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ABSTRACT Previous deep learning based approaches to text baseline detection in historical documents
usually take it as a semantic segmentation task. These methods adopt a fully convolutional neural network
to predict baseline pixels first and then group them into lines by heuristic post-processing steps, which tends
to suffer from a wrongly merged or wrongly split problem owing to limited context information provided
by pixels. To address these issues, we introduce the concept of a baseline primitive, which is defined
as a virtual bounding box centered at each baseline pixel. After baseline primitive detection, a relation
network is used to predict a link relationship for each pair of primitives. Consequently, text baselines are
generated by detecting baseline primitives and grouping them with the corresponding link relationships.
Owing to the design of baseline primitives, wider context information can be leveraged to improve link
prediction accuracy. Therefore, our approach can effectively detect text baselines with small inter-line or
large inter-word spacing. Quantitative experimental results demonstrate the effectiveness of the proposed
baseline primitive design. Our approach achieves state-of-the-art performance on two public benchmarks,
namely cBAD 2017 and cBAD 2019.

INDEX TERMS Handwritten documents, historical documents, text baseline detection, baseline primitive.

I. INTRODUCTION

Historical documents are valuable cultural heritage that con-
nects the past with the present. In recent years, numer-
ous historical documents have been captured and published
online with the help of many libraries and archives world-
wide. Digitalizing their content has made it more conve-
nient for scholars as well as ordinary people to access them.
It is widely accepted that robust and accurate text baseline
detection is a critical first step [1]-[4] to digitalize histor-
ical document images automatically because errors made
during this process will affect subsequent steps. With the
recent emergence of two text baseline detection competi-
tions in the ICDAR community, namely cBAD 2017 [5] and
cBAD 2019 [6], more researchers have been attracted to
this research field. Unlike text baseline detection in printed
documents with a simple layout, the same process in uncon-
strained historical documents is still an unsolved problem
due to some unique challenges, such as various handwriting
styles (e.g., long ascenders and descenders, heterogeneous
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and touching strokes), complex layout (e.g., arbitrary oriented
or curved text lines, marginalia, heterogeneous inter-line
spacing), physical degradations (e.g., bleed-through, faded
away characters) and distortions introduced by image
capturing.

Text baseline detection in historical documents has been
studied for decades, and a large number of algorithms have
been proposed in the literature to solve the problems it poses.
A comprehensive survey of the literature can be found in
references [7] and [8]. Previously, researchers mainly focused
on detecting text baselines in clean handwritten documents
[9], [10], where degradations and complicated background
are less considered. During that time, many image processing
methods were proposed. For instance, some methods per-
formed text block projection (e.g., [11]-[13]) or smearing
operations (e.g., [14], [15]) on document images to detect text
baselines directly; others first extracted connected compo-
nents or interest points and then grouped them into individual
text lines by clustering (e.g., [16]-[18]), performing Hough
transform (e.g., [19]-[21]), or minimizing an energy func-
tion (e.g., [22]-[28]). Although these methods have achieved
competitive results, their performance deteriorates a lot when
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handling documents with degradations. For instance, the win-
ner methods [27] of both the ICDAR 2013 handwriting
segmentation contest [10] and the ICDAR 2015 text line
detection in historical documents contest [29] can achieve an
F-measure of 98.75% on the former contest while only an
F-measure of 71.68% on the later contest. This huge perfor-
mance gap mainly comes from the newly introduced degrada-
tions [29], [30] and more complex layouts, e.g., faded-out ink,
bleed-through, marginalia, etc. Recently, astonishing devel-
opments have been made in text baseline detection thanks to
those challenging benchmarks [5], [6] as well as the rapid
development of deep learning methods (e.g., [2], [5], [6],
[31]-[36]). These methods are generally composed of two
separate procedures, namely baseline pixel prediction and
baseline generation. In the first step, a pixel-wise classifi-
cation is performed for each location on the feature maps
generated from a document image to predict whether this
location corresponds to a baseline pixel, where a fully con-
volutional neural network (FCN) [37], [38] framework is
usually adopted for its capability to generate powerful feature
representations. In the second step, various algorithms are
utilized to group those candidate baseline pixels into indi-
vidual baseline. Specifically, some methods simply group
candidate baseline pixels according to the local pixel con-
nectivity (e.g., 8-neighborhood), while others use handcrafted
features (e.g., estimated inter-line interval, local orientation)
with heuristic rules or clustering algorithms to generate
baselines.

Although recent deep learning-based methods have shown
superior performance on the public benchmarks, they tend
to suffer from a wrongly merged or wrongly split problem.
Wrongly merged problem arises when adjacent text baselines
with small inter-line spacing are mistakenly merged together
(Fig. 1 (a)), while wrongly split problem refers to a single
text baseline with large inter-word spacing that is split into
two or more broken lines (Fig. 1(c)). These two problems
are caused by the unsatisfactory performance of the base-
line pixel prediction module when dealing with nearby text
lines or those with large inter-word spacing. Specifically,
background pixels within small inter-line spacing tend to
be misclassified as baseline pixels (Fig. 1(b)), while pixels
within large inter-word spacing tend to be misclassified as
background ones (Fig. 1(d)). These errors are then propagated
to the following baseline generation module, which aims to
group candidate baseline pixels into their corresponding text
baselines. However, existing baseline generation methods
cannot handle these cases robustly. For instance, local pixel
connectivity based methods have intrinsic limitations in solv-
ing these problems; clustering-based methods (e.g., [2]) can
alleviate these problems to some extent but usually rely on
handcrafted features and complicated post-processing steps
that limit their capabilities.

In this paper, we introduce the concept of a baseline
primitive and solve these problems accordingly. Specifically,
instead of viewing a text baseline [ just as a thin line,
we assign an enlarged virtual box b to the baseline that
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FIGURE 1. (a) Wrongly merged problems for dense touching text lines,
where two adjacent text baselines are merged together; (b) The
corresponding binarized classification score map of (a) for baseline pixel
prediction; (c) Wrongly split problems for text baselines with large
inter-word spacing; (d) The corresponding binarized classification score
map of (c) for baseline pixel prediction.

centered at it, as illustrated in Fig. 2. Then, a virtual box bp,
i.e., a baseline primitive, is generated according to each base-
line pixel p and the enlarged virtual line box b. Back to
the wrongly merged and wrongly split problems, it is clear
that they can be solved by accurately determining whether
each baseline pixel pair belongs to a same baseline. For
convenience, we define this relationship as a link relationship.
Baseline primitives have two advantages over pure baseline
pixels as basic components. On the one hand, representative
baseline pixels can be selected with a non-maximum sup-
pression (NMS) algorithm performed on their correspond-
ing baseline primitives since redundant baseline pixels have
highly overlapped baseline primitives. This will help find
confident candidate baseline pixels while filter less accurate
ones, which reduces efforts for the following link prediction
step. Besides, baseline primitives can capture wider context
than pure baseline pixels, since context information can be
encoded explicitly with the virtual box of each baseline primi-
tive. Meanwhile, the union box of two baseline primitives can
also be leveraged to determine the link relationship, which
encodes relative position information.

With the baseline primitive design, many visual relation-
ship learning methods can be used to learn the link relation-
ship. In this paper, we leverage a relation network [39] to
achieve this goal. Though conceptually simple, the relation
network has shown its effectiveness in both visual relation-
ship detection field (e.g., [39]-[43]) and scene text detection
field [44]. In summary, a relation network takes a pair of
baseline primitives as well as their union box as input and
predicts the link relationship of this baseline primitive pair
accordingly. When all the link relationships are obtained,
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FIGURE 2. A baseline / (in green) and its corresponding enlarged virtual
box b (in dashed blue); a baseline pixel p and its corresponding baseline
primitive box bp. Best viewed in color.

text baseline primitives are grouped into individual primitive
groups, from which text baselines are extracted accordingly.

In this paper, we make the following contributions:

(1) We analyze thoroughly the problems encountered by
existing convolutional neural network (CNN) based text
baseline detection approaches and introduce the concept
of baseline primitives to leverage wider context informa-
tion to address these problems.

(2) With the introduction of baseline primitives, we propose
to use a relation network based framework to detect
text baselines in historical documents, which identifies
baseline primitives and learns a link relationship for each
baseline primitive pair in a single neural network.

(3) Our approach can handle the wrongly merged and
wrongly split problems effectively and achieves state-
of-the-art performance on two challenging text baseline
detection benchmarks, namely cBAD 2017 and cBAD
2019.

The rest of paper is organized as follows. Section II gives
an overview of related work. Section III presents our method.
Section IV reports experimental results. Section V concludes
the paper with a discussion on future work.

Il. RELATED WORK

A. TEXT BASELINE DETECTION IN HISTORICAL
DOCUMENTS

Text baseline detection in historical documents has been stud-
ied for decades, and a large number of algorithms for under-
taking the task have been proposed in the literature. These can
be roughly classified into two categories: conventional image
processing methods and deep learning methods.

1) CONVENTIONAL IMAGE PROCESSING METHODS

These methods can handle only a limited number of docu-
ment layouts, and a comprehensive survey of them can be
found in references [7] and [8]. We briefly introduce these
methods and categorize them by the type of document layouts
they can handle.
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Algorithms in the first category focus on detecting
text baselines in well-structured documents where the text
lines are almost parallel to each other. They can be
further categorized on the basis of the core techniques
they adopt, i.e., projection-based methods (e.g., [11]-[13]),
smearing-based methods (e.g., [14], [15]), filtering-based
methods (e.g., [45]-[47]), and Hough transform based
method (e.g., [19]-[21]). Projection-based methods com-
pute projection profiles by summing pixel values along a
given direction, and the peaks indicate individual text lines.
To tackle the skew or moderate curved text lines, the input
image can be divided into several vertical strips and profiles
are computed at each strip [11]. Smearing-based methods
like fuzzy RLSA [14] and adaptive RLSA [15] smear some
consecutive black pixels along a given direction while the
white space between them is filled with black pixels if the
distance is within a predefined threshold. Filtering-based
methods operate in a similar way as smearing-based ones.
These methods use a Kalman filter [45], an adaptive local
connectivity map [46], or a steerable direction filter [47] to
reveal the local patterns of text lines, and the final text lines
are generated by grouping foreground pixels accordingly.
Hough transform based methods perform Hough transform
on the centroids of the connected components or local minima
to detect straight lines that fit these points best.

Algorithms in the second category try to handle more
complex layouts, e.g., arbitrary oriented text lines, and they
can be sub-categorized as clustering-based methods (e.g., [3],
[16]-[18]) and function analysis methods (e.g., [22]-[27]).
Clustering-based methods first extract basic elements (inter-
est points, connected components, etc.) from document
images, and then various clustering algorithms are adopted
to group these elements into text lines accordingly. In ref-
erences [16] and [17], minimum spanning tree (MST) is
performed based on carefully designed distance measures.
Gruuening ef al. [18] first extracted super pixels with the
FAST algorithm [48], and then applied a standard cluster-
ing method based on some text line characteristics, e.g.,
curvilinearity, inter-line spacing and local homogeneity. Pas-
tor [3] first filtered noisy local minima points with Extremely
Randomized Trees (ERT) and then performed a modified
DBScan [49] algorithm. Function analysis methods try to
segment text lines by finding an optimal path across the
document image. Saabni ef al. [22] computed the energy
map of a document image and determined the seams that
pass across and between text lines. Ryu et al. [23] esti-
mated the states of connected components and built a cost
function upon these states, which was minimized to yield
text lines. Oztop et al. [24] proposed an energy minimiz-
ing dynamical system, which interacted with the document
image through attractive and repulsive forces defined over
baseline pixels. Yin and Liu [25] proposed a vibrational
Bayes approach to segment the image after the number of
text lines was estimated. Luthy et al. [26] utilized a hidden
Markov model to model a text line as a sequence of word and
space. Ahn et al. [27] leveraged the advantages of projection
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methods, non-text filtering and energy-minimization to detect
text baselines. Though algorithms in this category have
achieved superior performance on some public benchmark
datasets, their flexibility is usually constrained by their hand-
crafted features and manually tuned parameters. Thus, their
performance worsens significantly when processing uncon-
strained historical documents.

2) DEEP LEARNING METHODS

With the emergence of two challenging competitions (cBAD
2017 and cBAD 2019) that focus on text baseline detec-
tion in unconstrained historical documents, many CNN-based
methods have been proposed and shown to be superior over
traditional methods in terms of both accuracy and capability.
Generally speaking, these methods usually contain two steps.
First, pixel-wise classification is conducted on the feature
maps generated from input documents to detect baseline
pixels. Second, the detected baseline pixels are grouped into
individual text baselines based on the local pixel connec-
tivity or some handcrafted features (e.g., inter-line distance,
local orientation). BYU [5] used an FCN backbone to detect
baseline pixels directly while heuristic rules guide the gen-
eration of baselines. TINU [6] used an FCN backbone with
dilated convolutions to predict baseline pixels directly and
group them into text baselines with connectivity information.
LITIS [31] adopted the same FCN backbone as TINU, but it
predicted text core regions (with extra x-height ground truths)
instead, and the text baselines are extracted with an RDP
(Ramer-Douglas-Peucker) algorithm. dhSegment [32] used
an FCN backbone to predict baseline pixels and filtered them
with a Gaussian filter; it then extracted the text baselines from
each connected region. Based on dhSegment, IRISA+ [6],
[33] made further efforts to better detect the text baselines
in tabular documents. Specifically, the end-indicators along
with the baseline pixels are predicted so that a grammat-
ical definition can be used to describe and detect tables,
and subsequently all the detected elements are combined
in a structural way. DMRZ [6], [34] used a U-Net [38] to
detect baseline pixels and carefully designed rules to generate
baseline candidates. To reduce false alarms, regions around
the candidate text baselines were extracted from the input
image and classified with an extra CNN. Multi-task [35] also
used a U-Net to predict baseline pixels and was trained in
a generative-adversarial way. After this step, interest points
are clustered into text baselines with a distance-based clus-
tering method, namely DBScan [49] clustering. Planet [2]
proposed an ARU-Net to detect baseline pixels and sep-
arators, from which super pixels were generated accord-
ingly. A greedy clustering algorithm was adopted to generate
baselines based on the states information (inter-line distance
and local orientation) of super pixels. This method achieved
much better performance on benchmarks [5], [6] than the
above-mentioned methods. However, a lot of image process-
ing steps based on handcrafted features are required (e.g., text
profiles to estimate inter-line spacing), where errors may be
accumulated.

VOLUME 9, 2021

For existing deep learning methods, the performance of the
baseline generation module is usually improved by introduc-
ing handcrafted features and heuristic rules that are designed
according to the characteristics of the documents. However,
this also involves complicated post-processing steps which
lead to poor generalization abilities. In this work, we over-
come these limitations with a unified framework and achieve
state-of-the-art performance on two challenging text baseline
detection benchmarks.

B. VISUAL RELATIONSHIP DETECTION

In earlier works, visual relationships between objects have
been long exploited to assist other computer vision tasks, such
as object detection [50], semantic segmentation [51], and
image caption [52]. The authors of VRD [40], a large-scale
dataset with a variety of visual relationships that was
recently released, formulated visual relationship detection
as a task itself to identify objects and predict the rela-
tionships between pairs of objects. The unique character-
istic of this task is to predict visual relationships, i.e., <
subject, predicate, object > triplets, where the ‘“‘subject”
is related to the ““object” by the “predicate’ relationship.
A classical solution for this task is to take both subject and
object proposals as well as their union simultaneously as
input to predict the predicate relationship (e.g., [39]-[43]) so
that wide context information can be leveraged to improve the
relationship prediction accuracy.

Inspired by these works, the authors of a more recent
study [44] utilized a relation network to detect curved texts
in scene images by predicting the link relationships between
text primitives. This is a different task from text baseline
detection since accurate text bounding boxes are provided
for this task. In ablation study part, we have conducted a set
of comparative experiments by using a main body baseline
primitive definition, which is similar to the method for text
bounding box detection. The results validate the effectiveness
of the baseline primitives we have proposed.

lll. METHODOLOGY

A. MOTIVATIONS AND OVERVIEW

As illustrated in Fig. 1, existing deep learning methods for
baseline detection usually suffer from the wrongly merged
and wrongly split problems, which are caused by the unsatis-
factory performance of the baseline pixel prediction module
when dealing with nearby text lines or text lines with large
inter-word spacing. Specifically, background pixels within
small inter-line spacing tend to be misclassified as baseline
pixels, while pixels within large inter-word spacing tend
to be misclassified as background ones. These errors are
then propagated to the following baseline generation module
while existing baseline generation methods cannot handle
these cases effectively. In essence, the baseline generation
problem can be formulated as classifying the link relation-
ship between each baseline pixel pair to determine whether
or not they belong to the same text baseline. If we follow
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lems can be addressed by determining the link relation-
ships between baseline pixel pairs. To leverage wider context
information for better link relationship prediction, we intro-
duce the concept of a baseline primitive, which is a virtual
bounding box centered at each baseline pixel as illustrated
in Fig. 2. To the best of our knowledge, we are the first
to assign a virtual bounding box to a text baseline that
centered at it. Previous works usually take text baseline
detection problem as a baseline pixel prediction task since
baselines are labeled as poly-baselines [53]. Quantitative
ablation experiments have been conducted to show the effec-
tiveness of our design. Specifically, with this design, the link
relationships between baseline pixels can be equivalently
transformed into the link relationships between baseline
primitives, which can be exploited more effectively with a
relation network, and then baseline primitives are grouped
accordingly. Finally, the text baselines are generated by con-
necting the center points of the grouped baseline primitives
efficiently.

The flowchart of our approach is illustrated in Fig. 3.
It is composed of three steps, i.e., baseline primitive detec-
tion, relation learning and baseline extraction. Specifically,
baseline primitive candidates are predicted with the finest
feature map generated by a Feature Pyrimid Network (FPN)
backbone [54]. Then, proper baseline primitive pairs are
selected and a relation network is leveraged to learn the
link relationships between baseline primitive pairs. Finally,
the detected baseline primitives are grouped into individual
text lines according to their predicted link relationships, and
the text baselines are extracted accordingly. The details of the
process are described in the following subsections.

B. BASELINE PRIMITIVE DETECTION

We adopt an Anchor-Free RPN (AF-RPN) method [55] to
detect baseline primitives from the finest feature map gen-
erated by FPN, which is built on the top of ResNet-50 [56].
The finest feature map, i.e., P, has a stride of 4 pixels
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AF-RPN implementation, which detects text instances of
different scales from different feature pyramid levels. In this
paper, we only use the finest feature pyramid level since the
baseline primitives in our definition have a uniform scale.

In the training stage, we borrow the idea of border learn-
ing [57] to enhance the robustness of the detection module
to nearby text lines. Specifically, for each baseline in a raw
image, we first generate two virtual boxes, by and b, centered
at it, by enlarging the baseline in both vertical directions
with k1 and hy (hy = 0.4h) pixels respectively, as depicted
in Fig. 4(a)-(b). Then we define the region inside box b; as
the baseline region, the region outside box b, but inside box
b1 as the border region, and the region outside any box b
as the background region. As stated in [55], each pixel on a
feature map can be mapped back to a sliding point in the raw
image. During training, each pixel on the feature map will be
assigned a label belonging to the three categories, i.e., base-
line, border or background, according to the region in the
raw image where its corresponding sliding point is located.
For each ‘“‘baseline” pixel, the corresponding ground-truth
baseline primitive bounding box will be generated with the
algorithm depicted in Fig. 4(c)-(d).

In the inference stage, for each pixel on the feature map
P,, the detection module will predict the class it belongs
to, i.e., baseline, border, or background. For each detected
“baseline” pixel, the detection module will further predict
the offsets from it to the four vertices of its corresponding
baseline primitive. As depicted in Fig. 3, the detection module
is implemented as a 3 x 3 convolutional layer followed by two
sibling 1 x 1 convolutional layers with 3-dimensional output
channels for pixel-wise classification and 8-dimensional out-
put channels for baseline primitive bounding-box regression,
respectively. Finally, a Sigmoid output layer is adopted to
generate the classification scores.

To reduce false alarms, we only keep ‘“‘baseline” pixels
whose classification scores are higher than a pre-defined
score threshold of 0.6. We then use the standard NMS
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FIGURE 4. (a) We evenly divide each baseline into N (N = 7) segments
with N + 1 points on it. (b) For each baseline, two virtual boxes b, (in
blue) and b, (in yellow) are generated by enlarging the baseline in both
vertical directions with h; and h, pixels, respectively. (c) For a “baseline”
pixel p, the perpendicular line of the center line through p intersects with
b, at p, and p,. (d) We move p, and p, forward and backward along the
upper and lower edges of b, with d pixels (d = 16), respectively,

to generate the ground-truth bounding box (red dashed box) of a
baseline primitive.

algorithm with an Intersection-over-Union (IoU) threshold
of 0.5 to remove redundant baseline primitives.

C. RELATION LEARNING

To group the detected baseline primitives into individual
baselines, there is no need to predict the link relationships
between all possible baseline primitive pairs. In fact, a text
baseline can be represented by a sequence of ordered baseline
primitives with link relationships between only nearby base-
line primitive pairs. Based on this observation, two baseline
primitives are considered as a candidate pair only when they
are within a certain distance. In our experiments, we set the
distance as 10h; pixels, which ensures that baseline prim-
itives with large inter-word spacing can be selected as a
candidate pair and avoids generating too many redundant
pairs.

There are many effective ways to exploit the link relation-
ship between a primitive pair. Following the work in [44],
we choose to use the relation network as a first attempt for
its simplicity and effectiveness. In a nutshell, three feature
descriptors extracted from two baseline primitive boxes and
their union box are utilized to predict the link relationship
between this baseline primitive pair. In this way, both relative
position information and wide context information can be
leveraged to improve link prediction accuracy. Specifically,
as illustrated in Fig. 3, three 256 x 5 x 5 feature descrip-
tors of those two baseline primitives and their union box
are extracted with the Rol Align algorithm [58] from the
P, feature map. Then, these three feature descriptors are
concatenated along the channel dimension and fed into a
3 x 3 convolutional layer to generate a fixed-size (384 x
5 x 5) feature descriptor. Finally, a 2-hidden-layer MLP with
1,024 nodes at each hidden layer followed by a Sigmoid out-
put layer is adopted to predict the link relationship between
this baseline primitive pair.

We directly use the ground-truth baseline primitives to
generate training samples for the relation learning module.
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It is based on the assumption that there is little differ-
ence between the predicted baseline primitive boxes from
the trained model and its corresponding ground truth. This
assumption makes sense because the performance of the
baseline primitive detection module is satisfactory and the
loss of the box regression term converges to a small value
at the end of the training process. In this way, the training
samples generation becomes much more accurate and easier
because we can directly select baseline primitive pairs from
the same text baseline as positive samples while taking base-
line primitive pairs from different text baselines as negative
samples without the ambiguity associated with matching the
learned baseline primitives to the ground-truth text baselines.

D. BASELINE EXTRACTION

During inference time, baseline primitives are put into
individual primitive groups based on the predicted link rela-
tionship with a threshold of 0.7 by using the Union-Find algo-
rithm. According to our definition, the center of a baseline
primitive lies on a text baseline, thus the final baseline can be
generated by connecting these centers. In particular, for each
baseline primitive that belongs to a specific group, its center is
computed by the four predicted vertices. Then, a rough text
line orientation is estimated by computing the variances of
those centers along horizontal and vertical directions because
its value can vary significantly along the text line direction.
With a rough horizontal orientation, centers are sorted from
left to right, otherwise centers are sorted from top to bottom.
After these steps, a final baseline is generated by simply
connecting the center points of the baseline primitives in a
sequential order.

E. LOSS FUNCTIONS

1) MULTI-TASK LOSS FOR BASELINE PRIMITIVE DETECTION
There are two sibling output layers for the baseline primitive
detection module, i.e., a baseline pixel prediction layer and
a quadrilateral bounding box regression layer. The multi-task
loss function can be denoted as follows:

L(C, C*, ta t*) = )\'CLC(Cv C*) + )"lLl(ta t*)’ (1)

where ¢ and ¢* are the predicted and the ground-truth
3-dimensional labels for each sampling pixel respectively,
and L.(c,c*) is a binary cross-entropy loss for each
category channel; ¢ and t* represent the predicted and
the ground-truth 8-dimensional normalized coordinate off-
sets [55], and L;(z,t*) is a Smooth-L; loss [60] for the
bounding box regression task. A, and X; are two balancing
parameters for multi-task learning. We set A, = l and A; = 1
because this worked well in our experiments.

2) LOSS FOR RELATION LEARNING
The loss for the relation learning module is defined as
follows:

L(r,r*) = AL.(r,r"), 2)
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TABLE 1. Performance comparison on cBAD 2017 benchmark. (* indicates that numbers are quoted from reference [5]).

Methods Complex Track Simple Track
P-value R-value F-value P-value R-value F-value

LITIS* - - - 78.0% 83.6% 80.7%
UPVLC* 83.3% 60.6% 70.2% 93.7% 85.5% 89.4%
IRISA* 69.2% 77.2% 73.0% 88.3% 87.7% 88.0%
BYU* 77.3% 82.0% 79.6% 87.8% 90.7% 89.2%

Multi-task [35] 84.8% 85.4% 85.1% - - -
DMRZ* 85.4% 86.3% 85.9% 97.3% 97.0% 97.1%
dhSegment [32] 82.6% 92.4% 87.2% 94.3% 93.9% 94.1%

IRISA+ [33] 85.8% 93.5% 89.5% - - -
ARU-Net [2] 92.6% 91.8% 92.2% 97.7% 98.0% 97.8%
docExtractor [36] 88.3% 94.3% 91.3% 94.8% 97.8% 96.3%
Ours 92.8% 94.7% 93.8% 96.5% 97.8% 97.2%

TABLE 2. Performance comparison on cBAD 2019 benchmark.
(* indicates that numbers are quoted from reference [6]).

Methods P-value | R-value | F-value
Baseline (DMRZ-17)* 77.3% 74.3% 75.8%
TINU* 85.2% 88.5% 86.8%
UPVLC* 91.1% 90.2% 90.7%
DMRZ-19* 92.5% 90.5% 91.5%
Planet(ARU-Net)* 93.7% 92.6% 93.1%
docExtractor [36] 92.0% 93.1% 92.5%
Ours-17 89.7% 88.4% 89.1%
Ours-19 93.3% 94.3% 93.8%

where r and r* are the predicted and ground-truth relationship
labels for each sampling baseline primitive pair, and L,(r, r*)
is also a binary cross-entropy loss for link relationship clas-
sification.

The total loss of the framework is a sum of L(c, c*, t, *)
and L(r, r*). In our experiments, we also set A, = 1.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION PROTOCOLS
To evaluate the performance of the proposed approach and
compare it with other works, we conduct experiments on two
publicly available text baseline detection benchmarks, cBAD
2017 and cBAD 2019.

cBAD 2017 [5] consists of 2,036 document images written
between the years 1,470 and 1,930, which are collected from
9 different European archives. These documents are split
into two tracks, simple documents and complex documents.
The simple documents track focuses on baseline detection
in documents with simple layouts, and the documents are
annotated with extra text region information. It contains
216 images for training and 539 images for testing. The
complex documents track takes more challenging layouts
into consideration, including full page tables, multi-column
and rotated text lines. This track has no extra text region
information and contains 270 document images for training
and 1,010 document images for testing.

cBAD 2019 [6] is a successor of cBAD 2017 with a larger
dataset that contains more diverse document pages. These
document pages have different layouts and origins, such as
heavily structured pages, sparsely inscribed pages, drawings
and engravings. This dataset consists of 3,021 document
images sampled from 175,567 archival documents. Among
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them, 755 images are used as a training set, 755 images as a
validation set and 1,511 images as a testing set.

We follow the official evaluation protocols to make our
results comparable to those from other methods. In simple
terms, this scheme aligns detected baselines with ground
truths by using a defined coverage function. It has three indi-
cators, R-value, P-value and F-value, which are similar to the
well-known terms recall, precision and F-score, respectively.
More details on the scheme can be found in [1].

B. IMPLEMENTATION DETAILS
We implement our approach based on PyTorch! v0.4.1 while
the experiments are conducted on a workstation with 4 Nvidia
V100 GPUs. The weights of ResNet-50 related layers in the
backbone network are initialized with a pre-trained ResNet-
50 model for the ImageNet classification task [56]. The
weights of newly added layers in FPN, baseline primitive
detection module and relation learning module are initialized
with a Gaussian distribution of mean 0 and standard devia-
tion 0.01. Our models are trained in an end-to-end manner
and optimized by the standard SGD algorithm, where the
momentum is 0.9 and weight decay is 0.0005. Note that
all the models are trained for 40K iterations with the initial
learning rate of 0.004, which is divided by 10 at each 10K
iterations. In each training iteration, we sample one image for
each GPU. For each image, we randomly select 128 baseline,
128 border and 128 background pixels for the baseline prim-
itive detection module, and 64 positive and 64 negative rela-
tion pairs for the relation learning module. During training,
we adopt a multi-oriented and multi-scale data augmentation
strategy. Specifically, each training image is first randomly
rotated by an angle in the range of (—45°, 45°) and then its
shorter side is randomly rescaled to a number in the set of
{800, 928, 1024, 1200} while keeping its aspect ratio.

In the testing phase, we adopt a single model and a single
scale testing strategy. In all the experiments, the shorter side
of each testing image is rescaled to be 1,024 pixels.

C. OVERALL PERFORMANCE
We compare the proposed approach with other competitive
methods by applying them to the benchmarks cBAD 2017 and

1 https://pytorch.org/
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FIGURE 5. Qualitative results of the proposed approach. Detected baselines are shown in red. Results in the first row are from ¢BAD-17 and
the following ones are from cBAD-19.

cBAD 2019. Quantitative results are listed in Table 1 and
Table 2, respectively.

For the cBAD 2017 benchmark, our approach achieves the
best results of 92.8%, 94.7% and 93.8% in P-value, R-value
and F-value, respectively, on the complex documents track,
which demonstrates the effectiveness of our approach. For
the simple documents track, we do not use the informative
text region annotations during the inference stage since in this
paper we mainly focus on the baseline detection problem in
unconstrained historical documents. Even without this infor-
mation, our approach can still achieve comparable results
as prior arts, which can further demonstrate the superior
performance of our approach.

For the cBAD 2019 benchmark, our approach also achieves
the best F-value of 93.8%. The “baseline’ results are from
the winner method of cBAD 2017 complex track (DMRZ

VOLUME 9, 2021

in Table 1, denoted as DMRZ-17 in Table 2), where the
trained model on cBAD 2017 is tested directly on cBAD
2019. Similarly, we also test our model trained on the
cBAD 2017 complex track, denoted as Ours-17 in Table 2,
on cBAD 2019 for comparison. It is worth noting that the
performance of DMRZ-17 decreases by 10.1% in F-value
when it tested on cBAD 2019 testing set while ours
decreases only by 4.7%, which shows that our method
has a better generalization ability with regard to unseen
datasets.

We observe that our approach can detect text baselines
effectively under various challenging conditions, such as
multi-column and sparsely inscribed pages, documents with
multiple text-line spacings as well as those with complicated
backgrounds and degradations. Some qualitative results are
shown in Fig 5.
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TABLE 3. Comparison of the connectivity-based baseline generation strategy with our relation learning based strategy on the cBAD-19 benchmark.

Methods Validation Set Testing Set
P-value R-value F-value P-value R-value F-value
Connectivity 89.0% 90.1% 89.6% 89.6% 90.2% 89.9%
Ours 92.7% 94.4% 93.5% 93.3% 94.3% 93.8%

TABLE 4. Comparison of different heights h; (number of pixels) of a
defined virtual box on the cBAD 2019 validation set.

box height i1 P-value | R-value | F-value
10 91.1% 94.3% 92.7%
20 92.2% 94.9% 93.5%
25 92.7% 94.4% 93.5%
30 92.9% 93.3% 93.1%
40 91.7% 90.2% 90.9%

TABLE 5. Comparison of different baseline primitive definitions in our
framework on the cBAD 2019 validation set.

Strategy P-value | R-value | F-value
Fixed-size box 90.1% 91.5% 90.8%
Text main body [44] 89.5% 93.0% 91.2%
Ours 92.7% 94.4% 93.5%

D. ABLATION STUDY
In this section, we perform ablation studies on the key com-
ponents of our approach to analyze their effects.

1) EFFECTIVENESS OF RELATIONSHIP PREDICTION BASED
BASELINE GENERATION

As stated in Sec. 3.1, the performance of CNN-based base-
line detection methods is affected by the baseline generation
strategy. To demonstrate the effectiveness of the proposed
relationship prediction based baseline generation module,
we compare it with an 8-neighborhood connectivity-based
method, which is widely used in many prior arts. Besides
conducting ablation experiments on the validation set, we also
conduct them on the testing set of the cBAD 2019 bench-
mark for comparison with other works. For a fair compar-
ison, we replace the relation learning module in our codes
with an 8-neighborhood connectivity-based baseline gener-
ation module, and the hyper-parameters are carefully tuned
to get its best possible results. As shown in Table 3, our
implemented connectivity-based method achieves an F-value
of 89.9%. This is higher than the F-value of TINU-19
(86.8%) in Table 2, which is a method that also adopts the
connectivity-based baseline generation strategy. Compared
with this strong baseline, our method still improves the
F-value by 3.9% on both the validation set and the testing
set of cBAD 2019. This performance increase mainly comes
from improvements in the abovementioned wrongly split and
wrongly merged problems. Two comparative examples are
shown in Fig. 6.

2) INFLUENCE OF THE VIRTUAL BOX HEIGHT

Intuitively, our approach can achieve its best performance
when the enlarged virtual box height A4; is set according to
the actual height of each text line and the line interval. How-
ever, the abovementioned information is not provided and we

93680

ety Ty
LoreSoalonsmt—

;“J?'i_".'_'!
e T

(© (d)

FIGURE 6. Effectiveness of the proposed relation learning module:
(a) and (c) are results generated by the connectivity based method,
(b) and (d) are results generated by our approach.

investigate the influence of 4; when it is set as a constant
number across datasets in this part. The experimental results
are shown in Table 4, from which we can observe that our
system is not sensitive to this hyper-parameter as long as it is
in a proper range. If 4 is too small, less context information is
encoded so that our baseline primitive design cannot produce
the maximum effect; if /; is too big, the baseline primitive
will contain much noise, leading to a significant performance
degradation. Therefore, we set iy = 25 pixels in all the
experiments as a trade-off for its satisfactory performance.

3) EFFECTIVENESS OF THE PROPOSED BASELINE PRIMITIVE
DEFINITION

A baseline primitive is formed according to a baseline pixel
and the virtual line bounding box, which is generated by
enlarging the baseline in both vertical directions with a con-
stant height, as illustrated in Fig. 4. In this part, we study some
other ways to define a baseline primitive.

The most straightforward strategy would be to assign a
fixed-size box directly to each baseline pixel. In this way,
there is no need to regress a virtual box for each baseline
pixel. In practice, we replace our learned baseline primitive
box with this fixed-size box, thus allowing the relationships
between pixel pairs to be explored with these pre-defined
boxes at both training and inference time. Its performance,
shown in the first row of Table 5, is worse than the strategy
we adopt. The biggest difference between this strategy and
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FIGURE 7. Illustration of two ways to generate virtual boxes for a
baseline. Baseline is depicted in red; enlarging the baseline only at the
text main body direction is depicted by the dashed blue box; the solid
yellow box indicates our definition, which enlarges the baseline at both
directions. Best viewed in color.

(d)

FIGURE 8. Effectiveness of the proposed definition of baseline primitive.
(a) is generated from the fixed-size box definition; (c) is generated from
the main body definition; (b) and (d) are results generated by our
proposed definition for comparison.

ours is that our defined baseline primitives are centered at the
baselines for all the pixels in the core region, while the former
does not. It is easier for these pre-defined boxes to cover
adjacent text lines, but this will make it confusing to learn the
link relationship. Therefore, this fixed-size box strategy lacks
the ability to solve the wrongly merged problem, as illustrated
in Fig. 8(a).

Besides, we can also generate the virtual box of each text
baseline with an enlargement in the text main body direction
as shown in Fig. 7, and this virtual box can be roughly seen
as a text main body. To verify this strategy, we replace the
ground truths generation in our pipeline while keep others
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TABLE 6. Comparison of different baseline primitive definitions based on
the framework in [59] on the cBAD 2019 validation set.

Strategy P-value | R-value | F-value
Fixed-size box 89.3% 90.7% 90.0%
Text main body [59] 88.9% 92.4% 90.6%
Ours 92.6% 92.9% 92.7%
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FIGURE 9. Some cases where our approach fails.

unchanged, which is similar to the method designed in refer-
ence [44] for detecting text bounding boxes of curved scene
texts. However, this method is worse than our approach,
as shown in the second row of Table 5. In fact, this text
main body strategy lacks the ability to differentiate between
a baseline and an upper line in an arbitrarily oriented text
line if no extra information is provided. As a comparison,
the text baseline is located at the center of baseline primitives
by our definition, thus the ambiguous problem is avoided.
An example of this limitation is illustrated in Fig. 8(c), where
the detected vertical text baselines are wrong.

We also implement [59] as another base framework to fur-
ther validate the generalization ability of our baseline primi-
tive design. Specifically, [59] is designed for handwritten text
bounding boxes detection in natural scene images, where they
use an 8-neighborhood link prediction module instead of a
relation network to exploit the link relationship. For a fair
comparison, we keep all the configurations fixed except the
baseline primitive definition strategy. As shown in Table 6,
our baseline primitive design has consistent gains over the
other two strategies.

These two sets of comparative experiments demonstrate
the effectiveness of our baseline primitive definition.

E. LIMITATIONS OF OUR APPROACH

Although our approach has achieved superior results in most
challenging scenarios as depicted in Fig. 5, it has failed in
some difficult cases. Some of these are illustrated in Fig. 9.
The first row of Fig. 9 shows a hard case where a text baseline
is split into two when there is a line separator in the word
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spacing (emphasized with green circles). Although this split
seems to be correct when only local context is considered, it is
wrong when nearby text lines are taken into consideration.
Solving this limitation is currently beyond the capability of
our approach because it may require global context informa-
tion to exploit the link relationships effectively. The second
row of Fig. 9 shows other examples of scenarios where our
approach does not work well, such as musical notes and
maps, which are rarely included in training sets. The cases
in which our approach fails do not seem to follow a specific
deterministic principle and may be handled more effectively
when more training samples are available.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a baseline primitive based
approach to text baseline detection in unconstrained histor-
ical documents. Previous methods usually took text baseline
detection as a semantic segmentation task, thus suffered from
the wrongly merged and wrongly split problems. Unlike
them, we first introduced the concept of a baseline prim-
itive, which allowed us to solve the baseline generation
problem by learning the link relationships between baseline
primitive pairs. The notion of baseline primitives led us to
choose the relation network to exploit their link relationships,
which helped connect distant baseline primitives in the same
text baseline and separate close baseline primitives belong-
ing to different text baselines. Consequently, our approach
achieved superior performance on two challenging bench-
marks, namely cBAD 2017 and cBAD 2019.

However, in some cases our approach was not effective,
as shown in the examples in the first row of Fig. 9. This
implies that wider context information is needed to generate
text baselines. In future research, we will explore other visual
relationship learning methods involving global context infor-
mation to address these limitations.
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