

p̄naive(n) =
pa(n)pb(n)

(∫
sa(x)sb( x)dx

)n
∞∑
m=0

pa(m)pb(m)
(∫
sa( x)sb(x)dx

)m . (47)

Then, a closed-form solution is

s̄naive(x) =
sa(x)sb(x)∫
sa(x)sb(x)dx

=

N a
G∑

i=1

N b
G∑

j=1
α
(ab)
ij N (x̂(ab)ij , P(ab)

ij )

N a
G∑

i=1

N b
G∑

j=1
α
(ab)
ij

, (48)

P(ab)
ij =

[(
P(a)
i

)−1
+

(
P(b)
j

)−1]−1
, (49)

x̂(ab)ij = P(ab)
ij

[(
P(a)
i

)−1
x̂(a)i +

(
P(b)
j

)−1
x̂bj

]
, (50)

α
(ab)
ij =

(
α
(a)
i

)ω (
α
(b)
j

)1−ω
·N

(
x̂(a)i − x̂(b)j ; 0, P

(a)
i + P(b)

j

)
. (51)

D. COVARIANCE INFLATION FOR GICI
In the GM form ofmulti-object distribution (48-51), GICI can
be proposed by substituting single object density covariance
to inflated covariance using (35-36). The pseudocode for
distributed GICI fusion is listed in Table 1. When extending
naïve fusion to GICI, there is a question that inflating single
object density is appropriate since the pdf in GM-CPHD is
assumed to be a Gaussian mixture. The covariance of the
Gaussian mixture can be represented as standard mixture
merging [19],

var (sa(x)) =
N a
G∑

j=1

α
(a)
j

P(a)
j +

x̂(a)j −
N a
G∑

k=1

αk x̂
(a)
k


×

x̂(a)j −
N a
G∑

k=1

αk x̂
(a)
k

T
, (52)

TABLE 1. Pseudocode for the distributed GICI fusion.

Since P(a)
j it is the error covariance of the state and(

x̂(a)j −
N a
G∑

k=1
αk x̂

(a)
k

)(
x̂(a)j −

N a
G∑

k=1
αk x̂

(a)
k

)T
is the covariance

generated by the state of the targets, the latter one is much
bigger than the former one in the general case. It is the same
context in the assumption on pseudo-Chernoff fusion (16,17),
where the targets are well-separated. However, the coefficient
becomes zero when fusing targets far apart, as shown in (51).
We have to focus on fusing targets with a similar state,
so inflating only a single object density is reasonable and
proved in the simulation result.

FIGURE 1. Ground truth in track 1 (8 targets) [8].

IV. SIMULATIONS
In the simulation, two-dimensional multi-target tracking
examples with the most widely used linear Gaussian mea-
surement model and a nonlinear measurement model are
considered. The state is 2D-position and velocity xk =
[xk ẋk yk ẏk ]T . In fig. 1, eight targets move from circle to
triangle through solid black lines, which is the trajectory
same as in [11]. The red circle is the position of the sensors,
which are only relevant to the nonlinear measurement model.
Fig.2 is another scenario that targets 1 and 2 encounters in the
40s, and targets 1 and 3 meet at the 80s. All the fusion weight
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FIGURE 2. Ground truth in track 2 (3 targets with crossing).

ω is obtained by fast covariance intersection [42], which
just calculates traces of the matrices that do not increase the
overall computational burden.

Total simulation time is 100 s with time interval 1s, and a
GM-CPHD filter is used to track each sensor node’s targets.
Since it is evident that the performance is proportional to the
number of sensors, we mainly analyze two sensor fusions.
The system model is a constant velocity model,

xk+1 = Fxk + wk , wk ∼ N (0, Qk ), (53)

F =
[
I2 Ts I2
02 I2

]
,

Qk = σ
2
w

[
(T 3
s
/
3) I2 (T 2

s
/
2)I2

(T 2
s
/
2) I2 Ts I2

]
. (54)

The probability of detection is 0.9, and the probability of
survival is 0.99. The Poisson average rate of uniform clutter
per scan is 5, and the birth densities are located at (±400m,
±400m), as shown in the solid black circles in Fig. 1.
All simulations are done with 100 Monte Carlo simulations,
and ground truth is changed by process noise for each ensem-
ble. The pruning threshold is 10−5, and the merge thresh-
old is 2.

In the following analysis, five implementations of
GM-CPHD filter are compared: single sensor [45], naïve
fusion, conventional GCI [22], proposed GICI, and cen-
tralized fusion [10]. Tracking performance is measured by
optimal sub-pattern assignment (OSPA) distance [46]. The
parameters for OSPA distance are set as cut-off parameter
c = 100 and order parameter p = 1.

A. LINEAR GAUSSIAN MEASUREMENT MODEL
Firstly, a linear Gaussian measurement model is selected,

zk = Hkxk + vk , vk ∼ N (0,R), (55)

Hk = [I2 02], R = σ 2
v I2, (56)

where σv = 10m, and the model is irrelevant to the sensor
position.

Fig. 3 is a cardinality estimate comparison for five meth-
ods. The solid black line is the true cardinality, + is the

FIGURE 3. Estimated cardinality (linear case, track 1). The solid black line
is the true cardinality, + is the mean cardinality (only GICI is plotted), and
dot lines are 3σ the std of cardinality.

mean cardinality, and dot lines are 3σ standard deviations
(std) of cardinality. Since it is hard to distinguish the mean
cardinality performance with the cardinality estimate figure,
only GICI is plotted representatively, and it will be compared
in other OSPA error figures. Standard deviations are also hard
to distinguish between 3 distributed fusions, but 1 sensor
shows the biggest value, and centralized fusion shows the
most negligible value as expected.

FIGURE 4. OSPA RMS (linear case, track 1).

Fig. 4 is the RMS OSPA error of the five implementations.
OSPA error increases instantaneously at 25s, 55s, and 80s
when the few targets are dead. Except for 1 sensor and central-
ized fusion, it shows good performance in the order of GICI,
GCI, and naïve fusion. To see the difference clearly, the box
plot of time-average OSPA errors is plotted together in fig. 5.
Time-average OSPA means averaged 100 scans of OSPA in
a single run, and the box plot is composed of 100 ensembles
of the time-average OSPA. The performance of naïve fusion
is effectively improved by inflating covariance as GICI.

Figs. 6 and 7 are simulation results for track 2. In track 2,
two targets are meet exactly in the 40s and 80s. However,
since the crossing targets’ velocities are not the same at
that time, significant performance degradation is not shown.
Besides, there is a relatively bigger degradation on naïve and
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FIGURE 5. Box plot of time-average OSPA errors (linear case, track 1).

FIGURE 6. OSPA RMS (linear case, track 2).

FIGURE 7. Box plot of time-average OSPA errors (linear case, track 2).

GCI than GICI and centralized fusion. In fig. 7, the box plot
shows that GICI shows almost the same performance as the
centralized fusion.

B. NONLINEAR MEASUREMENT MODEL
In nonlinear measurement model, range and bearing model is
used,

zk =


√
x2k + y

2
k

arctan
(
yk
xk

)+ vk , (57)

where vk ∼ N (0,Rk ), Rk = diag
(
σ 2
r , σ

2
θ

)
and σr = 5m,

σθ = 1 deg.
Figs. 8 and 9 are results for track 1, and figs.10 and 11 are

for track 2. As shown in the linear measurement case, the
GCI and GICI showed better performance than the 1 sen-
sor and naïve fusion. However, GCI and GICI show similar
performance.

FIGURE 8. OSPA RMS (nonlinear case, track 1).

FIGURE 9. Box plot of time-average OSPA errors (nonlinear case, track 1).

FIGURE 10. OSPA RMS (nonlinear case, track 2).

Also, additional simulations were performed using
5 snesors as shown in fig. 12. The result figs. 13 and 14 can
be compared with the figs. 8 and 9, which are the results
for the two sensors. As the number of sensors increases,
centralized OSPA definitely decreases, whereas distributed
fusion decreases the error less. In distributed fusions, the error
peaks in figs. 8 and 13 are similar. It means that the cardinality
error does not improve when the number of targets changes
in the case of distributed fusion. In the section where the
cardinality does not change, the localization error of fig. 13 is

94084 VOLUME 9, 2021



W. J. Park, C. G. Park: Distributed GM-CPHD Filter Based on Generalized ICI

FIGURE 11. Box plot of time-average OSPA errors (nonlinear case, track2).

FIGURE 12. Ground truth in track 1 (8 targets, 5 sensors).

FIGURE 13. OSPA RMS (nonlinear case, track 1, 5 sensors).

FIGURE 14. Box plot of time-average OSPA errors (nonlinear case, track 1,
5 sensors).

lower than that of fig. 8. However, the cardinality error is
similar to the case of two sensors, so the performance is not
significantly improved when viewed as a box plot average.

TABLE 2. Computational time of five GM-CPHD implementations (unit: s).

On the other hand, as shown in fig. 14, it can be seen that
even in 5 sensors, GICI has slightly superior performance
over GCI.

Table 2 is the computational time for Monte Carlo
100times with Intel Core i7-9700K CPU 3.60GHz proces-
sor and 16GB RAM. It is assumed that the local nodes
calculations are done in parallel in distributed fusion. The
most time-consuming calculations are matrix inversion and
determinant [23], and the proposed method have one more
step to inflate the covariance than the naïve fusion.

V. CONCLUSION
In this research, we proposed the distributed GM-CPHDfilter
based on GICI and verified performance with multi-target
tracking simulations. To apply the GICI fusion to MS-MT,
the GICI formula was re-structured as naïve fusion with
covariance inflation. For the positive definite covariance of
the node, we proved the inflated covariance is also positive
definite. The formula for RFS fusionwas obtained in the same
way as the previous GCI-based algorithms.

As a result, the proposed algorithm showed a smaller OSPA
error than naïve fusion and conventional GCI-based algo-
rithms. The performance improvement was shown clearly in
the nonlinearmeasurement case andmore robust when targets
were crossing. Computational time becomes larger than the
naïve fusion since the added step with matrix inversion is
time-consuming. In future work, the GICI fusion will be
applied to other RFS filters, such as MB filter.
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