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ABSTRACT In this article, a machine learning aided electronic warfare (EW) system is presented and
the simulation results are discussed. The developed EW system uses an automatic decision tree generator
to create engagement protocol and a fuzzy logic model to quantify threat levels. A long-short term
memory (LSTM) neural network was also trained to predict the next signal set of multifunction radars. The
simulation results demonstrate the effectiveness of the developed EW system’s ability to engage multiple
multifunction radars.

INDEX TERMS Electronic warfare, machine leaning, fuzzy logic, decision tree, ID3, Long Short-Term
Memory (LSTM).

I. INTRODUCTION
An electronic warfare (EW) receiver is designed to detect
and combat hostile radars. Rapid advances in cognitive and
multi-mode radar systems make tasks for EW systems more
challenging than ever. During a mission, an EW system
might encounter voluminous uncertainties and radars, some
of which can change operating parameters when necessary,
further complicating an EW system’s task. One possible
solution to this issue is Machine Learning (ML) and EW
researchers have successfully applied ML for some EW
applications like signal classification [1], [2]. One goal of
applying ML in EW is to develop a cognitive EW system that
can reason through different scenarios and choose optimal
countermeasures. This subject has become a popular research
topic. In recent years, besides magazine articles on cognitive
EW systems [3], more reports on cognitive EW systems
ranging from general system architectures to specific systems
designed for training purposes or signal classification can be
found in open academic literatures [4]–[11].

In this article, an integrated machine learning aided EW
system consisting of EW decision making, automatic naviga-
tion, and threat level assessment is presented. A comparable
research effort reported in open literature is an autonomous

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

artificial intelligence simulator called TacAir-SOAR devel-
oped by researchers at the University of Michigan to simulate
a pilot’s reactions in a battlefield. In their synthetic theater
of war battle simulator, TacAir-SOAR executed 5,200 rules
for the different situations experienced by the pilots that
were interviewed, which determined how the model would
transition through its states [12], [13]. Therefore, all the rules
are predetermined and might not be altered in real-time.

On the other hand, the decision-making protocol used in
the system proposed in this paper is based on a decision tree
that is automatically generated from simulated EW encoun-
ters. As the decision tree is automatically created through
the training data, this approach is more flexible and has the
potential for automatic in-flight updates. The developed EW
system was tested within a software simulated environment
against multiple multifunction radars, and it achieved satis-
factory results. The potential usage of a long short-termmem-
ory (LSTM) neural network for predicting a multifunction
radar’s next move is also investigated in this project.

EW environments are constantly changing, which is why
machine learning and cognitive agents are being utilized.
Cognitive electronic warfare systems seek to autonomously
conduct tasks that would otherwise require human inter-
vention. Cognition is defined as the knowledge required to
act or process an event [14]. Fuster’s paradigm of cogni-
tion states that cognitive agents have the following abilities:
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perception/action cycle, memory, attention, intelligence, and
language [14]. There are four primary tasks for cognitive EW
systems: target detection, target acquisition, target tracking,
and platform guidance [15], all of which are achieved by the
developed system. Therefore, the accumulation of machine
learning models can be considered a cognitive EW system
and the system presented in this article is a step toward a fully
cognitive EW system.

The rest of this article is organized as follows. Section II
provides an overview of the problem space. Machine learning
techniques used in this study are presented in Section III.
The proposed EW system is detailed in Section IV.
Simulation settings and results are presented in Sections V
and VI respectively. Section VII concludes this article.

II. PROBLEM OVERVIEW
While there exists a rich problem space in the field ofmachine
learning for radar signal classification, the presented work
focuses on the handling of labeled signals. It is assumed
that an EW receiver chain has detected and deinterleaved
radar signals into pulse descriptor words (PDWs). From that
point, a stream of PDWs and associated geolocations are
fed into the proposed EW system and has a corresponding
confidence value for each emitter type. It was assumed that
a robust geolocation module is available on the platform.
It was also assumed that small deviations in the emitter
geolocations would not create a significant impact in the
decision-making process; therefore, the true emitter geolo-
cations were used throughout the simulations. The emitters
were randomly placed between the pilot and the goal loca-
tion for each simulation. However, the PDW classification is
imperfect. Therefore, the radar signals can be misclassified,
and a higher confident level is intentionally assigned to the
false PDW (with wrong signal classification but true loca-
tion); consequently, the EW system will most likely com-
bat the misclassified emitter initially. As the result, due to
applying the wrong jamming signal, the pilot’s location is
revealed to hostile emitters at the beginning of the encounter
regardless of their positions and the EW system needs to
correct this mistake. It will be a difficult situation to handle;
hence, the impact of a false geolocation was ignored because
a more difficult case was simulated.

The problem faced by the EW system, then, is to determine
the best course of action given the imperfect radar observa-
tions from multiple radars, and a goal location. In the simu-
lated scenarios, the EW system exists on a mobile platform
located within a two-dimensional space, along with some
number of stationary monostatic radar emitters. The goal of
the EW system is to maximize the platform survivability,
while successfully maneuvering to a goal location on the
2D grid. The EW system determines the appropriate set of
actions to maximize survivability. The set of actions that can
be recommended by the EW system at each simulated time
increment is actEW = {modify trajectory,EAi,j, nothing},
where EAi,j is Electronic Attack (EA) i applied to radar
emitter j. An optimal solution for a scenario would therefore

attempt to arrive at the goal location, while avoiding detection
by adversary radars through physical distancing, minimizing
emissions, and employing effective active countermeasures
to minimize radars’ tracking capabilities.

III. MACHINE LEARNING TECHNIQUES
This section provides a brief description on the machine
learning techniques that were investigated for this project.

A. ID3 DECISION TREE [16]
A decision tree is a supervised machine learning technique
commonly used for classification or decision-making tasks.
Based on the provided training data, decision trees are an
efficient method to determine the most suitable actions in the
most efficient way. There are a variety of decision trees that
each offer its own benefits and drawbacks. In this project,
the ID3 algorithm is applied due to its simplicity. The basic
concept of the ID3 algorithm is as follows. Assuming that
the training data consists of multiple training attributes (i.e.
features) and a single class in the following format [att1, att2,
att3, . . . , actEW], in which atti represents a specific feature of
the radar emitter such as distance, mode, and etc., and actEW
is a suggested EW action. Assume there areM sets of training
data and the entropy of actEW in the training data is defined
as

Entropy (actEW ) =
∑K−1

i=0
p (actEWi) log2(p(actEWi)) (1)

where p (actEWi) is the probability that the countermeasure
(actEWi) is taken and K is the number of available coun-
termeasures. Assuming that the data can be split into two
groups based on a specific radar feature. These two groups
are referred to as group A and B. The actEW entropy of each
group is calculated using (1) and the entropy of this split is
then defined as

Entropysplit =
nA
M
EntropyA +

nB
M
EntropyB (2)

where EntropyA is the actEW entropy of group A, EntropyB
is the actEW entropy of group B, the number of data sets in
group A is nA, and the number of data sets in group B is nB.
An ideal split creates a split entropy much smaller than the
original entropy. The ID3 algorithm splits the data based on
the feature that reduces the entropy the most. This process
is repeated to separate the data until the entropy reduction is
smaller than a predefined threshold, or until the decision tree
reaches a predefined depth threshold.

B. FUZZY LOGIC [17]
Unlike Boolean logic, whose discrete truth value is {0, 1},
the truth value of fuzzy logic is a continuous number in the
range of (0, 1). The purpose of fuzzy logic is to analyze and
reason with imprecise information. For example, the distance
between a radar system and a platform can be classified into
three classes: {close, medium, far}. Themembership function
for these three classes vs distance (km) is shown in Fig. 1.
As shown in Fig. 1, the range of the membership function for
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each class is (0, 1) and there is overlap between the different
classes. Fuzzy logic applies AND,OR, etc. concepts to extend
Boolean logic operation. Fuzzy logic has been applied for
EW applications such as determining countermeasure and
allocating resources for electronic attack [18], [19]. The fuzzy
logic emitter threat model of the proposed EW system fuzzi-
fies the distance to the emitter and the PDW classification
confidence using membership functions similar to the one
shown in Fig. 1. After applying fuzzy logic operation upon
fuzzy sets, the fuzzy logic emitter threat model defuzzifies
the result and outputs a numerical emitter threat level. In the
proposed EW system, fuzzy logic is applied to estimate a
radars’ threat level based on its operation mode and distance,
thus providing the EW system a priority for which emitter to
engage. An additional fuzzy logic model is used to quantify
the general EW environment threat level based on the modes
of all the detected radars and the closest distance to the EW
system platform.

FIGURE 1. Fuzzy logic membership function examples.

C. LONG SHORT-TERM MEMORY NEURAL
NETWORKS [20]–[22]
Long Short-Term Memory (LSTM) Neural Networks are
a supervised machine learning technique used to analyze
sequential data. Unlike traditional feed-forward neural net-
works, which only consider the current set of information,
LSTM networks can consider previous information through
the integration of LSTM cells within a neural network.
An example LSTM network unrolled in time is depicted
in Fig. 2. As shown in Fig. 2, at each given time, the LSTM
network generates an output based on the current input, state,
and carry over memory. State and carry over memory are

FIGURE 2. A simple LSTM diagram [22].

also updated based on current input, current output, and
previous carry overmemory.With a sequence of training data,
the LSTM is unrolled in time (as shown in Fig. 2) and trained
using back propagation through time. LSTMhas been applied
to determine the mode of multifunction radar [23]. In this
project, an LSTM model is used to predict a multifunction
radar’s next operating signal set based on previously recorded
data.

IV. PROPOSED EW SYSTEMS
The proposed EW processing system framework and sup-
porting simulator framework are depicted in Fig. 3. The Pre-
Classified Signal Analysis Unit estimates the radars’ signal
set and current mode (scan, acquisition, track, or fire) based
on PDWs and calculates their distances to the platform. It is
worth mentioning that the Pre-Classified Signal Analysis
Unit is deliberately set to misclassify certain signals in order
to test the robustness of the developed decision framework.

FIGURE 3. Proposed EW system and simulator setting.

The Radar Threat Model determines the threat level of
each of the observed radars based on its distance and mode.
The ElectronicAttackAssessmentModel ingests all available
information and utilizes a decision tree to determine an appro-
priate action. This decision tree was trained with previously
collected results for which EA was successful at jamming
a given emitter type. The specific training parameters are
depicted in Table 1. It is assumed that the EW System can
only recommend one active countermeasure at any given
time. Therefore, when there are two hostile radars present,
the platform might perform countermeasures against one and
be forced to avoid the other.

There are two units in the EW system used for analyzing
data that do not contribute to deriving EW actions. The Area
Safety Assessment Model is used to determine the platform’s
safety level based on the presence of hostile radars. The Radar
Type Prediction Model is an LSTM network that is trained
with a sequence of radar emissions and applied countermea-
sures. It is used to predict the radar’s next operating signal
characteristics. This unit is included in the simulation to test
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TABLE 1. EA decision tree training parameters.

the effectiveness of applying an LSTM for radar behavior
prediction purposes. However, it is reasonable to assume
that after several missions, the Radar Type Prediction Model
can be used to predict a radar’s next move and it should be
integrated into the EW decision-making process.

The Simulation Models block of Fig. 3 represents the
models driving the simulation outside of the EW system.
In the simulation, it is assumed that there are two stationary
multifunction radars, whose modes consist of scan, acquisi-
tion, track, and fire. The transition betweenmodes is based on
the platform’s distance to the radar and the duration that the
radar is in the current mode. If an appropriate active counter-
measure is applied by the EW system, then the radar loses
its target track and switches back to scanning mode. If an
incorrect countermeasure is applied, then the radar reduces
the number of required cycles for advancing to the next mode.
In other words, the radar transitions closer to fire mode as an
incorrect EA exposes the platform. Once a radar determines
that it has been jammed, then it switches to a different set
of signals starting in scanning mode. The radar emitter’s
response to the EW system’s actions is determined by a
pre-trained decision tree. It is worth noting that the simulator
also allows the user to test different radar protocols. In this
scenario, a mission failure is declared when the platform is
within a radar’s firing range and the radar is in fire mode
for two clock cycles. To reduce simulation time, the simula-
tor updates situations every 12 seconds of flight time. This
clock cycle defines interval when the system updates the
pilot’s location and subsequently performs the EW analysis.

Reducing this clock cycle results in finer location updates
and more frequent EW analysis, thus being beneficial for
generating more detail intensive simulations at the expense of
increased calculations. Flight dynamics, Doppler Effect, and
computational constraints were not investigated in this study.
The purpose was to investigate ML’s ability to decide optimal
courses of actions to increase a pilot’s survivability.

V. SIMULATION SETTING
A. SIMULATION PROCEDURE
Simulations begin with the initialization of the environment.
The goal, mobile EW platform, and stationary radar locations
are generated on a 2D grid. The emitter signal sets and PDW
confidences are randomly generated for each radar location.
The emitter modes are then determined based on the distance
between the emitter and the platform. If the platform is within
the radar’s acquisition range, then the radar’s mode is acqui-
sition. If the platform is outside of this range, then the radar
is in scanning mode.

At the beginning of each simulation cycle, the platform’s
location is updated. The platform is assumed to move directly
towards the goal with a constant speed (482 km/h), unless the
EW system’s decision is to avoid a certain radar. The distance
to each of the radar locations in the EW environment is then
calculated. It is assumed that the EWsystem can detect a radar
before the radar can detect the platform. This assumption is
based on the fact that the radar’s received signal undergoes
round-trip path loss, while the EW system detects the radar
signal with only one-way path loss. Although low-probability
of intercept (LPI) radar is not considered in this study, the pro-
posed EW system could be used to handle this case with
modifications to the training data.

In this study, it was assumed that the EW receiver can
detect a radar system at twice the distance of the radar sys-
tem’s acquisition range. It is also assumed that the system can
obtain an accurate emitter location based on a sequence of
angle of arrival (AoA) information. No additional investiga-
tion was done regarding the impact of the AoA accuracy. It is
assumed that the AoAs were completely accurate, although
it is understood that AoA calculations and subsequent range
calculations are not necessarily trivial. Based on the system
architecture, these inaccuracies will impact the calculated
distances and the emitters might change states earlier than
the system expects it to; however, no tests were conducted
to measure these impacts, thus focusing on testing the pro-
posed EWsystem architecture. The receiver errors considered
in this study are misclassifying radar types and inaccurate
knowledge about radar’s working ranges in training data. If a
threat radar has been detected, then the individual emitter
threat level of the radar system is calculated using the Radar
Threat Model. The threat level of the radar system(s) is then
used by the EA decision tree, along with the radar’s distance
and operation mode in order to determine which action to
perform. The EA Assessment Model can recommend (1) do
nothing (2) avoid (3) apply EA and (4) apply EA to one radar
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and avoid another one. Once an action has been determined,
the next radar state is predicted using the LSTM prediction
model.

After an action has been performed by the mobile EW
platform, even if it is to do nothing, the reaction of each of
the radar systems in the environment is determined using the
emitter reaction decision tree. The simulator then determines
the platform’s next location using the navigation method
module and the simulation cycle continues until either the
platform reaches the goal location, or it is intercepted by a
radar’s fire control mode within its firing range.

B. RADAR MODEL
There are 6 radar signal sets considered in this study. The
EW system has countermeasures effective against radar sets
1-5; however, set 6 is unknown to the EW system. Therefore,
the EW system has no effective countermeasure against signal
set 6. The EW system can still detect its existence based on
signal energy; nevertheless, it cannot determine its mode nor
apply an effective EA against it. The reason for including
unknown signals is to evaluate the performance of the EW
system in the presence of an unknown radar.

The radars considered in this project can change their
signal set if they are jammed. In each simulation, there
are two separate radars, one of which can switch between
signal sets 1, 3, and 5, while another radar can switch
between sets 2 and 4, or between signal sets 2, 4, and 6.
The first emitter set changes with the following pattern:
1→3→5→1, and the second set changes with the following
pattern: 2→4→6→2. The unknown emitter (emitter 6) is
triggered in specific simulations once the emitter set has been
jammed consecutively through each of the prior emitters in
the chain. The emitter types consist of different signal sets.
The simulations only consider the two different transition
sequences. Each emitter set changes types after being jammed
for three cycles. The corresponding ranges of the different
signal sets are shown in Table 2. Each of the radars are
stationary with respect to the EW system.

TABLE 2. Emitter ranges.

C. PDW CLASSIFICATION CONFIDENCE
An EW processing system is capable of classifying PDWs
into radar types and modes. However, these systems will
never be completely accurate due to imperfect received sig-
nals (e.g. low SNR, multipath, pulse-on-pulse interference).
Therefore, the proposed EW processing system assumes that
each of the PDW radar classifications have an associated

confidence value. The proposed EW system is designed to
engage at most two emitters, however it is provided three
PDWs associated with three different emitters, where one of
them is a false classification.

The EW processing system infers that the radar classifi-
cation with the highest confidence is the actual radar type
that is present. Each simulation is initialized to have an
incorrect radar classification with the higher confidence value
for one of the radar locations. This typically causes the EW
processing system to make an incorrect decision for its first
action. However, the system can learn when it has made an
incorrect assumption about the radar type because it assumes
that applying a correct EA will cause a radar system to
transition back to scanning mode. Therefore, if the system
applies an EA for a specific radar and it does not change to
scanning mode, then the EW system identifies and corrects
the false classification.

D. TESTED EW STRATEGIES
Five EW strategies, described below, are evaluated against
the proposed EW system (referred to as ‘‘EW Sys’’
in Tables III-V), for a baseline comparison.

1) STRATEGY 1: DIRECTLY APPROACH GOAL
This is the most naïve approach for completing the mission.
With this strategy, the platform proceeds directly towards
the goal location and does not apply any EA or evasive
maneuvers. This approach is gambling that the adversarial
radars will not be able to respond fast enough to step through
its modes and enter firing mode, which may be reasonable for
fast or low observable platforms. Stealth technologies were
not considered in this study.

2) STRATEGY 2: ONLY EVADING
In this approach, no effective EA can be applied toward an
emitter. When the platform is within the acquisition range of
an emitter, the system decides to evade the closest radar. This
approach presumes that the platform can maneuver outside
of an emitter’s firing range prior to engagement, or that
there exists a path between the starting and goal locations
that is outside of radar coverage. Flight dynamics were not
considered; however, this scenario creates a baseline for how
difficult the EW environment is to maneuver without being
detected. It ensures that there are no easy paths to the goal
location.

3) STRATEGY 3: APPLY CONSTANT EA
This strategy has the EW system apply the same EA through-
out the mission. The platform proceeds directly towards the
goal location for this scenario. Once the EA decision tree
determines to apply an EA, the system continuously applies
this EA until the mission is complete. This is a naïve approach
to engaging an adversary; however, it is reasonable if the
radar’s behavior does not change and the system has accu-
rate information about the radar, which may have been the
case in the early days of EW. PDW classification errors are
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not introduced for this strategy. This scenario is intended
to illustrate why the system needs to adapt to the changing
environment.

4) STRATEGY 4: CYCLE EAs
While applying this strategy, the platform proceeds directly
towards the goal location and cycles through all possible
EAs. The system applies a different EA during each clock
cycle. Once the system has exhausted all options, it waits
and applies no EA for one cycle and then restarts the cycle
again. The system cycles through the EAs and there is no
decision-making process. This is a reasonable approach to
takewhen the EW system has no a priori knowledge about the
radar emitters. This approach has the drawback of broadcast-
ing the EW system’s presence to other entities, with the possi-
bility that no EA is effective against adversarial radars. This
scenario is intended to illustrate the need for a ‘‘cognitive’’
element that is required to combat adaptive radar systems.

5) STRATEGY 5: EA DECISION TREE WITHOUT
AVOIDING RADAR
In a scenario where there is a requirement for the platform to
reach its goal location as quickly as possible, the actions are
determined by the EA Assessment Model; however, the sys-
tem ignores requests to avoid radar locations. This scenario
is intended to determine the effectiveness of the EA decision
tree.

VI. SIMULATION RESULTS AND DISCUSSIONS
A. SIMULATION PROCEDURE
Each of the cases were simulated 100 times and the num-
ber of successful missions was recorded. For each of the
simulations, the goal location is first randomly assigned.
The platform’s starting location is next randomly assigned
somewhere around the goal location. Finally, the radar emit-
ters are randomly placed between the platform and the goal.
The emitter locations are randomly offset from the exact
center of the direct path. One of the emitters is intentionally
misclassified at the beginning of tests for strategies 1, 2, 4,
5 and the proposed EW system. The emitter response decision
tree model was used to model the emitters’ responses to
the platform’s actions; therefore, an emitter’s type changes
throughout the simulation. Therewere two stationary emitters
for each simulation and the goal for the pilot is to reach the
goal location without having an emitter reach firing mode for
two consecutive cycles.

B. VISULATION OF SIMULATION
The plot in Fig. 4 depicts a typical mission simulation. The
green ‘‘v’’ is the platform’s starting location, the green tri-
angle is the goal location, the blue dots are the platform’s
path, and the stars are radar emitter locations.Within a certain
distance of emitter location 0, the EW system recommended
a change in trajectory to avoid a higher threat state. While the
platform started in a location outside of the emitter’s effective

FIGURE 4. Example mission.

ranges, the system had already detected the emitters at the
start of the mission because it was within twice the effective
range of the emitters. Figure 4 illustrates a successful mission
scenario. A successful mission is defined as a mission where
a pilot reaches the goal location, and a failed mission is
defined as a mission when an emitter is in firing mode for
two consecutive EW system cycles.

C. SIMULATION 1: NO UNKNOWN RADAR SIGNALS
In the first systematic simulation, every radar signal is known
by the EW system and has a corresponding EA. The tran-
sition between radar signal sets is described in Section V.
The results of the first simulation are depicted in Table 3.
While simply evading the emitter and cycling through the
possible EAs were rather successful, it is obvious that there is
a significant benefit to include the decision-making process
that was developed for the proposed EW processing system.
The high success rate for scenario 2 signifies that there were
not enough emitters present in the simulation. Theywere each
placed offset from the middle of the pilot’s starting location
and the goal location; therefore, additional emitters offset fur-
ther from the middle would likely decrease the success rate.
Only two were simulated in order to maintain a reasonable
simulation time.

TABLE 3. System simulation 1.

D. SIMULATION 2: ONE UNKNOWN RADAR SIGNALS
In the second simulation, one radar signal set (set 6) is
unknown to the EW system; therefore, there is no correspond-
ing effective EA. The results are depicted in Table 4.

As shown in Table 4, when there is a radar system that
the EW system does not have an effective countermea-
sure against, the best strategy is to avoid the radar system
(strategy 2). Compared with the other strategies, the proposed
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TABLE 4. System simulation 2.

EW system has the best performance. Although the EW
system directs the platform to avoid the unknown emitter,
the emitter does not utilize the unknown signal set until it has
been suppressed by EAs for a given number of cycles. In this
case, the signal sets might change from 2 to 4 and then to 6.
As the EW system has effective EA against signal sets 2 and
4, it has a false sense of security. However, once the radar
changes to signal set 6, the platform might be too close to
evade. In other words, the platform is deceived and trapped.
This example demonstrates one of the challenges in decision
optimization against agile, multifunction radar systems.

E. SIMULATION 3: ONE UNKNOWN RADAR SIGNAL AND
CONSERVATIVE COUNTERMEASURES
A third simulation was conducted to evaluate the benefits of
avoiding an unknown radar location (i.e. radar at location can
transmit unknown signals) and applying more conservative
countermeasures. Conservative countermeasures consist of
applying a countermeasure a clock cycle later compared with
the initial simulation, as well as avoiding the emitter that
previously shot down a pilot. This simulation assumes that
there is a posteriori knowledge of the unknown radar (with
no effective EA countermeasures). Therefore, avoiding the
discovered unknown radar system as early as possible ensures
that the platform does not enter the radar’s firing range.
Applying more conservative countermeasures (i.e. applying
countermeasures less frequently) conceals the presence of
the platform from the radar for a longer period of time,
which allows the platform to maneuver through the space
without triggering the emitter to transition into the unknown
signal set. The results of this simulation are depicted
in Table 5.

TABLE 5. System simulation 3.

It should be noted that there is a significant improvement in
success rate by applying more conservative countermeasures
and by avoiding the unknown radar location. This improve-
ment arises purely from information gained from a previous
mission failure, where the EW system was not able to counter
the unknown radar. This is the driving factor for developing
an LSTM neural network for radar signal predictions. If the
model can predict an unknown signal in advance, then the EW
system could implement a more conservative countermeasure
scheme, which has been shown to increase the success rate.

F. LSTM STUDY
As shown in the simulation results, when there is an unknown
radar signal for which the EW system does not have an
effective countermeasure, a significant drop in success rate is
observed. One possible way to improve the EW system’s per-
formance is to predict the radar’s next move and take appro-
priate actions in earlier stages of the engagement. Therefore,
if an LSTM model could accurately predict a radar’s next
signal, then this information might be useful for evading an
unknown emitter earlier in the mission.

The LSTM is trained on a string of previous emitter types
for a given location and it predicts the next emitter type.
The training string grows with each simulation cycle as the
previous detected emitter type is appended to the end of the
training string. The LSTM is restrained as new information is
obtained. If there were a previous mission in the area, then
the model could be pretrained with previous observations;
however, there is no way of knowing an adversaries’ specific
capabilities at a given location, therefore, this data needs
to be collected in real-time. The structure of LSTM used
in this project, as shown in Fig. 5, consists of three layers:
input, LSTM, and dense. The input layer has 8 nodes which
correspond to the length of sequence used to predict the
next radar signal. The LSTM layer has 128 outputs and the
softmax dense layer condenses the 128 inputs into 3 output
values. The output of the dense layer signifies the confidence
of the prediction for the three possible emitter types for the
given location. The model is simple because the platform is
assumed to have on-board capabilities for determining the
emitter type; therefore, the LSTM is only learning a simple
string of emitter types. Nevertheless, it is desirable to expand
the functionality of the LSTM so it can be a part of an
extended network to cover the complete range of variations
observed in an EW environment and it will be a natural
extension of this project.

FIGURE 5. Developed LSTM.

The emitter predictions that the LSTM develops in the
simulation are shown in Fig. 6. Figure 6 illustrates that, after a
short transient period, the model can learn the pattern of how
the emitter type changes for both radar locations. The orange
line is the actual emitter type, and the blue line is the predicted
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FIGURE 6. Emitter type sequence prediction results.

emitter type. The LSTM model was trained with a variable
batch size that depends on the length of the training string;
however, a fixed number of 15 training epochs were used
for each retraining instance. The maximum string length for
each batch was 8, which was long enough to capture the given
emitter type change pattern. The loss function was categorical
cross entropy. The model was then tested by providing the
previous 8 observed emitter types for a given location and it
estimates the next emitter type.

The results from this model could be used to verify the
assumed emitter type that is present after initial training, and
it could also be used to correct PDW classification error
if necessary. It should be emphasized that, unlike the EA
decision tree that is pre-trained before a mission, the emitter
type prediction model is trained throughout the mission as
information is discovered. The prediction performance con-
verges rather quickly and overlaps the actual emitter type due
to the emitter types changing in a deterministic manner as
defined previously. Another cause for the fast convergence is
the training string growing with each simulation cycle, which
provides the model more information to learn from.

It should be mentioned that although initial PDW misclas-
sification is taken into account, consecutive PDW misclas-
sifications were not considered in this preliminary study of
LSTM, which would likely worsen the LSTM’s performance.
For example, if there are consecutive PDW misclassifica-
tions, then the LSTM might misinterpret the ongoing emitter
type pattern. It was assumed that onboard systems would rec-
ognize reoccurring PDW signatures and would better deter-
mine incoming PDWs, which would suppress consecutive
misclassifications. An autoencoder layer would potentially
improve the LSTM’s immunity to PDW misclassifications if
consecutive PDW misclassifications occur.

VII. CONCLUSION
EWenvironments are very difficult to analyze due to the large
variability in data. EW systems need to be able to accurately
model their environment to develop optimal decisions and
maximize survivability. Therefore, a robust EW processing
system that can propose optimal courses of actions is a pivotal
piece of technology for modern systems.

The proposed EW processing system can analyze a vary-
ing EW environment and provide optimal sets of actions.
Others could employ the developed system for their own

operations by simply providing the necessary training data for
the expected EW environment. This could greatly reduce the
amount of time required to develop a custom EW processing
system, as well as reduce possible human errors.

One possible item for future work would be updating the
EA decision tree when new data is discovered. This would
allow the model to optimize decisions in unknown scenarios
that were originally not accounted for. This could be done
naively by simply retraining the decision tree when new data
is discovered, or by using online or adaptive decision trees.
In the latter case, transfer learning would be very beneficial
because a pre-trained system could be quickly updated with
new information that might increase the pilot’s survivability
in blind situations.

Simulation results demonstrate that EW system’s per-
formance significantly suffers when there is a new threat.
A well-developed LSTMmodel could predict the new threat,
thus allowing the system additional time to evade the threat.
Therefore, the integration of an LSTM model and the EW
decision tree will be a logical extension of this project.
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