
Received June 23, 2021, accepted June 28, 2021, date of publication June 30, 2021, date of current version July 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093768

The Motion Controller Based on Neural Network
S-Plane Model for Fixed-Wing UAVs
PENGYUN CHEN , GUOBING ZHANG , TONG GUAN, MEINI YUAN ,
AND JIAN SHEN , (Member, IEEE)
College of Mechatronic Engineering, North University of China, Taiyuan 030051, China

Corresponding author: Guobing Zhang (z2831727149@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51909245 and Grant 62003314, in part
by the Open Fund of Key Laboratory of High Performance Ship Technology, Ministry of Education, Wuhan University of Technology,
under Grant gxnc19051802, in part by the Aeronautical Science Foundation of China under Grant 2019020U0002, in part by the Scientific
and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant 2019L0537, in part by the Natural Science
Foundation of Shanxi Province under Grant 201901D211244, and in part by the Open Foundation of Key Laboratory of Submarine
Geosciences, MNR, under Grant KLSG2003.

ABSTRACT Aiming at the attitude control problem of fixedwingUAV, this paper introduces S-plane control,
which has good control effect in the field of underwater UAV, into the attitude control of UAV. At the
same time, aiming at the problem that the coefficient setting of parameters in S-plane control completely
depends on experience and cannot be adjusted adaptively, the radial basis function neural network (RBFNN)
is introduced, and a neural network S-plane control model which can realize on-line adaptive adjustment
of the coefficient of parameters in S-plane control is proposed. The simulation results based on the data of
a certain UAV show that compared with the S-plane control, the proposed neural network S-plane control
model has the characteristics of fast response speed, strong anti-interference ability, and strong robustness.
In addition, it also has the function of adaptive adjustment, which shows good control performance.

INDEX TERMS Fixed wing UAV, S-plane control, radial basis function neural network (RBFNN), adaptive
adjustment.

I. INTRODUCTION
In recent years, with the progress of control, electronic
information, materials and other aspects of technology, UAV,
a high-tech product, has attracted extensive attention in both
military and civil aspects [1]. Compared with the manned
aircraft, the fixed wing UAV has the characteristics of low
cost, zero casualties, reusable, flexible and strong battlefield
survivability. The fixed wing UAV is not only used in enemy
reconnaissance, ground attack, bee colony operation and tar-
get attack, but also plays an important role in agricultural
plant protection [2], remote sensing mapping [3], sightsee-
ing photography [1], fire rescue and cargo transportation.
Compared with rotorcraft, fixed wing UAV has the charac-
teristics of fast flight speed, large carrying capacity, large
cruise radius and good economy [4]. The control system is
the brain of UAV, and its performance directly determines the
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performance of UAV. The control of the rotorcraft is relatively
simple, and the fixed wing UAV has higher requirements for
the performance of its control system because of the difficulty
of operation, which also puts forward higher requirements for
the design level and control accuracy of the fixed wing UAV.

The control methods of fixed wing UAV mainly include
PID control [2], [5], robust control and other linear control
methods, as well as sliding mode control [6], [7], fuzzy con-
trol [8], Intelligent control [9], [10] and other nonlinear con-
trol methods. Zheng et al. [11] Introduced the sliding mode
control into the landing control of fixed wing UAV, and com-
bined adaptive control and sliding mode control to compen-
sate the uncertainty of system. Melkou et al. [12] Proposed
an adaptive second order sliding mode controller, which can
reduce the chattering problem in sliding mode. Lungu [13]
applies backstep-ping and dynamic backstepping technology
to themotion control of fixedwingUAV to suppress the errors
caused by wind and sensors during landing. The above con-
trol methods all show good control performance, but they all
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have some problems, such as complicated controller design,
difficult application in practice and so on. The S-plane control
method, which was invented by Professor Liu Xuemin of
Harbin University of engineering, has the characteristics of
simple structure, easy parameter adjustment and good control
effect [14]. S-plane control is a kind of controller obtained
by nonlinear fitting method on the basis of fuzzy control
rule table. It has been widely used in underwater unmanned
vehicle (UUV). However, the marine environment is usually
harsh. Like the fixed wing UAV, the Underwater Unmanned
Aerial Vehicle (UUV) also has the characteristics of strong
nonlinearity and strong coupling. The key problems of UAV
andUUV are similar, so the S-plane control with good control
effect in UUA can be introduced into the motion control
of UAV. In recent years, S-plane control has also achieved
many results. Zhao et al. [15] introduced robust control into
S-plane control to improve its control performance, however
the adjustment of parameters in S-plane still depends on
experience. Li, ye et al introduce an adaptive term in S-plane
control to resist environmental interference. Although it has
some practical value, it increases the complexity of struc-
ture [16]. Zheng Chen et al aimed at the design of the con-
troller faces certain challenging problems in the Multilateral
telerobotic system under time delays, various uncertainties,
and external disturbance. an adaptive sliding control method
based on radial basis function neural network is introduced.
which has good position tracking and force feedback perfor-
mance [17]. Aiming at the robustness and anti-interference
of eight rotor UAV, Cheng Peng et al Proposed a robust
feedback sliding control method by combining the advan-
tages of feedback control and sliding control, and introduced
radial basis function neural network as uncertainty observer
to improve the robustness of the system [18]. Cao et al. [19]
aiming at the problem of UAV fault detection, designed a
robust adaptive observer based on radial basis function neural
network. In this paper, radial basis function neural network is
also introduced to solve the problem that the coefficients of
parameters in S-plane control cannot be adaptive. Fuzzy con-
trol and optimal control have certain ad-vantages in parameter
self-tuning, however S-plane control is designed based on
fuzzy rule table, which has certain fuzzy characteristics, and
the selection of membership function in fuzzy control has
certain difficulty. Optimal control is to make the satisfied
characteristics reach the maximum or minimum under certain
constraints. The UAVmotion in this paper needs to adjust the
relevant parameters from time to time according to the exter-
nal environment. In addition, the optimal parameter adjust-
ment is often for a certain period of time or local, the control
step size is too small will affect the accuracy. RBFNN has
good generalization ability, identification and fault tolerant
performance, therefore, it can be used to adjust the S-plane
parameters.

In this paper, the S-plane control which has good under-
water control effect is introduced into the attitude control
of fixed wing UAV. Aiming at the problem that the coeffi-
cients of its parameters can not be adaptive, the RBFNN is

introduced into the S-plane control, and the RBFNN S-plane
control model is created, Then, the corresponding simulation
experiments are carried out.

II. STATE EQUATION OF FIXED WING UAV
Suppose that the UAV is a rigid body, the center of gravity of
the UAV is set as the origin of the body coordinate system,
the ground coordinate system as the inertial system, and the
body coordinate system as the moving coordinate system.
The connection between them is shown in Fig.1.

FIGURE 1. UAV model and coordinate system.

The 6-DOF dynamic and kinematic equations of UAV
established by Newton’s second law [20] are shown in
formula (1) (2) (3) (4).

V̇ = (L + T − D)/m+ R(: 1)− ω × V (1)

2̇ = R′ · ω (2)

M ′ = I · ω̇ + ω × I · ω (3)

Ẋ = R · V (4)

In the formula, V = [u v w]T represents the linear velocity
of the body relative to the inertial system, u, v,w represents
the component of linear velocity along x, y and z axes respec-
tively. L is lift, T is thrust, D is resistance; ω = [p q r]T

represents the angular velocity of the body relative to the
inertial system, p, q, r is the component of angular velocity
along x, y and z axes; 2 = [φ θ ψ]T is the attitude angle of
the body, φ, θ and ψ represent roll angle, pitch angle and
yaw angle respectively; M ′ = [L M T]T is the moment on
the body. L, M and N represents rolling moment, pitching
moment and yaw moment respectively; X = [xg yg h]

T is the
displacement of the body relative to the inertial coordinate
system. Among them, the matrices R′, I and R are shown at
the bottom of the next page.

In terms of formula (1) (2) (3) (4), It can be decoupled
into longitudinal motion equation and lateral motion equation
under the assumption that the aircraft is flying horizontally
without sideslip. Then, the corresponding longitudinal and
lateral state equations are obtained and used as the controlled
object. This paper mainly discusses the response of aircraft
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longitudinal and lateral parameters under the control of neu-
ral network s-plane. The equation of state for longitudinal
motion is as follows.{

ẋ = Ax + Bu
y = Cx + Du

(5)

where x is the state vector, u is the input column vector, y is the
output column vector, A is the state transition matrix, B is the
control matrix, C is the output matrix, D is the feedforward
matrix. Where A and B matrices are expressed as follows:

A =


Xu Xω 0 Xθ
Zu Zω Zq Zθ
Mu Mω Mq 0
0 0 1 0

B =

Xδp Xδe
Zδp Zδe
Mδp Mδe

0 0


The state vector is x = [1u1ω 1q1θ ]T ,the input vector

is u = [1δp 1δe]T ,the derivation and meaning of other
formulas are shown in reference [21]. The state equation of
UAV lateral motion is the same as equation (5), the matrix
corresponding to A′ and B′ is as follows:

A′ =


Yv Yp Yφ Yr
Lv Lp 0 Lr
0 1 0 0
Nv NP 0 Nr

B′ =


0 Yδr
Lδa Lδr
0 0
Nδa Nδa


The state vector corresponding to the lateral state equation

is x = [1v1p1φ 1r]T ,the input vector is u = [1δa 1δr ]T .
The stability of the longitudinal and lateral state equations
can be proved by Lyapunov’s first method, that is to say,
formula (6) is used to determine that the corresponding poles
are located in the left half plane of s.

W = C(sI − A)−1B (6)

III. RBFNN S-PLANE CONTROL MODEL
A. S-PLANE CONTROL
The standard S-plane control model is shown in formula (7):

u =
2

1+ exp[−(k1e+ k2ė)]
− 1.0 (7)

The stability of s-plane control has been proved by
Jiang CM et al, so it will not be repeated here [22]. The
three-dimensional surface diagram of S-plane control model
is shown in Fig.2 In standard S-plane control, e and ė repre-
sent the normalized control deviation and the change rate of

FIGURE 2. 3D surface of S-plane controller.

control deviation respectively. k1 and k2 are the coefficients of
deviation e and deviation change rate ė respectively. u is the
control output. The S-plane control is similar to the propor-
tional differential (PD) control in structure. The adjustment
of k1 and k2 in S-plane control can be realized by referring to
the respective coefficient adjustment of the proportional and
differential terms in the PD control. PD control is a linear
system, the coefficients of its proportion and integration are
fixed, so it is not adaptive. The S-plane control is a non-linear
system, which is very suitable for UAV’s strongly nonlin-
ear motion control system. But compared with PD control,
k1 and k2 of S-plane control do not have the function of adap-
tive adjustment, RBFNN has the function of self-learning
and self-adaptive. Therefore, the control mode of RBF with
self-adaptive function can be introduced into the S-plane to
adjust k1 and k2.so that S-plane control has the ability of self-
adaptive, and improve the anti-interference ability and control
accuracy of the system as much as possible.

B. IMPROVEMENT OF S-PLANE CONTROL
As mentioned above, the S-plane control has good control
accuracy, but in order to eliminate the influence of the exter-
nal environment on the control system in flight, the inter-
ference adjustment parameter is introduced into the S-plane

R′ =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ
cos θ

cosφ
cos θ

 I =
 Ix 0 Ixz

0 Iy 0
Izx 0 Iz



R =


cos θ cosψ

sinφ sin θ cosψ
− cosφ sinψ

cosφ sin θ cosψ
+ sinφ sinψ

cos θ sinψ
sinφ sin θ sinψ
+ cosφ cosψ

cosφ sin θ sinψ
− sinφ cosψ

sin θ − sinφ cos θ − cosφ cos θ
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model. In addition, the output range of S-plane control
is [-1,1]. In order to improve the control effect, gain needs
to be introduced. The final output of S-plane control system
is U = k · u at this time, the S-plane control model becomes
formula (8);

u = k ·
(

2
1+ exp[−(k1e+ k2ė)]

− 1.0+1u
)

(8)

at this time, the S-plane control not only has a certain
anti-interference ability, but also increases the response
strength because of the increase of output gain, which makes
the control accurate and fast.

Where 1u is an adjustment item for adapting to environ-
mental interference, it can be written as:{

1f = S(1e, 0)
1e = (1− λ)et + 1

nλβt
∑t

i=t−n ei
(9)

where S(, ) denotes the function of S-plane control, et is the
error at time t, 1e denotes the adaptively adjusted value of
error, βt is the fast weakening factor, λ is the low-pass filter
parameter, and n is the number of recorded historical data.in
formula (9), the adjustment of βt is realized by formula (10).

βt =

{
0.3βt−1 1e · e<0
1 others

(10)

The rapidly weakened part can avoid the error caused by
integral lag, The low-pass filter and S-plane control function
can adaptive the interference of environment part [16].

C. RBF NEURAL NETWORK
In terms of BP and RBF neural networks. they have their own
characteristics. (1) viewed from the structure, The number of
layers of BP neural network is at least three, which means
that it needs more layers than RBF to solve the problem.
In addition, BP neural network input layer and hidden layer,
hidden layer and hidden layer, and hidden layer and output
layer need to adjust the weight between each node. Every
time the data is input, a lot of weights need to be adjusted,
which greatly increases the calculation amount. The RBF
neural network has only three-layer structure, and the linear
relationship between the input layer and the hidden layer only
plays the role of data transmission. The hidden layer and the
output layer are adjusted by the weight, so the calculation
speed is fast. (2) viewed from the function form, the kernel
function of BP neural network uses sigmoid function, which
will respond to every input value, and has a lot of calculation
data, which is a global approximation. The kernel function
of RBF neural network is Gauss function, which can only
respond to a certain part of the input, so the computation
is small and belongs to local approximation. In this paper,
we hope that the selected neural network can not only adjust
the parameters from time to time, but also operate faster. The
RBF neural network can meet this requirement, so we choose
the radial basis function neural network to adjust the parame-
ters. at the same time, it also has good generalization ability.

Therefore, we choose RBF neural network to design the con-
troller. RBFNN is a three-layer forward feed-back network
with a single hidden layer with a local ap-approximation.
It has the characteristics of simple structure and fast learn-
ing convergence speed. It can convert some low-dimensional
input data into high-dimensional space, making the problem
of linear inseparability in low-dimensional space is linearly
separable in high-dimensional space. Generally speaking,
RBFNNmodel consists of three layers [23], [24]: input layer,
hidden layer and output layer, in which the number of nodes
in input layer and output layer is related to the dimension of
input and output. The number of nodes in the hidden layer is
related to the complexity of the controller designed, and the
mapping between input layer and implied layer is nonlinear,
and the mapping from hidden layer to output layer is linear.
The nonlinear mapping function of the hidden layer is mainly
realized by the radial basis function. The commonly used
radial basis function is Gaussian function, and its expression
is as formula (9).

hj(t) = exp(−
‖ x(t)− cj(t) ‖2

2b2j
), j = 1, · · ·,m (11)

where x(t) is the input vector, cj(t) is the center vector
of the jth node in the hidden layer, bj is the width of
the Gaussian function, m is the number of hidden layer
nodes, ‖ x(t)− cj(t) ‖ is the Euclidean distance between x(t)
and cj(t). The input layer only plays the role of data trans-
mission, and does not deal with the input information in any
form. The linear mapping between hidden layer and output
layer is realized by weighting function, the formula is shown
in (10).

yi(t) =
m∑
j=1

ωjihj(t), i =1, · · ·, n (12)

where ωji is the connection weight between the jth node in
the hidden layer and the ith node in the output layer, n is the
number of output nodes, yi(t) is the output value of node i.
The structure diagram of RBFNN is shown in Fig.3.

FIGURE 3. Structure diagram of RBFNN.

There are three main parameters to be solved and trained
in RBFNN, which are the center of the basis function,
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the variance, and the weight from the hidden layer to the
output layer. The training process of RBF neural network
is divided into two steps: the first step is the unsupervised
learning process, which is used to solve the center and vari-
ance of the hidden layer basis function. the second step is
the supervised learning process, which is used to solve the
weights between the hidden layer and the output layer. Before
training, the input vector, the corresponding target vector and
the learning coefficient need to be provided. The purpose of
training is to obtain the final weights and thresholds of the
two layers. in the process of unsupervised learning, k- means
method is often used to determine the center of basis function.
The selection of value in k- means method is difficult, and
the selection of initial clustering has a great impact on the
results. In addition, the online adaptive method is used to
complete the control process, so the center value of the basis
function can be determined according to the range of the input
function and the density of the data in the Simulink simulation
diagram. The variance of the basis function can be obtained
by formula (11).

b =
cmax
√
2j

(13)

where cmax is the maximum distance between the center
values of the selected basis function, j is the number of center
values of the basis function. In the process of supervised
learning, due to the parameters in this paper are relatively
few, only k1 and k2, and the amount of computation is not
very large, gradient descent method is used to train corre-
sponding weights, and the objective function of learning is
as formula (12).

e(t) =
1
2
(y(t)− yi(t))2, i=1, · ··, n (14)

The update rule of output weight is as formula (13) and (14)

1ωji(t) = −η
∂e(t)
∂ωji

= η(y(t)− yi(t))hj(t) (15)

ωji(t) = ωji(t − 1)+1ωji + α[ωji(t − 1)− ωji(t − 2)]

(16)

D. RBFNN S-PLANE CONTROL MODEL
The RBFNN S-plane control model is shown in Fig.4. It is
composed of RBFNNparameter regulator, S-plane controller,
controlled object and compensation module.

The basic principle of the control is as follows: firstly,
the system deviation e and the deviation change rate ė
are transmitted to the RBFNN parameter regulator and the
S-plane controller simultaneously as inputs. The deviation
e and the deviation change rate ė input to the RBFNN
controller is adjusted online under the function of the RBF
neural network algorithm to obtain k1 and k2 Then k1 and
k2 complete the control function of the S-plane controller
together with the deviation e and the deviation change rate
ė input to the S-plane controller, and transmit the signal to
the controlled object. Finally, under the correction of the
compensation module, the output response is obtained. At the

FIGURE 4. Structure diagram of RBFNN S-plane controller.

same time, the output response is fed back to the input signal
to participate in the next step of the control process. In the
process of signal reciprocating transmission, online adjust-
ment of parameters in S-plane controller is completed, which
improves the adaptive ability of parameters and also improves
the control precision and intelligent level of UAV. In addition,
the structure of RBF neural network regulator in RBFNN
S-plane control is shown in Fig.5.

FIGURE 5. Internal structure diagram of RBFNN parameter regulator.

Its input only has deviation e, and the deviation change
rate is realized by adding two delays e(t − 1) and e(t − 2)
to the deviation e, and then realized by the form of (e(t)+
e(t − 2) − 2e(t − 1)) similar to the differential part in the
discrete incremental PID control. The function of module
RBFNN in Fig.5. is realized by the S-Function function in
MATLAB, S-function is aimed at some complex dynamic
problems in simulation. When other modules cannot solve
them, it realizes the connection with other modules by writ-
ing specific functions. It has a fixed format, as shown in
formula (15).

function[sys, x0, str, ts] = f (t, x, u,flag, z1, · · ·) (17)

where f is the function name of S-Function, x0, str, ts
represent the initial state vector, description vector and sam-
pling period vector respectively. t, x, u represents time, state
vector and input signal respectively. flag is the State Flag
of function, which is used to judge the current state of
Function. When flag = 0, S-Function will initialize the
function and set some related parameters. When flag = 1
and 2, continuous state variables and discrete state variables
are updated respectively, and the updated state variable is
returned through sys. When flag = 3, the output of the

VOLUME 9, 2021 93931



P. Chen et al.: Motion Controller Based on Neural Network S-plane Model

system is obtained through mdloutputs() function and the
output signal is returned through sys. When flag = 4, the next
simulation time is calculated and returned by sys. When
flag = 9, the simulation terminates without returning any
variables. In the simulation, flag = 0 is executed to initialize.
Then the output is calculated by flag = 3. At the end of the
simulation cycle, let flag = 1 or 2, update the continuous or
discrete variables of the system, and then execute the flag = 3
operation, so as to cycle back and forth until flag = 9.

E. RBFNN PARAMETER REGULATO OPTIMIZATION
In the RBFNN parameter regulator, the input data are the
deviation e and the deviation change rate ė, which are gen-
erally small. The Gauss function in the hidden layer of the
RBFNN can produce local response to the input signal, that
is, the closer the input deviation e and the deviation change
rate ė are to the center of theGauss basis function, the stronger
the response. However, the output of Gauss function is small.
In S-plane control, when the input coefficient changes greatly,
the response is more intense. Therefore, in order to make
the output of RBFNN parameter regulator act better on the
S-plane controller and make its control more effective, a gain
k ′1 and a gain k

′

2 are added to the output of RBFNN parameter
regulator.

IV. EXTERNAL WIND MODELING
According to the characteristics of wind, the modeling of
UAV external wind interference can be expressed as the
combination of basic wind vb, gust vg,random wind vr and
gradual wind vn as shown in formula (17)

V = vb + vg + vr + vn (18)

The basic wind is the average wind speed acting on the
UAV, which can be regarded as a constant determined by the
formula (18).

vb = k, k is a constant (19)

Gust reflects the mutation type of wind, determined by
formula (19).

vg

{
(vgmax/2)[1−cos(2π (t−T1)/Tg)], T1 ≤ t≤T1+Tg
0, other

(20)

where, vgmax is the maximum value of gust, T1 is the gust
start time, Tg is the gust period.

The gradual wind reflects the gradual change of the wind
speed, determined by formula (20).

vn =


vnmax[(t − T ′1)/(T

′

2 − T
′

1), T′1 ≤ t ≤ T
′

2

vnmax, T′2 ≤ t ≤ T
′

2 + T
0, other

(21)

where, vnmax is the maximum value of gradual wind, T ′1 is the
start time of the gradual wind, T ′2 is the end time of the gradual
wind, T is the period of gradual wind. Random wind reflects

the randomness and uncertainty of wind speed. Determined
by formula (21).

vr = vr maxra(−1, 1) cos(γ + η) (22)

where, vr max is the maximum value of random wind,
ra(−1, 1) is a random number uniformly distributed between
−1 and 1, γ is the average distance of wind speed fluctuation,
the general value is 0.5π ∼ 2π . η is the random quantity of
uniform distribution between 0 ∼ 2π .

V. SIMULATION TEST AND RESULT ANALYSIS
A. TYPES OF GRAPHICS
In the simulation, the data of longitudinal and lateral state
equations of UAV in literature [25] are used. In the longitudi-
nal equation of state, A and B are respectively:

A =


−0.0088 −0.0105 0 −0.0409
−0.0915 −0.4917 1 0
−0.0294 −2.5464 −0.8966 0

0 0 1 0



B =


0

−0.1011
−7.7307

0


In the lateral state equations, A′ and B′ are respectively:

A′ =


−0.15008 0.11649 0.06115 1
−26.12497 −1.65932 0 −1.04318

0 1 0 0
−3.59812 −0.06277 0 −0.29365



B′ =


0

−1.59378
0

−0.02872


where C = [1111],D = [0] when the element in C is 1,
outputs the result or image of the corresponding element.

B. SIMULATION AND RESULT ANALYSIS
The simulation experiment in this paper is carried out in
the Simulink simulation environment of MATLAB. In order
to verify the control performance of the designed RBFNN
S-plane control, the S-plane control is introduced as the con-
trol group for comparison. Firstly, the longitudinal motion of
UAV is simulated, the values of A,B,C andD are substituted
into the longitudinal state equation in turn, and then the step
signal is added to the input signal. The step response of
longitudinal motion is shown in Fig.6 Compared with S-plane
control in the speed and pitch angle step response, RBFNN
S-plane control has the characteristics of fast response,
no overshoot, and short transition process time. In the angular
rate step response, RBFNNS-plane control changes smoothly
and can reach a stable state quickly, showing good control
performance. In order to verify the anti-interference ability
of RBFNN S-plane control in longitudinal control, Gaussian
white noise interference is added in period 20s < t < 40s
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FIGURE 6. Longitudinal step response curve of UAV.

of step response in Fig.6, and the response result is shown
in Fig.7. In the angular rate step interference response,
the RBFNN S-plane control and S-plane control responses
are relatively strong, however the RBFNN S-plane control
still has strong anti-interference ability. Among other param-
eters of longitudinal motion, the anti-interference capability
of RBFNN S-plane control is better than S-plane control.
Fig. 8 shows the output result of RBFNN parameter regulator
in longitudinal motion, and is also the coefficient of deviation
and deviation change rate of S-plane controller in longitudi-
nal motion. It can be seen from Fig.8 that RBFNN S-plane
control can realize the constant adjustment of the correlation
coefficient in the S-plane controller, showing good robust
performance.

FIGURE 7. Longitudinal interference curve of UAV.

In the lateral movement of the UAV, after inputting the
relevant parameters A,B,C and D of the state equation in
turn, and then the step signal is added to the input sig-
nal. The step response of lateral motion is shown in Fig.9.
In the angular rate response along the axis, RBFNN S-plane
control responds quickly and can always maintain a stable

FIGURE 8. Coefficient variation diagram in longitudinal controller.

state. In the angular rate response along the axis, RBFNN
S-plane control has stable response and tends to be stable
quickly compared with S-plane control. In the roll angle
response, RBFNN S-plane response is slow, but its rise time
is relatively fast, no vibration, no overshoot, and has good
control performance. In order to verify the anti-interference
ability of RBFNN S-plane in lateral motion, Gaussian white
noise interference is added in period 65s < t < 95s of
step response in Fig.9, and the response result is shown
in Fig.10 in the angular rate interference response along
the X axis, the RBFNN S-plane control and S-plane con-
trol responses are relatively strong, but RBFNN S-plane has
stronger anti-interference ability. In the side-slip angle and
angular rate interference response along the Z axis, RBFNN
S-plane control is similar to that of S-plane control. But in
the roll angle interference response, the anti-interference per-
formance of RBFNN S-plane control is significantly better
than S-plane control. Therefore, RBFNN S-plane control has
strong anti-interference ability in lateral motion. Fig.11 is

FIGURE 9. Lateral step response curve of UAV.
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FIGURE 10. Lateral interference curve of UAV.

the output result of the RBFNN S-plane parameter regulator
in the lateral movement, and it is also the variation of the
coefficients corresponding to the deviation and the devia-
tion change rate in the lateral S-plane. It can be seen from
Fig.11 that the coefficients of deviation and deviation change
rate can be adjusted from time to time according to the
changes of input and external interference to meet different
responses.

FIGURE 11. Coefficient variation diagram in lateral controller.

Fig.6 and Fig.9 are the response diagrams of UAV lon-
gitudinal motion and lateral motion in step input, reflecting
the input-output relationship at a certain time. In order to
verify the response ability of the designed RBFNN S-plane
control in a continuous time period more accurately, The
velocity V ,pitch angle θ ,and roll angle φ along y direction is
simulated again. The simulation results are shown in Fig.12,
In the response of the velocity along the y direction, the input
signal is a signal similar to the ladder shape. it can be seen
that compared with the S-plane control, the RBFNN S-plane
control can track the input signalmore quickly and accurately,
while the S-plane control has the phenomenon of overshoot
and tracking deviation in the rising phase of the ladder signal.
Sinusoidal signals are used as input signals in pitch angle and
roll angle responses in attitude control. It can be seen from the

FIGURE 12. Velocity and attitude response diagram.

FIGURE 13. Velocity and attitude response error diagram.

simulation results in Fig.12 that RBFNN S-plane control and
S-plane control can track the input signal well and respond
quickly. In the roll angle response, S-plane control has a
slightly delayed response compared with RBFNN S-plane
control. Fig.13 is an error diagram of RBFNN S-plane con-
trol, S-plane control response and input signal in Fig.12.
It can be seen that in the velocity response along the y axis,
the error is large when t = 10s and t = 50s. that is, when
the step signal rises, the RBFNN S-plane control has good
control performance. In the response of pitch angle and roll
angle, S-plane control has relatively large error, which also
shows that the response of S-plane control is relatively slow
compared with RBFNN S-plane control, however, the error
of RBFNN S-planed approaches 0 basically. The results show
that RBFNN S-plane can track the input signal better, and the
response is accurate and fast.

VI. CONCLUSION
In this paper, aiming at the control problem of fixed wing
UAV, a simple and practical S-plane control is introduced
into the attitude control. Considering that the coefficients of
the parameters in the S-plane control do not have adaptive
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adjustment, the neural network was introduced, and an
RBFNN S-plane control model was designed to improve
the accuracy of attitude control in fixed-wing UAVs. after
that, under the comparison of S-plane control, the simula-
tion of longitudinal motion and lateral motion verified that
the RBFNN S-plane model has good control accuracy. The
conclusions are as follows:

(1) The improved S-plane control and the optimized neu-
ral network parameter regulator have good control effect in
attitude control.

(2) In RBFNN S-plane control, the coefficients of S-plane
module parameters have the function of self-adaptive adjust-
ment, which can respond to different inputs at any time and
has strong anti-interference ability.

(3) The simulation results show that RBFNN S-plane con-
trol has good anti-interference performance and robustness
compared with S-plane control, and the error of speed, pitch
angle and roll angle in sinusoidal input response is less than
0.1 except for a few individual points. It has high control
precision.
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