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ABSTRACT Design features such as polishing strokes share similarities with defects; this makes defect
detection and quality assessment difficult to perform both manually and automatically. Human assessors
rotate objects to probe different incoming illumination angles and evaluate the defect dimension to limits
samples i.e. decide whether differences between defect candidates and design features qualify as a defect.
This process has poor access to quantifiable defect descriptors needed for automation and expose a gap in
the existing evaluation of defects. To integrate this notion into automated defect detection we propose a
spatio-temporal image acquisition setup capturing the defect descriptor Angle of Opportunity (AoO) which
can be used as a feature for image-based classification. The Random Forest approach classified defects with

an area under the ROC-curve of 92%.

INDEX TERMS Aesthetic quality, defect inspection, machine vision, visual appearance.

I. INTRODUCTION

Premium products with low volume require expensive human
inspection to avoid customer rejection especially when design
features such as polishing strokes share similarities with
defects [1]. Defects are defined based on visual descriptors
and can be quantified and separated from design features due
to irregularities in area, contrast, width, length, frequency
etc. [2]. In their search for defects, human assessors rotate
objects to probe different incoming illumination angles to
make defects visible and compare them with design fea-
tures [2]. This technique is especially used when assess-
ing reflective surfaces. However, standard automatic visual
inspection (AVI) processes [3] identify defects from sin-
gle images. At inopportune angles this can render defects
invisible or at many angles result in many defect candidates
that in fact are design features. Consequently, we propose
using the Angle of Opportunity (AoO), i.e. the total sub-
tended angle during which defects are visible, as a defect
descriptor. The contribution of AoO in defect detection tasks
and whether it can improve results with standard defect
descriptors, such as contrast, is currently unknown. The prob-
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lem statement include how AoO can improve defect detec-
tion on reflective surfaces where high similarity between
defects and design features exists. Our results illustrates the
importance of using AoO in combination with other features
as contrast, area, width, length, and rotation for human-
in-the-loop processes. Additionally we quantify scratches
based on different defect descriptors and compare these
to the human ordinary acuity, existing quality limits and
non-defects in our data set. The non-defects include both
design features such as polishing, defect candidates just
above the quality threshold and noise in the images e.g. from
reflections.

This paper contributes the defect descriptor Angle of
Opportunity (AoO) which quantifies the subtended angle
across which defects are visible. Leveraging the AoO our
model provides recommendations in terms of picture acqui-
sition angles for automatic visual inspection tasks on brushed
aluminium surfaces. Our results illustrate how capturing a
series of images and using spatio-temporal defect descriptors
such as AoO can improve detection of defects.

Il. DEFECT APPEARANCE AND QUALITY STANDARDS
Since humans are highly sensitive to material appearance [4],
product designers meticulously craft the visual appearance of
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FIGURE 1. Example of the surface of a unit (top) in five frames rotated
1° apart and detailed view (bottom). From certain view angles the defect
(red box) has high visibility (frame 1). As the surface is rotated the
visibility of the polishing increases (frame 2) and the defect
characteristics become more similar to the polishing (frame 3 and

frame 4) and continuously changes based on rotation and view angle
(frame 5).

consumer products to satisfy customer needs. Consequently,
companies invest extensive amounts of time on the design
and quality control of surface finishing. Levitt’s definition
of manufacturing quality is defined as conformance to spec-
ification [5]. In other words, quality should be measurable
given the design specifications (including tolerances) and can
be supported by standards providing universal methodolo-
gies and descriptions agreed upon by international experts
(e.g. ISO8587 [6] and CIE TC1-65 [7]). Standards exists
for describing and measuring the main dimensions of visual
appearance: texture, color, translucency, light distribution,
gloss (e.g. ASTM D523 [8] and ISO 2813 [9]) and support
specifying visual appearance of different surface materials
and illumination. The ISO8587 standard defines a large range
of defect types linked to manufacturing, material purity and
more (e.g. scratches, dents, holes, color changes, etc.) [6] but
lack quantification of the defect descriptors. Some defects
cause geometrical changes in the surface structure and other
defect types constitutes only visually perceived differences
(e.g. color changes) [10]. We address our problem of quality
inspection of premium products by evaluating different visual
features in the context of brushed aluminium surfaces. As
follows, we narrow our scope to visually perceived defects
and more specifically line defects [2]. These include common
defect types as scratches, polishing fish etc. typically char-
acterized by long thin shapes. This constitutes a challenging
problem since line defects on brushed aluminium surfaces
have high visual similarity to the unique polishing patterns
that constitute a design feature.

Aesthetic quality assessment is a complex task to per-
form [11], and manual inspection can suffer from poor
inter-assessor reliability due to variances in attention, level
of training, individual state (mood, sleep etc.) and more [12].
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Therefore, aesthetic quality assessment can benefit from
objective and automated systems which can minimize the
human bias and make this procedure more objective. Human
assessors search for defect candidates and evaluate whether
these are above or below the quality threshold of defects.
Surface anomalies include anything that does not meet the
designers’ norm. Defect candidates that exceed the quality
threshold are classified as defects. When assessors determine
whether a defect candidate is above or below the quality
threshold the design specifications are used as reference.
The design specifications include measurement rules, toler-
ance levels and limit samples which are real-world examples
of anomalies and defects close to the thresholds. Specular
reflective metals, specifically brushed aluminium surfaces,
possess brush strokes across the surface. Deep brush strokes
can constitute anomalies since people perceive the brush
strokes as scratches instead of homogeneous polishing, and
thus this design feature can easily be mistaken for a defect.
Other examples include impurity in the material (e.g. pol-
ishing fish) and handling defects (e.g. scratches) that can
have an appearance similar to the design. Automatic systems
should provide evaluations of defect in line with the design
specifications and provide the same judgment performed by
the expert assessors. This includes leveraging the current
practice of assessors rotating objects and applying standard
defect descriptors (location, size, shape etc.) [1], [2]. Current
standards [6] are used for assessment of defect types within
manual inspection but do not quantify the defect descriptors
such than an automated system could use them to classify
defects.

IlIl. AUTOMATIC VISUAL INSPECTION

Visual inspection depends on illumination that causes varying
appearance of both materials and defects in terms of surface
properties such as texture, reflectivity, geometry etc. [13].
Nondestructive methods, as machine vision, can be used to
inspect surfaces without permanently altering the inspected
object and are exceedingly requested in industry [11]. Pre-
vious work involving machine vision for visual inspec-
tion focused on different materials including leather [14],
ceramic [15], stone [16], plastic [17], and metals [18], [19].
Searching for defects on diffuse materials as leather and stone
is easier than detecting defects on reflective surfaces as metal
and plastic due to the specular reflections causing overexpo-
sure and appearance variance from certain viewpoints. The
above approaches captured data from only a single view-
point and lacked multi-view assessment of defects. Highly
reflective materials, such as brushed aluminium surfaces,
requires units to be inspected from various view angles [2]:
a) for all unit surfaces in 3D (e.g. front and back sides)
b) for defects only visible from certain view angles, and
¢) to account for specular reflections in the images. It is
important to know the characteristics of different defect types
to improve the defect detection process through better data
capturing e.g. through multi-view assessment. As example,
certain defect types, such as line defects, become more visible
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as the image variance increases since these defects reflects
the light differently than their adjacent areas [2], in this
way, supporting our belief that brushed aluminium surfaces
requires units to be inspected from various view angles [20].

Data-driven deep learning (DL) has increased in popularity
and lead to increased performance in computer vision tasks
such as image classification [21], object detection [22], seg-
mentation [23] and tracking [24]. Real-time defect detection
has previously been explored on different reflective surfaces.
This includes inspection of highly reflective curved plas-
tic surfaces in the automotive industry [25], diagnosing the
penetration state of laser weld [26] or finding defects on
highly reflective ring components [27]. Tiny casting defects
can be detected with a CNN [28] or the surface quality
of welds can be predicted [29]. Detection can be improved
using information fusion [30], and has been considered for
automatic inspection of thermal fuses where incorporating
machine vision with artificial neural networks is used for
detection of four common defect types [31]. A deep neural
network can efficiently learn to recognise patterns in spe-
cific data sets, but problems arise when DL performs as
a black box used for domain specific tasks where data is
sparse (e.g. low-volume products) [20]. This provides little
insight into the structure of the function being approximated
and, therefore, no findings on the effects of different visual
characteristics of defects. This is needed since companies
defining aesthetics wish to articulate the measured descrip-
tors, and for this reason a human-in-the-loop could be a first
approach. Consequently, we cannot relate the feature extrac-
tion or decision process from the deep neural networks to the
current manual inspection practice. Concretely for our prob-
lem, detecting defects (holes, stripes, scratches, dents, and
pressure marks) on low-volume brushed aluminium surfaces,
previous work showed that an off-the-shelf object detector
(e.g. YOLOVS) yielded poor results (under the precision-
recall curve of 0.67) due to many false positives [20]. The
large number of false positives were, among other, linked to
the reflective surface and were problematic since the false
positives incorrectly indicated the presence of defects when
no defects were present.

Other common methods used for defect detection in
images include various texture analysis techniques. A signif-
icant amount of previous texture analysis methods are based
on statistical (measuring and evaluating the spatial distribu-
tion of pixel values) and filter based approaches (computing
the energy of the filter responses) [32]. These methods take
advantage of the image characteristics (contrast and edges)
in the spatial and spatial-frequency domain. The descriptors
produced by the texture analysis models are often abstract and
it is difficult to explain the relationship to the human visual
inspection process. Many different defect types exist [6],
where machine learning based on vision is limited by the size
of corpus of defects when classifying different defect types.
When working with low-volume production it is not possible
to obtain an representative corpus. Existing MVI solutions
are therefore often delimited; this includes limiting quality
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control based on material properties [33] or constraining the
problem to individual product types in a controlled setup with
fixed object placement and illumination [34]. Consequently,
automatic quality inspection is lacking solutions for low vol-
ume high quality manufacturing due to the lack of data and
the inadequacy of traditional statistical approaches [35]. In
general comprehensive data sets are challenging to obtain due
to the randomness and uniqueness of the extensive number
of different defect appearances [33]. For proper multi-class
classification of many different defect types industrial appli-
cations require a representative corpus (e.g. the MVTec
AD data set used for anomaly detection of various surface
defects [36]). Due to the vast amount of different defect
types previous approaches reduce the defect space to a lim-
ited amount defect types e.g. welding, exfoliation, or sink
marks [17], [18] and perform binary classification (defect
versus non-defect) [31] and/or anomaly detection [36]. In
other words, previous work limit the amount of classified
defect types or apply anomaly detection looking for anything
in-homogeneous on the surface. Limiting the classified defect
types include; (a) using a large data set for training one
classifier, or b) using different classifiers for different defect
types as a binary classification task. We choose to focus
on the defect detection of line defects including a binary
classification of defects versus non-defects. We also narrow
our scope to defect descriptors that can be easily explained
as well as linked to the current manual inspection process as
performed in industry i.e. using design specifications (writ-
ten descriptions supported by standards), rulers (measuring
defined metrics) and limit samples (physical examples of
defect types near the quality threshold). We concentrated
on working with hand-crafted features in our classification
and link our defect descriptors to the common industrial
practice. Building on the current manual inspection process
where objects are rotated to assess defects, we found a lack
in the general knowledge of the defect features, especially
spatio-temporal defect descriptors as AoO. Along these lines
we investigate six perceptual defect descriptors [2]: AoO,
rotation, contrast, area, length, width, minimum angle and
maximum angle (see Fig. 2) in relation to the human visual
system (i.e. ordinary acuity limits common for all humans)
and quality thresholds set by experts.

IV. VISUAL PERCEPTION OF SCRATCHES

Human visual acuity (VA) is the ability to discriminate
details. When measuring VA, instead of considering abso-
lute size (meters) we favor the angular size; minutes of arc
(arcmin). Arc minutes describes the visibility of details of a
particular frequency as a function of viewing distance. Read-
ing characters (e.g. when measuring VA using a LogMAR
chart) covering 5 arcmin of the visual angle requires a
VA high enough to resolve 1 arcmin. This means that humans
with normal vision can resolve contrast differences (depend-
ing on the spatial frequency) subtending an angle of approx-
imately 1 arcmin (0.017°) [37] and under ideal conditions
higher (we performed a simple desk test on our data and
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FIGURE 2. Defect descriptors; length, width, area, Weber contrast, AocO
(angle where a defect candidate is visible), rotation (deviation from
horizontal lines), minimum angle (first visible) and max angle.

calculated a visual acuity of 0.7 arcmin, however, we define
the VA as 1 arcmin). Visual defects by definition need to
be visible, hence irregularities below the VA are not visible
and therefore not defects. Brushed surfaces contain polishing
strokes varying in sizes with the smallest strokes often being
below the resolution of both human VA. Based on contextual
inquiry at a high quality manufacturing company we consider
the typical viewing distance of our inspected product type
to be equivalent to an arms length (50 cm) where 1 arcmin
translates to a size of 0.15 mm. The spatial contrast sensitivity
function (CSF) measure the amount of contrast required to
detect an object. The CSF can be measured using sine-wave
gratings (parallel lines that change in brightness over space)
where the larger the difference in brightness between the
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dark and the lighter lines equals higher contrast. People can
discriminate differences given Weber’s law: constant = §1/1.
Weber’s law expresses that the human visual system is more
sensitive to light intensity changes in low light levels than in
strong ones and follows the Stevens effect which describes
that contrast increase with luminance (i.e. the relationship
between perceived brightness and measured luminance tends
to follow a power function) [38]. When seeking to distinguish
objects from a background (i.e. determining the luminance of
a polishing stroke and the luminance of the area surrounding
it) the human visual system is able to differentiate between
different spatial frequencies (either low spatial frequencies
composing generic shapes or high spatial frequencies includ-
ing considerable detail and edges). In the context of brushed
aluminium surfaces the contrast of the polishing can be con-
sidered the difference in illumination between the individual
polishing strokes and the background. Thus the perceived
contrast between defects, polishing strokes and the back-
ground surface will be affected by the contrast (i.e. spatial
frequency of the surface and defect candidates) and light
intensity changes depended on illumination and view angle.
In addition, the polishing strokes of brushed aluminium sur-
faces can be evaluated based on both spatial frequency and
orientation. The oblique effect describes that visual acuity
is better for gratings oriented at 0° or 90° (relative to the
line connecting the two eyes) than for gratings oriented at
45° [39]. Simple symmetric shapes and orientations in texture
also exhibits an oblique effect [40]. We assume that line
defects oriented at 90° relative to the polishing are easier
to perceive by the human perceptual system than defects
oriented at 45°.

V. DATA ACQUISITION

We obtained a set of 50 individual brushed aluminum units
(i.e. an end cap for a speaker) from a Danish high quality pro-
duction company. The shape of the front side can be described
as a isosceles trapezoid (dimensions: 173mmx57mm). The
backside can be estimated by a rectangle with rounded cor-
ners (dimensions: 133mm x70mm). All defects on the units
were visually assessed and classified by expert visual asses-
sors from a Danish high quality production company. The
brushed aluminium surfaces possess handcrafted (i.e. unique)
polishing.

A. ROBOTIC IMAGE CAPTURING

RGB images were captured using a Canon 5D (JPG
with an image resolution of 6050 x 3300px) using a
70-300 f/4-5.6L IS USM lens. We used a fixed light
source (Elinchrom Modeling Lamp 100W, color temperature:
3200K, luminous flux: 2700 lumen) at a 45 degrees angle
from the camera following the CIE TC1-65 [7] and approxi-
mately 1.5 meter away from the object (see Fig. 3). The light
source approximated a point light source, as polishing and
defects will be most visible when the light rays are closely
originating from the same point since this will produce less
diffuse reflections moving in various directions. A robotic
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FIGURE 3. Leveraging the current practice of assessors rotating objects
our camera setup consist of a camera, a point light source, and a robotic
arm rotating the object.

arm (Universal Robots UR10e) held the brushed aluminium
units upright (see Fig. 1 and 3) rotating the units around
the yaw-axis. To replicate the human assessment process the
rotation of the units were parallel to the polishing lines i.e.
rotating around the yaw-axis. Rotation going in the same
direction as the polishing is how the expert assessors checked
the units during their visual inspection process. The robotic
arm rotated the unit in the yaw-axis 1 degree between images
for both front and back. Pre-test revealed that 1 degree rota-
tion of the unit generated much image variance, and based
on this we chose 1 degree as a first approximation for the
resolution in rotation. Due to the curvature around the unit
corner and the highly reflective surface the robot rotated the
unit 5 degrees per shot when capturing the corner of each
unit since these images were often overexposed. This resulted
in 96 images per unit and a total of 96 x 50 = 4800 images.
Images were later manually inspected were a few images got
discarded due to motion blur etc.

B. DEFECT VISIBILITY IN RELATION TO

HUMAN PERCEPTION

The camera resolution was 0.03 mm/pixel. 0.03 mm is equiv-
alent to 0.21 arcminutes at a viewing distance of 0.5 meters
(an arms length). For comparison the human eye has an ordi-
nary visual acuity of about 1 arcminute. Therefore, defects
equal to or less than one pixel are below the visual acuity
of the human eye. There might be visible defects smaller
than 1 pixel but they should hardly be recognised as shapes
by assessors since we find our cameras angular resolution
(0.21 arcminutes) smaller than the angular resolution of the
human eye (1 arcminute) at a normal a viewing distance
of 0.5 meters (an arms length). The polishing frequency
of our surface was estimated using thread-counting and a
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FIGURE 4. Polishing frequency under microscope. Based on
thread-counting and pixel-wise counting our polishing strokes had a
width between 0.04-0.14 mm.

microscope (see Fig. 4). This information was collected
by sampling one unit through different angles of a surface
(i.e. on 9 different images). With an average of 7 lines
(individual polishing strokes) per millimeters we identify
that 1 line < 0.14 mm. To get a more precise estimate we
also performed pixel-wise counting where we observed an
average polishing stroke width of 6 pixels. With 1 mm =
160 px we potentially had up to (160/6) 26 lines/mm thus an
individual polishing stroke has a width of 0.04 mm. Thus, pol-
ishing strokes had a width between 0.04-0.14 mm. At a view-
ing distance of 0.5 meters the individual polishing strokes
(0.04 mm = 0.27 arcmin and 0.14 mm = 0.96 arcmin) is
near the ordinary acuity limit of 1 arcmin. Generally, surface
polishing with high spatial frequencies (i.e. a very narrow
polishing stroke width) must have significantly higher con-
trast than lines with lower spatial frequencies to be detected
by the human visual system. Our polishing orientation had
an estimated variation &~ 20°(£10°) and we expect high
visual acuity for line defects oriented at either 0° or 90°
(roughly parallel or perpendicular to the polishing strokes)
than oblique angles [39]). Additionally, line defects oriented
at 90° relative to the polishing should be easier to perceive
than those following the lines of the polishing strokes accord-
ing to the similarity principle in Gestalt theory applied to
defect detection [2]).

C. GROUND TRUTH VALIDATION BY EXPERTS

Human expert assessors from Bang & Olufsen validated all
defects on the physical surfaces. In general, defect candidates
close to the quality threshold are what makes this evaluation
process difficult. Defect candidates detectable by the human
VA not necessarily entailed that the candidate was classified
as a defect by the assessors. When expert assessors evaluated
that the defect candidate was below the quality threshold the
defect candidates were not annotated in our data set as a
defects. After expert assessors evaluated all physical surfaces
we mapped the assessors judgment onto the images based on
good judgment.

VI. DEFECT TRACKING PIPELINE
The defect detection pipeline consist of edge enhancement,
region of interest, tracking, and defect feature extraction
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FIGURE 5. Pipeline for extracting features based on common defect descriptors (e.g. length) and spatio-temporal defect descriptors (e.g. AoO).
The pipeline consist of 1) pre-processing including edge enhancement and region of interest, 2) tracking of all defect candidates and 3) extracting

features based on set defect descriptors.

(see Fig. 5). The spatio-temporal defect detectors are based
on rotation where we build the feature from tracking defect
candidates in the captured image series. The inspected object
consist of two flat surfaces connected by a round 90° corner
but can be simplified as two flat surfaces. We limited our
scope to detecting defects on flat surfaces where the light is
fixed and even. Expanding our calculations to curved surfaces
is possible but requires more complex estimations. As fol-
lows, we mask out the background including the border and
the 90° corner of the objects and split the image series in two;
front and back side.

A. EDGE ENHANCEMENT AND REGION OF INTEREST

Our pre-processing steps include edge enhancement and
region of interest (ROI). We begin the edge enhancement
operation by converting our RGB image into a gray level
image (see Fig. 5, edge enhancement). Next a Gaussian blur
is applied before using a vertical and horizontal Sobel filter.
Different fixed binary thresholds are manually chosen based
on the rotation angle of the object (i.e. the image number in
the image series). We finalize the edge enhancement with
morphological operations (i.e. closing; dilation, erosion) to
remove noise and small holes. We cut out the ROI after
edge enhancement to avoid noise around edges. First we
applied a median filter on the input image as a noise reduction
pre-processing step (see Fig. 5, region of interest). Subse-
quently, we use binary thresholding and perform a morpho-
logical erosion (to cut off the borders of the object) resulting
in a mask used for cutting out our region of interest (the flat
surfaces) in our output image from the edge enhancement.
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B. TRACKING

Our input image consist of enhanced edges on the flat sur-
face of the object for all frames in our image series. Using
OpenCV [41] we find the contours of all Binary Large
Objects (BLOBs) and assign unique IDs to all BLOBs in
the current frame (see Fig. 5, tracking). We provide this
temporary ID for all BLOBs in the frame which will later be
updated if the area of the BLOB is overlapping with BLOBs
in the previous frames. We assign unique IDs to all new
BLOBSs and try to match new BLOBs with previous BLOBs
based on area intersection. We then perform image shifting
on frames in our image series based on the 1° rotation of
the object to match alignment with the previous frame. The
next step of assigning IDs was not optimized as it checked for
overlaps of all BLOBs in the current with all BLOBs in the
previous frame (see Fig. 6); 1) if a BLOB overlaps with only
one BLOB in the previous frame we assign the current BLOB
with the same ID as in the previous frame, 2) if a BLOB in the
current frame overlaps with several BLOBs from the previous
one we check area intersection and the ID is then assigned
based on the largest area intersection, 3) if a BLOB does not
overlap with any BLOBs in the previous frame we maintain a
unique ID. This will allow us to track all defects candidates on
the rotated surface using a simple implementation of tracking.

C. FEATURE EXTRACTION

We provided a unique ID for all BLOBs in the frame and
calculate the polygon shape including features as area, length,
etc. (see Fig. 5/feature extraction and Fig. 7). The area is
calculated from the polygon shape approximating the BLOB.
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FIGURE 6. Tracking and assigning unique IDs to BLOBs. All new BLOBs in a frame are provided with a unique ID (Frame 1). The current frame
(Frame 2) is compared to the previous frame and IDs will be assigned to match the previous frame. If several BLOBs overlap IDs will be assigned
based on the largest area intersection (Frame 3). Moving forward several BLOBs can be assigned with the same ID even though they are no longer
connected (Frame 4).

FIGURE 7. Polishing has vague visibility (left) but when light was
reflected at the right view angle polishing becomes visible (right). Most of
the false positives came from the majority of images where polishing had
reduced visibility (left) and consequently the false positives were on
average smaller in length, width and area. The defect is marked with a
red circle and (in this case) clearly has an orientation perpendicular to the
polishing strokes.

The length is given by the largest distance between any two
points in the polygon. The rotation is calculated from the
slope between these two points. The width is calculated as
area/length. The contrast is calculated based on the difference
between the brightness of the BLOB and the brightness of
the area surrounding the BLOB. We draw out all IDs and
their bounding boxes to visualise our results. We finalize
the pipeline by saving all features (BLOB IDs, length, area,
rotation, and contrast) in a text file.

VIi. DEFECT DESCRIPTORS
The data set consist of 395 true positives (i.e. individually
tracked defects) and 14.017 false positives (i.e. non-defects
as individually tracked design features, anomalies below the
quality threshold, noise etc.). Whenever we loose a tracklet
in our tracking pipeline we introduce a new tracklet for the
same defect candidates, thus, these numbers (395/14.017) are
artificially higher than the total number of defects in the data
set.

For all tracked defect candidates we extract the defect
descriptors; length, width, area, contrast, rotation, AoQO,
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minimum angle and maximum angle. Scratches typically
represents a line (i.e. they are long and thin) hence related
to the length of the defect candidates. The length of all defect
candidates is measured in pixels. With a camera resolution
of 0.03mm/pixels this can be converted into millimeters (mm)
and arc minutes (arcmin). The area is measured in pixels and
the width is approximated based on width = area/length.
The contrast is calculated as spatial contrast in cycles per
degree (cpd) and the Weber contrast. Weber contrast is given
by C = (I — Ip)/Ip. Traditionally I represents the lumi-
nance but we calculate the contrast based on the measured
lightness (L) in the CIE L*a*b* color space. The rotation
is defined as the deviation from the polishing pattern. The
polishing pattern was horizontal with an estimated variance
of &+ 30 degrees. Based on our defect tracking we compute the
angle of opportunity (AoO) i.e. how many degrees a potential
defect candidate is visible. With a rotation of 1° between
each image capture each image counts 1 degree (£ 0.5°). The
minimum and maximum angle corresponds to the minimum
and maximum rotation of the object surface. When the angle
equals 0° the surface is orthogonal to the view direction. The
AoO is then calculated based on the difference between the
minimum and maximum angle where the defect candidate is
visible.

For each defect descriptor we provided the set quality limit
i.e. the threshold between non-defects and defects demanding
product rejection (see Table 1). We based the limit of ordi-
nary acuity on normal vision (20/20 or 6/6 = 1.0 acuity).
As visual acuity has high variance and depends on several
factors (e.g. age) we let our ordinary acuity limit act as a rule
of thumb and recognize that the limit is not uniform across
individuals. The defect minimum was the lowest measured
score per defect descriptor measured in our complete data
set. The defect and non-defect average was calculated based
on the mean value per defect descriptor. The non-defects
consist of all defects below the quality limit, brush strokes
from polishing and noise in the edge-enhanced images. Most
data captured presents the surface with diffuse reflection.
Non-defects on average had a shorter width (0.43 arcmin)
compared to defects (0.50 arcmin) and are close to the quality
limit (0.34 arcmin) though a bit under the ordinary acuity
limit (1.00 arcmin) at the calculated view distance. The length
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TABLE 1. Quality limits, limits for ordinary acuity and data breakdown. Numbers in parenthesis are based on single measures that are repeated to
calculate an estimated spatial contrast. The second line in the rows displays the standard deviation (SD).

Length Width Area Spatial Weber Rotation  AoO Minimum Maximum
(arcmin)  (arcmin) (mm2) contrast (cpd) contrast (deg) (deg) angle (deg) angle (deg)
Quality limit 68.76 0.34 0.40 - - - - - -
Ordinary acuity 1.00 1.00 0.02 30 0.01 - - - -
Defects
minimum 4.47 0.22 0.03 (40) 0.00006 0.00 1.00 - -
mean 38.34 0.50 0.45 (17.45) 0.08 53.60 3.56 20.03 22.60
SD 5.24 0.03 0.55 - 0.16 55.94 4.52 12.69 12.31
Non-defects
mean 28.20 0.43 0.27 (60) 0.03 48.92 1.11 16.86 16.97
SD 2.50 0.03 0.39 - 0.12 43.22 0.49 10.81 10.84

of defects (38.34 arcmin, SD: £5.24) was similarly longer
than non-defect (28.20 arcmin, SD: £2.50). In most images
the surface reflection was diffuse and the non-defect were
short since polishing strokes were less visible. However,
in those view angles where specular reflection was high
and the individual polishing strokes are clearly visible those
individual strokes are typically longer than a common scratch
(see Fig. 7). The length of the non-defects were either very
short (noise, defect candidates below the quality limit etc.)
or very long (polishing strokes). On average defects had a
larger valued length, width, area, Weber contrast, rotation,
Ao00, minimum angle, maximum angle than non-defects (see
Table 1). On average defects are most visible when the surface
normal is rotated between 20°-23° (£13°) away from the
view direction. The AoO is on average 3.56° and thus visible
for 2.45° more than non-defects.

VIIl. RESULTS

We present a comparison of different classification mod-
els and evaluate their performances. Subsequent we inspect
the performance of the defect descriptors with individually
trained classifiers. We use our defined defect descriptors as
features for our classification models and compute the feature
importance based on mean decrease accuracy for our best
performing model including all features. Based on the feature
importance we rank the features and evaluate the top ranked
features for feature selection. We investigate different data
splits, review the differences in the data sets and evaluate
the performances. In conclusion we assess feature interpre-
tation using a single decision tree to explain the classification
cut-off limits to better understand the relation to our quality
and ordinary acuity limit.

A. MODEL COMPARISON

Classifying defect vs. non-defects constitute a binary clas-
sification problem. The Receiver Operating Characteris-
tics (ROC) curve evaluates model performance across all
possible thresholds and the model ROC curve is quantified
as a single metric; the Area Under the Curve (AUC) [42].
A large AUC indicates that a high sensitivity (true positive
rate) and specificity (true negative rate) can be achieved
concurrently. We tested four different classification models;
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FIGURE 8. ROC curve for model comparison: Random Forest (RF, AUC =
0.91), Decision Tree (DT, AUC = 0.86) Logistic Regression (LR, AUC = 0.82),
and Support Vector Machine (SVM, AUC = 0.80).

TABLE 2. Model comparison: The Random Forest classifier provides the
best performance with an accuracy of 83% and an AUC of 91%.

RF DT LR SVM
Accuracy (%) 83.16 80.61 77.68 74.74
AUC (%) 91.14 8577 82.19 80.10

Random Forest (RF) using 50 trees, Decision Tree (DT),
Logistic Regression (LR) and Support Vector Machine
(SVM). Given our binary classification problem (defect vs.
non-defects) we balanced the data set and performed 5-fold
cross validation. We plotted the ROC curve for our four differ-
ent models (see Fig. 8) and evaluated their performances. The
RF classifier provided the best performance with an accuracy
of 83.16% and an AUC of 91.14% (see Table 2).

B. SINGLE FEATURE PERFORMANCE

Based on our eight defect descriptors (AoO, area, length,
width, rotation, contrast, minimum angle and maximum
angle) we plotted the ROC-curve per individual feature
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FIGURE 9. ROC curve for single features: AoO, maximum angle, minimum
angle, rotation, width, area, and length.

(see Fig. 9). The performance for the single features in
chronological order were: minimum angle (AUC = 76.37),
Ao00 (AUC = 74.06), maximum angle (AUC = 72.99), con-
trast (AUC = 71.53), area (AUC = 61.76), width (AUC =
59.86), length (AUC = 55.51), and rotation (AUC = 53.05).
Based on individual features the minimum angle provided the
best classification performance and alone rotation produces
the worst performance. The AoO, minimum angle and max-
imum angle are linear depended and thus one feature can be
explained as a linear combination of the other two.

C. FEATURE IMPORTANCE AND FEATURE SELECTION

Based on the out-of-bag (OOB) error (i.e. the average pre-
diction error calculated of each training sample using pre-
dictions only from the trees not containing the same data
as the respective training sample) of the RF classifier we
calculated the scaled mean decrease in accuracy (sMDA)
(see Fig. 10). The sMDA was computed for all our features as

Feature Importance

12
|

B Defect
E Non-defect

10
1

8
L

Average Mean Decrease in Accuracy
4 6
| |

2
1

AoO Contrast MaxAngle MinAngle Rotation Width Area Length

FIGURE 10. Based on the sMDA the feature importance order for defects
is; AoO, contrast, maximum angle, minimum angle, rotation, width, area,
and length. The feature importance order is very similar for non-defects
with only the two least important features being swapped.
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SMDA = mean difference between trees/standard deviation
of the differences [43]. We trained all trees (50) in the RF
based on the balanced data set (n =~ 800). We then compared
the accuracy of the OOB samples with the accuracy of OOB
samples where one feature is permuted [44]. The feature per-
mutation was repeated for all features and was split between
the classes defect and non-defect. For each tree we measured
the difference in accuracy with and without feature permuta-
tion. We identified that AoO has the largest SMDA for both
defects (sSMDA = 10.99) and non-defects (sMDA = 10.08)
where large sSMDA scores represents that the feature had
substantial importance and a consistent decrease in accuracy.
Based the sMDA (using RF, 50 trees) we concluded the
feature importance in the order; AoO, contrast, maximum
angle, minimum angle, rotation, width, area, and length.

Based on the computed sSMDA feature importance we
compared RF classifiers trained on the top n features
(see Fig. 11). Using the top three features (AoQO, contrast and
maximum angle) we observed similar performance (Top 3,
AUC = 89.50) to training an RF using the top eight features
(Top 8/all features, AUC = 91.14). Using only a RF trained
on the top two features we noticed a cutback in performance
(Top 2, AUC = 80.58). We concluded that the feature space
can be reduced to include only the top three features with a
limited reduction in classification performance.

ROC - feature selection
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0.6
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0.4
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Top 8, AUC: 0.9114
Top 7, AUC: 0.9127
Top 6, AUC: 0.9118
Top 5, AUC: 0.9076
Top 4, AUC: 0.9033
Top 3, AUC: 0.8950
Top 2, AUC: 0.8058
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1.0 0.8 0.6 0.4 0.2 0.0
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FIGURE 11. ROC curve for feature selection based on the feature
importance. Top 8 includes all features. Top 7 includes the top seven
features based on their feature importance (sMDA) etc.

D. DATA SPLIT BASED ON REFLECTED LIGHT

The visual appearance, and consequently the visual appear-
ance of our features, varied depended on view angle
(see Fig. 1). From our data we observed that polishing was
visible only when we had high specular reflection in the
images, and thus our non-defects drastically changed appear-
ance when polishing was visible i.e. the non-defects were
on average smaller when the surface was diffuse versus
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non-defects were longer and had larger areas with higher
specular reflection (see Fig. 7). Based on the surface view
angle we hypothesize that we could split the data set in
two sets; diffuse and specular. We defined the specular data
set based on the appearance of individual polishing strokes
and an increase in the overall brightness of the image for a
5° angle. The diffuse data set constitute the remaining data
where the polishing is not clearly visible. We trained a RF
classifier on the full data set and compared performance to
a RF classifier trained on the diffuse data and the specular
data separately. Our data sets were balanced and performance
was measured using 5-fold cross validation. We transfer the
already obtained information about AoO across the different
data sets to keep the effect of AoO constant. We get the best
performance from the diffuse data set with an accuracy =
84.38% and AUC = 91.64% closely followed by the full data
set with an accuracy = 83.16% and AUC = 91.14% (see
Fig. 12 and Table 3). From the specular data set we see a
decrease in performance (accuracy = 80.31% and AUC =
85.96%). Since data splits are not of equal size they are not
directly comparable and thus the performance reduction for
the specular data set may be due to the reduction in data. Our
hypothesis is that the features (especially for non-defects)
are different between our two new data splits: specular and
diffuse. Based on calculated sMDA scores from the 5-fold
cross validated models we compute the ranking (from 1-8,
1 having the highest sMDA and 8 the lowest sMDA) for all
features. We average the ranking across the different cross
validated models for each data set diffuse, specular and full
(see Table 4). For the full and diffuse data set we recog-
nise similar ranking with ascending order of AoO (ranking
between R: 1.0-1.6), contrast (R: 1.6-3.4) and maximum
angle (R: 1.8-3.2). For the specular data see that the ranking

ROC - datasplit
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g — Diffuse, AUC: 0.9164
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FIGURE 12. ROC curves for the different datasplits: diffuse, specular, and
full data set. The full (AUC = 91.14) and diffuse (AUC = 91.64) data set
have similar performance whereas the specular data set have decreased
performance (AUC = 85.96).
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TABLE 3. Data Splits: The diffuse data split provides the best
performance with an accuracy of 84% and an AUC of 92%.

Diffuse  Full Specular
Accuracy (%) 84.38 83.16 80.31
AUC (%) 91.64 91.14 85.96

TABLE 4. Feature ranking based on the calculated sSMDA scores from the
5-fold cross validated models we calculate the average ranking between
1-8. The text is formatted to present the best rank, second best rank,
third best rank and the remaining data.

RANKING AoO C Max Min R W A L
Diffuse

defect 1.4 34 18 3.4 56 62 72 170
non-defect 14 1.8 30 4.6 72 68 62 50
total 1.6 1.6 3.2 3.6 74 62 66 58
Specular

defect 2.8 50 22 4.0 28 58 70 64
non-defect 4.0 50 18 2.0 24 72 178 58
total 34 54 20 1.6 32 68 76 60
Full

defect 1.0 26 3.0 3.6 50 58 74 176
non-defect 14 1.6 32 3.8 60 62 72 50
total 14 24 32 3.0 50 62 72 176

order have highest rank for maximum angle (R: 1.8-2.0)
minimum angle (R: 1.6-4.0), and rotation (R: 2.4-3.2). This
means that different features become important when training
a classifier on the specular data set.

E. FEATURE INTERPRETATION

To better understand and explain the features we simplified
the model to a decision tree using only the top three features;
Ao00O, contrast and maximum angle. The DT work as an
example and provide an explanation of the features involved
in defect detection on brushed aluminium surfaces. We used
the classifier on a balanced a data set with a 80/20 for
train/test split (see Fig. 13). In the decision tree and AoO
of 1.5° yielded an 87% defect probability. We identified
that an AoO above or equal to 1.5° yielded a probability
of a defect of 87% with 32% of all data going to this node
(node 2, Fig. 13). A contrast above or equal to 0.0057 pro-
duced a 92% probability of a defect and thus classified 29%
of the data as defects. The remaining approximately 20%
(node 10-1%, node 24-5%, node 100-3%, node 202-7%, node
28-4%) of defects are classified from a mixed contribution
from the features AoO, contrast, and maximum angle. The
nodes displaying thresholds with the maximum angle (where
maximum angle = 0 is equal to a surface orthogonal to
the viewing direction) imply that images when the surface
rotation is 30-40 degrees have influence on the predictions
determining defects from non-defects.

IX. DISCUSSION

Based on our data of brushed aluminium surfaces defects
had an average AoO of 3.56° (SD: £4.52) (see Table 1).
Non-defects had a lower average AoO of 1.11° (SD. £0.49).
Based on the decision tree trained on the top three features an
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FIGURE 13. Using only the top three features (A0O, contrast and maximum angle) we use a Decision Tree to provide an explanation of the effects

of the features involved in defect detection.

A00 of 1.5° yielded a 87% defect probability in node 2 with
32% of the data going through this node (see Figure 13). This
means that defects had a higher AoO than non-defect or in
other words, defect were visible for a larger total subtended
angle. Designers of a semi-automated system in this case
would need a resolution in rotation of 1° or higher when
capturing data in order to use AoO as a defect descrip-
tor. Especially highly reflective materials with brush strokes
requires units to be inspected from various view angles but
previous approaches regularly captured data from only a
single viewpoint [14], [15], [17], [19], [26] and generally
lacked multi-view assessment of defects taking advantage of
the spatio-temporal domain [20]. Capturing single viewpoint
means that defects only visible in certain view angles will not
guarantee being captured and the number of false positives for
a single frame can be numerous (see Figure 7). All features
(AoO, contrast, etc.) can be used for defect detection (see
Figure 9). Using these defect descriptors in similar defect
detection tasks such as on transparent materials (e.g. glass)
or non-polished materials (e.g. plastic) might improve classi-
fication results and should be investigated in future research.
However, limiting the scope to scratches could be a reason
why we see good results based on ROC-curve and accu-
racy, while we see mediocre results in a previous study
applying AoO and deep learning for the detection task on
similar data with the same brushed material (precision-recall
curve of 67%) [20]. Defect detection on other materials have
provided better result (accuracy of 89% for detection of
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defects on highly reflective ring components [27] compared
to our accuracy of 84%), but the considered surfaces differ
in visual appearance of both defect and material properties.
We argue that an automated system assisting human assessors
in low-volume premium production (where all defect can-
didates were thoroughly evaluated) should afford (capturing
images, setting quality thresholds etc.) identifying all true
positives, even though this entail a large number of false
positives. In conclusion, leveraging the current practice of
assessors rotating objects we investigated a spatio-temporal
image capturing setup. Our pipeline construct defect descrip-
tors such as AoO, which were less depended on single-image
appearance but instead was a measure of the subtended angle
during which a defect was visible.

Our simple pipeline has limitations and tracking was not
optimized for fast processing. Our tracking pipeline provided
unique IDs to all defect candidates and updated the IDs
based on area intersection from the previous frame. How-
ever, sometimes we loose tracking, several BLOBs overlaps,
or several BLOBs constitute only one defect candidate but our
approach force assigning unique IDs to all new BLOBs (see
Fig. 6). Since our pipeline did not track defects consistently,
whenever we lost track of a defect candidate or assigned IDs
to ambiguous defect candidates (see Fig. 6) this influenced
our measured AoQ. This results in creating more defect can-
didates with smaller AoO since the defects are not connected.
While performance was high (our trained RF classifier had a
performance of AUC = 91.14) we expect even better results
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if tracking is further improved since we from our data judge
the true positives (defects) to have longer AoO than false
positives (non-defects). We expect even better results since
improved tracking will make the difference between true
positives and false positives larger.

Defects had higher values for the measured defect descrip-
tors: length, width, area, rotation and contrast (see Table 1).
On average defect were bigger than non-defects and defects
were visible for longer than non-defect (potentially due to
the fact the defects were bigger). The spatial contrast was
lower for defects than for non-defects and shows that when
the defect width is shorter the estimated spatial frequency
becomes higher. The minimum and maximum angle repre-
sented the rotation of the surface (i.e. surface normal) in
comparison to the illumination and view angle, where we
identified an average of 21° rotation (min.: 20.03, max.:
22.60) for defects with an averaged standard deviation of
+13°. We recommend placing the light source at a 45° angle.
Based on our data we recommend placing a light source at
a 45° angle compared to the view direction. Line defects
such as scratches are often captured at an object surface
rotation of a 21° (£13°) whereas non-defects is mostly visible
at a 17° rotation (£11°). The illumination caused varying
appearance of defects and non-defect (see Fig. 7) and con-
sequently a high variance in the common defect descriptors
such as length, width and contrast (see Table 1, standard
deviation). Our analysis suggest that we can benefit from
using spatio-temporal data. Based on the analysis of our
image series we identified a difference in feature importance
between specular and diffuse data (see Table 4). For images
with diffuse reflection the AoO, contrast and maximum angle
had the best ranking based on sMDA and thus the highest
importance when classifying defects. The full and diffuse
data set had similar performance (Full: AUC = 91.14 versus
Diffuse: AUC = 91.64) but performance decrease for the
specular data split (Full: AUC = 85.96). We had a minor
increase in performance (AUC: 4-0.5) when using only the
diffuse data set. This could argue for improving performance
by excluding images that had high specular reflection since
the specular reflective images contain many false positives in
the form of long polishing strokes. This could prove effective
when detecting common defect types as scratches. However,
the total measured AoO will be shorter since the defects
will not be tracked in the excluded frames. In other words,
by excluding the specular data we can expect fewer false
positives but we loose information in the form of; a) images
potentially including rare defect types (e.g. stripes or crazing)
only reflecting light in frames with high specular reflection
thus not being detected at all and b) we reduce our best
predictor AoO.

X. CONCLUSION

We provide evidence for the value of spatio-temporal defect
descriptors as AoO (the total subtended angle during which
defects are visible) in classification of defects on low-volume
premium products, specifically for line defects on brushed
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aluminium surfaces. In this setup, we constructed AoO using
a bespoke tracking pipeline using edge enhancement and
defect tracking, which allowed for extracting other defect
descriptors such as contrast, area, width, length, and rota-
tion. AoO is found when the setup mimics the human visual
inspection and was applied in our context of defect detection
on brushed aluminium surfaces. Out of four different models,
Random Forest had the highest AUC of 91%. We could
reduce the number of features to the top three (AoO, contrast
and maximum angle) with a performance AUC of 90%. For
defect detection on brushed and reflective surfaces we recom-
mend capturing different angles in the order of single degrees
rotation or lower dependent on granularity of polishing. Cap-
turing spatio-temporal data allowed for high classification
performance since AoQ, as a defect descriptor, depends less
on a defect’s appearance from a single view angle and can
therefore be combined with other defect descriptors to make
classification more robust.
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