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ABSTRACT In-storage processing technology allows applications to run on embedded processors and
accelerators inside solid-state drives (SSDs) for efficient computing distribution. Especially, in pattern
matching applications, in-storage computing can be processed quickly due to low data access latency, and
the number of I/Os can be reduced by returning only a small amount of results to the host system after
processing. Previously proposed in-storage processing is separated into three phases: command decoding,
data access, and data processing. In this case, data processing is strictly isolated from data access, and the
isolation constraints the utilization of storage.Merging data access and data processing among the phases can
enhance the utilization of storage. To efficiently merge them, we propose two-stage in-storage processing
and scheduling, especially for the pattern matching application. The first stage processing during data access
reduces the second stage processing latency. Also, leveraging the pattern matching results of the first stage
processing, our scheduler prioritizes key requests that should return the results to the host system so that
they are completed earlier than non-key requests. The proposed scheduling reduces the response time of
in-storage processing requests by 52.6 % on average.

INDEX TERMS In-storage processing, solid-state drives (SSDs), scheduling, pattern matching.

I. INTRODUCTION
Solid-state drives (SSDs)-based in-storage processing has
been applied to pattern matching applications such as search
engines [18], [50] and key-value stores [5], [25], [55]. The
in-storage processing technique distributes workloads by
offloading all or part of the application functions to storage
devices. In the case of a search engine, for example, a storage
device internally completes data retrieval and returns only a
small amount of results to the host. This mechanism reduces
the number of I/Os and increases the overall throughput of
query processing.

Unlike typical I/O operations, the request flow of
in-storage processing is generally separated into three phases:
command decoding, data access, and data processing. First,
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the in-storage processing command from the host is decoded
to internal requests for flash memory operations. Second,
the internal requests are handled by a flash translation
layer (FTL) as in the typical I/O operations [7], [12], [20],
[39], [42], [53]. At the FTL, an internal request is divided into
several sub-requests to exploit the parallelism of SSD [11],
[22], [23], [30]. These sub-requests read data from each flash
memory chip into an internal buffer for in-storage processing.
Third, after the data are ready in the buffer, the data are
processed by the in-storage processing functions and only the
results of in-storage processing are returned to the host.

However, the strict separation of each phase constrains
the utilization of storage, especially when pattern matching
applications are executed. First, data processing after data
access increases the in-storage processing latency. In gen-
eral, data access is the loading of data from flash memory
into an internal buffer (i.e., DRAM). Also, data processing
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is typically handled after all necessary data are collected.
For that reason, the processing element needs to reload the
collected data from the internal buffer for data processing.
After loading, processing elements can start to compute.
This redundant data movement increases the latency of query
processing. Second, all data after accessing must be stored
in the internal buffer, and these operations lower memory
efficiency. It is because certain data do not need to be sent
to the host system depending on the processing results in
the pattern matching applications. If such data are not writ-
ten to the buffer, it can increase memory efficiency. Third,
data access is scheduled regardless of data processing status,
which reduces data access efficiency. In the pattern match-
ing application, the priority of the request varies depending
on the data processing result. Traditional scheduling cannot
leverage the results of data processing due to architectural
constraints. This data accessmethod can reduce the efficiency
of in-storage processing.

Recent studies have proposed in-storage processing as
alternative architecture to improve the performance of pattern
matching application functions [18], [24], [45], [50]. They
take advantage of in-storage processing by processing pattern
matching in embedded processors or dedicated accelerators.
However, data access and processing are still separated, mak-
ing in-storage processing less efficient. On the other hand,
there have also been various studies on in-storage schedul-
ing [15], [21], [36], [49], [58]. Most of them improve the
overall throughput by leveraging the parallel processing of
flash memory. Some of them provide additional techniques
to increase the quality of service (QoS) for queries. However,
they are constrained to optimizing only data access, regard-
less of the characteristic of in-storage processing, with differ-
ent priorities depending on the internal request processing.

In this paper, the data access and processing phases are
merged to improve storage utilization for in-storage process-
ing. To efficiently merge them, we propose a two-stage data
processing and pattern matching detection-guided schedul-
ing, named 2PM. The first stage of processing is executed on
the path for data access. During the first stage, it classifies
each sub-request by a page-level pattern matching. Then,
in the second stage, it processes a combinatorial analysis for
the remaining data that are not classified clearly at the first
stage. After that, the proposed scheduling for data access is
triggered by the feedback of the first stage processing. Finally,
our chip-level scheduler reorders with unfair priorities based
on the pattern matching results.

The proposed two-stage data processing can effec-
tively take the advantage of device parallelism by out-
of-order sub-request handling. The data classification during
pre-processing at the first stage can reduce post-processing
time at the second stage, reducing overall in-storage process-
ing latency. It also increases memory efficiency by filtering
the data to be written to an internal memory according to the
results of pre-processing.

Also, the proposed scheduling leverages the pre-processing
results and employs anti-starvation techniques to prevent

false reordering due to unfair priorities. Each chip-level
scheduler changes the priority of the corresponding
sub-request based on the pattern matching results of
pre-processing and previous status. The scheduler reorders
sub-requests that are issued to the chip-level queue based on
the changed priority. In this way, the scheduler completes
the processing of key requests, with high priority, earlier
than the processing of other requests. Overall, the proposed
scheduling can reduce the response delay to the host system.

Our experimental results show the proposed scheduling
reduces the response time of in-storage processing requests
by 52.6 % on average compared with the baseline scheduling.
And the anti-starvation techniques included in the proposed
scheduling improve the total delay by 79.8 % on average
compared to the scheduling without the anti-starvation tech-
niques. In addition, case studies under various conditions
such as request queue depth, sub-request queue size, and a
number of connected chips show sufficient effectiveness of
the proposed scheduling.

Our main contributions can be summarized as follows:
• The proposed two-phase in-storage processing archi-
tecture is a novel architecture different from the con-
ventional in-storage processing architecture, which is
strictly separated into three phases. In this architecture,
processing results that have been referenced only in the
data processing phase can be leveraged for scheduling
when accessing data.

• This paper proposes pattern matching detection-guided
scheduling as a novel in-storage scheduling method.
The proposed scheduling can process key requests ear-
lier than non-key requests and reduce response time
for the host. Despite the selective reordering method,
the disadvantage is negligible due to the application of
anti-starvation techniques.

• The proposed two-stage pattern matching algorithm is
energy efficient for storage devices operated by page
units. The pre-processing during the data access can
process data in page units without buffering. In the next
stage, post-processing can be computed simply based on
the results of the pre-processing stage.

The rest of this paper is organized as follows.
Section II introduces the concept of in-storage process-
ing and describes the request flow of in-storage processing.
Section III presents our two-phase in-storage processing
architecture with a two-stage data processing algorithm.
Section IV presents three basic priority rules, the pattern
matching detection-guided reorderingmethod, and the imple-
mentation overhead of the proposed scheduling. Section V
analyzes the experimental results on our two-phase in-storage
processing architecture and scheduling. Section VI discusses
related work. Finally, the conclusion is given in Section VII.

II. BACKGROUND AND MOTIVATION
In this section, the concept of in-storage processing is intro-
duced and the general request flow of in-storage processing is
described. In addition, key challenges are defined and design
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FIGURE 1. Request flow of in-storage processing. There are three phases:
command decoding, data access, and data processing. This separation is
the simplest way to handle in-storage processing in a legacy storage
architecture, but it can degrade storage utilization.

goals are set based on the case analysis of the in-storage
processing.

A. CONCEPT OF IN-STORAGE PROCESSING
The main idea of in-storage processing is to execute all or
part of the functions in an application on the storage device.
With the advance of in-storage processing, the data traffic
between host machines and storage devices are reduced and
that eventually contributes to saving data transfer delay as
well as power consumption. Many researches on SSD-based
in-storage processing have been introduced recently [14],
[18], [24], [35], [40], [45], [46], [50], [59]. Historically,
SSDs have been developed as a small computing device that
integrates multiple embedded processors, DRAM, and flash
memory to perform high-speed I/O operations internally [2],
[8], [10], [11], [33]. Therefore, it inherently provides a cer-
tain level of computing power and is well equipped as an
in-storage processing platform.

A host sends requests for data access to the SSD through
the host interface. The most representative standard protocol
for host interfaces is NVMe (NVM Express) [1], a new
standard for high-speed SSDs that connect to host systems via
PCIe. NVMe supports block I/O commands and other types
of commands for in-storage processing. In the format of the
vendor-specific command, the host transmits the command
to the storage device. The storage device updates the results
to host memory and responds to the host after processing the
command.

Meanwhile, in-storage processing provides many advan-
tages when it is used for pattern matching applications [18],
[24], [45], [50]. First, the latency for data access is relatively
low since the processing happens nearby data. Second, energy
consumption is relatively low. Besides, pattern matching
applications such as search engines can return only smaller
search results instead of sending all the raw data to the main
memory. Therefore, the host interface andmemory utilization
during in-storage processing are less than that of typical I/O
processing methods.

B. DESCRIPTION ON REQUEST FLOW OF
IN-STORAGE PROCESSING
This section describes the typical request flow of in-storage
processing. Figure 1 shows the overall processing flow, which

is separated into three working phases: command decoding,
data access, and data processing. In the command decoding
phase, the in-storage processing commands from a host are
translated into multiple internal requests for specific flash
memory operations. The data access phase is the same as
the flow of the typical I/O operations. The FTL splits each
request, varying in size from 512 bytes to several megabytes,
into multiple sub-requests in logical page units. The FTL
stripes the sub-requests to multiple flash memory chips for
internal parallelism, and schedules sub-request processing at
the chip level [15], [32], [42], [49]. In the data processing
phase, the processing elements, such as embedded processors
or accelerators, execute in-storage processing functions and
then return the results to the host.

Most of the previously proposed in-storage processing
studies are based on gathering all the necessary data and then
processing the data in order. Pattern matching applications
also have the same limitations. Because there is data depen-
dency among sub-requests, data must be entered in order for
data processing. However, data may be accessed out of order
due to the nature of an SSD. Typically, data are distributed and
written to other NAND flash memory chips for flash-level
parallelism in an SSD. When reading the distributed data
later, each data may be prepared out of order due to resource
conflicts. Therefore, out-of-order data processing is required
for high utilization of an SSD. Out-of-order data processing
can reduce scheduling constraints by removing the depen-
dency of data access. It also eliminates the strict separation
of the data access phase and the data processing phase. For
example, data processing-aware scheduling can be a possible
solution for achieving high in-storage processing throughput.

C. CASE STUDY OF IN-STORAGE PROCESSING
In general, a host request is sequentially distributed multiple
sub-requests on several flash memory chips and the request
does not complete until all sub-requests have been processed.
The end of processing for the last sub-request, which has
a higher latency than other sub-requests, determines the
response time of the request [15]. The last sub-request is
defined as a critical sub-request. In the case of in-storage pro-
cessing, the storage device typically responds to the host once
the data processing is complete after accessing the critical
sub-request.

Figure 2(a) shows an example of processing sub-requests
for the in-storage processing, which consists of three chips:
Chip 0, Chip 1, and Chip 2. In the figure, ISP stands for
in-storage processing. Each request A, B, C , and D is divided
into several sub-requests and the sub-requests are issued to
the chip-level sub-request queue. Applying first come first
served (FCFS) scheduling [32] as a baseline, sub-requests B1
and B2 start services at t7 and t2. Data access of B2 ends first
at t5, but due to the in-order nature of in-storage processing,
it needs to wait until B1 is processed. As a result, the request
B completes at t11 after B2 has been processed.

On the other hand, if out-of-order data processing is avail-
able, B2 can be processed at the end of B2 data access.
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FIGURE 2. Examples of data access and data processing. Out-of-order
data processing improves the efficiency of in-storage processing
comparing with in-order data processing. The proposed scheduling that
leveraging pattern matching detection can significantly reduce the latency
for the key request. A key request B can complete earlier, despite a
non-key request A completes later.

So request B is completed at t10 after B1 is processed. In this
way, request C , request A, and request B are completed and
the results are sent to the host at t7, t8, and t10, respectively,
as shown in Figure 2(b). Therefore, if out-of-order data pro-
cessing is supported, processing can be completed in an early
time.

Now, considering the pattern matching applications,
the processing priority of each request can be determined
depending on whether pattern matching is contained or not.
The internal requests are classified into two types of request:
key request and non-key request. The key request contains
the key pattern and the non-key request does not contain any
key pattern. Because only the processing results of the key
request are returned for the in-storage processing request, so it
is important to prioritize the key request such as B rather than
non-key requests such as A orC . In the example, the response
for the host starts at t10. Even if it supports out-of-order
data processing, the improvement compared to in-order data
processing is insufficient with typical scheduling.

This paper proposes scheduling that uses unfair priority
to improve the response time of the in-storage processing

request. The basic idea is that if a pattern matching is
detected in a sub-request, sub-requests of the same request
are processed before other requests. Figure 2(c) shows an
example of the proposed scheduling. In the case of the base-
line scheduling, the sub-request B1 becomes a critical sub-
request, delayed by the sub-request A0, which was already
requested on the Chip 1. The sub-request B0 completes early
and the pattern matching result is verified at t2. If the sched-
uler knows that request B is a key request and swaps the
processing order of A0 and B1 in Chip 1, it can reduce the
response time for request B. The response time for the request
A is delayed, but it is not a problem because the response
to the request B determines the overall QoS in a pattern
matching application.

III. 2PM ARCHITECTURE
This section proposes the two-stage data processing mecha-
nism and the two-phase in-storage processing architecture for
the proposed scheduling.

A. TWO-STAGE DATA PROCESSING
To apply the proposed scheduling, the out-of-order process-
ing must be supported on a page-by-page basis. Therefore,
this paper proposes the two-stage pattern matching method.
Figure 3(a) shows the flowchart of our two-stage pattern
matching.

In the first stage, a page-level pattern matching is used
for the out-of-order processing of each sub-request. The pro-
cessing results are classified into three types: mismatched,
matched, and partially matched. For example, a pattern
matching application finds a pattern that includes a start-key
A and an end-key Z . If both key patterns are included and the
order is also satisfied, it is called matched. If any key patterns
are not included, it is called mismatched. However, if only
one of the key patterns is included, or both key patterns are
included but the order is reversed, then it is called partially
matched, which requires additional processing in the second
stage.

In the second stage, post-processing is based on the results
of the first stage. If all sub-requests are mismatched in one
request, or at least one sub-request is matched, the processing
result can be transferred to the host without further process-
ing. If two or more sub-requests are partially matched, further
processing is required to determine matched or mismatched.
In the post-processing, partially matched pages are com-
bined, and if the pattern order is correct, the request becomes
matched, otherwise, the request becomes mismatched.

B. TWO-PHASE IN-STORAGE
PROCESSING ARCHITECTURE
The proposed architecture is the two-phase in-storage
processing architecture with two-stage pattern matching.
Figure 3(b) shows the request flow of in-storage processing
in our architecture. In phase 1, the command decoding is
the same as the typical flow, but data access and process-
ing are integrated into phase 2. The two-stage processing
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FIGURE 3. Two-phase in-storage processing architecture with two-stage pattern matching. Pattern matching consists of two stages: the first
processing for each sub-request and the second processing for the final decision. The command decoding of phase 1 is the same as the typical flow,
but data access and processing are integrated into phase 2. The two-stage processing units, a result analyzer, and reordering managers are added to
the in-storage processing architecture.

elements and a result analyzer are added to apply the pro-
posed in-storage processing mechanism on a modern SSD
architecture with request queues and sub-request queues.

The initial flow of the proposed two-phase in-storage pro-
cessing architecture, which decodes commands and inserts
sub-requests into the chip-level scheduler, is similar to
the request flow of conventional in-storage processing.
In phase 1, the in-storage processing commands from a
host are translated into multiple internal requests, and the
internal requests are inserted into the request queue. The
request queue supports multiple streams, and the arbitration
policy to dispatch an element from the request queue fol-
lows a round-robin policy. In phase 2, the internal requests
dispatched from the request queue are split into multiple
sub-requests through address translation and physical map-
ping. And the created sub-requests are inserted into the
sub-request queues for each flash memory chip. The module
that manages this queue is called a chip-level scheduler. Each
sub-request can be inserted at a different time, depending on
the state of the sub-request queue.

There are many changes in the flow after sub-requests are
issued to the chip-level scheduler. In general, the chip-level
scheduler issues sequentially the queued sub-requests to flash
memory. Data read from flash memory are packetized with
key information and sent to the first stage processing unit
before data are transferred to internal memory. The first stage
processing unit located on the data path can be pipelined with
other functional blocks, so data transfer performance is not
degraded. In addition, the processing unit is close to data
access path so that results can be quickly transferred to the
scheduler.

The results of the first stage processing are sent to the result
analyzer. Connecting processing units and schedulers directly
in the form of a crossbar is very complicated and increases
the size of the logic. Thus, the result analyzer receives the
processing result of each completed sub-request and analyzes
the results to reduce scheduling complexity. After analyzing

the results, when the corresponding request is identified as
a key request, the result analyzer sends a reordering request
to chip-level schedulers. If multiple results are received at
the same time, the result selected by the round-robin policy
is analyzed, so one reordering request is sent in one cycle.
When receiving a reordering request, the chip-level scheduler
increases the priority of the key request, reorders the entries
in the sub-request queue, and accesses flash memory in a
changed order.

On the other hand, the first processing result and data
are filtered and written to the internal buffer. The second
stage processing unit waits for each sub-request to com-
plete and then checks the completion of all sub-requests
by referencing the bitmap of completion flags. For requests
that require the second stage processing, the pre-processing
results are analyzed and the final result is produced when all
sub-requests are completed. The processing result is returned
to the host when post-processing is completed or when the
pre-processing result is already valid.

IV. 2PM SCHEDULING
This section presents three basic priority rules and a novel
pattern matching detection-guided reordering method. The
proposed schedulingworks based on reordering using the pat-
tern matching results of the first stage processing. In addition,
the implementation overhead of the proposed scheduling is
provided.

A. BASIC PRIORITY RULES
Our architecture uses chip-level scheduling that operates
independently. The default policy for scheduling consists of
three rules: read priority, oldest priority, and earliest pre-
pared priority. First, the read priority scheduling increases
the priority for the read requests over the write requests.
Because the write latency of flash memory is much higher
than the read latency, processing read requests first is benefi-
cial for improving overall response time. Second, the flash
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memory operation of the oldest sub-request begins first,
and the later-requested sub-request begins later. Since the
proposed reordering mechanism is based on the processing
results, at least one sub-request must be completed. In the
state without any priority information, incoming sub-requests
will be processed in order. Third, the sub-request that is ready
to be read first in the flash memory chips is transferred for
data processing first.

B. PATTERN MATCHING DETECTION-GUIDED
REORDERING
This paper proposes the pattern matching detection-guided
reordering method that changes the order of data access
according to the result of the first stage processing. If pattern
matching is detected, the request becomes a key request,
so rapid processing is required. Therefore, the result of the
first stage processing is transferred to the chip level sched-
uler. At this point, the processing results can be sent to the
chip-level scheduler through the result analyzer without the
intervention of the embedded processor for fast reordering.
The overhead of sending the results to the embedded proces-
sor and sending a reordering request back to the scheduler can
be eliminated.

When the chip-level scheduler receives a reordering
request with priority information from the result analyzer,
the sub-requests in the chip-level queue are reordered. The
priority information is the result of the first stage process-
ing and takes high priority in the following order: matched,
partially matched, and mismatched. This priority may change
later depending on the matching results of other sub-requests.

Figure 4 shows an example of reordering. The sub-requests
of RA, RB, RC , RD, RE , and RF are inserted in the sub-request
queue in the order they will be processed. At this point,
the scheduler receives a reordering request for request RD
whose processing result is matched. If there is no sub-request
of RD in the queue, the reordering request is ignored. But if
sub-request of RD exists, the priority of sub-requests is com-
pared in order of sub-request RC , RB, and RA which is located
before sub-requestRD. In the example, the sub-requestRD has
the highest priority, so it is placed in the head and the other
requests are pushed back one by one. After that, the sched-
uler receives a reordering request for a request RE whose
processing result is partially matched. If the sub-request RE
exists, the priority of sub-requests is compared in order of
sub-request RC , RB, and RA before the sub-request RE . Since
the sub-request RE has the same priority as the sub-request
RA, the sub-request RE is located after the sub-request RA and
before the sub-request RB.

C. REORDERING WITH SLACK-AWARE
SUB-REQUEST INSERTION
The proposed reordering method does not determine to
reorder until the processing of at least one sub-request is
completed. When all the sub-requests of urgent requests
are already waiting in a heavy queue, a large delay is
inevitable because the reordering condition is satisfied late.

FIGURE 4. Illustration of scheduling examples based on reordering
requests. Each figure describes a snapshot of when each reordering
request is processed. The matched request has a higher priority than the
partially matched request.

To overcome the shortcoming, our scheduler accompanies
the slack-aware sub-request insertion scheme, which is
the strength of Slacker [15] among the last studies. The
slack-aware sub-request insertion scheme selects the loca-
tion to be inserted by calculating the slack when inserting a
sub-request into the chip-level queue.

The scheme requires additional hardware resources to
manage slack. Each sub-request queue has a set of regis-
ters indicating the estimated time to end processing for all
inserted sub-requests. Each element in the queue contains
its own slack information. The slack information of each
sub-request is set when the sub-request is inserted. The slack
is calculated as the difference from the worst time among
the expected end times of each sub-request queue into which
the sub-request will be inserted. At that time, the expected
operation time of the sub-request is added to the expected
end time. The expected end time decrements every cycle and
is compensated slightly at the end of the queued sub-request.
Each queue contains sub-requests running or pending flash
operations, so these predictions and corrections are required.

When a sub-request is inserted, the location to be inserted
should be determined considering the slack of sub-requests
already pending in the queue and the estimated service time
of the current sub-request. Figure 5 shows an example of
slack-aware sub-request insertion. RE has arrived in the
sub-request queue is shown in the incoming stream. First,
the received RE is placed last in the linked list queue and
is individually checked whether it can move ahead of other
sub-requests pending in the queue. The check repeats the
comparison between the slack of the pending sub-request
and the expected service time of the current sub-request
along with the previous pointer of the linked list. If the
slack of the previous sub-request is larger than the expected
service time of RE , the order of the two sub-requests are
swapped with each other, and the slack of the swapped
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FIGURE 5. Example of slack-aware sub-request insertion.

FIGURE 6. Example of slack calculation when a reordering request arrives.

sub-request is reduced by the amount of time to be delayed.
The comparison and swap are repeated until they arrived
sub-request can no longer move forward. In the example,
the sub-request RE is located after the sub-request RB and
before the sub-request RC .

The slack-aware sub-request insertion scheme should be
accompanied by a modification of the proposed reordering
algorithm. Figure 6 shows an example of recalculating slack
when a reordering request arrives. If the urgent sub-request
has a large slack, the order of urgent sub-request may be
pushed back by another request regardless of priority. To pre-
vent this, the slack of the sub-request RD is updated to
0 when the priority is increased by a reordering request. Also,
the slack of other sub-requests whose order is changed should
be recalculated. If the slack of the reordered sub-request is
greater than the expected service time of the urgent sub-
request, the slack changes to the current slack value minus the
estimated service time, as like RA. When the slack is smaller
than the expected service time, the slack is changed to 0,
as like RC .

D. ANTI-STARVATION
The priority-based reordering approach can result in signif-
icant performance gains for some requests, but it can also
reduce the performance of any other request. For example,
there may be a key request that reads the mismatched page
first and reads the matched page very late. This is called false
negative, and it can lead to starvation for a specific request,

FIGURE 7. Example of delayed key request. Because key request A is
reordered by another key request B, data access and processing for key
request A are delayed.

in theworst case. Figure 7 shows an example inwhich one key
request is delayed and processed due to wrong scheduling.
In the example in Figure 2(c), it is assumed that request A,
whose data access is delayed due to low priority, is a key
request. If there is no reordering, request Awill be completed
at t8, but it will be completed at t10 due to false-negative.

To prevent starvation, the proposed scheduling prevents
all sub-requests for a request from being pushed back and
constraints the maximum number of swaps for low priority
sub-requests. The former is intended to give all requests a
chance to be prioritized. Each request is evaluated for a pri-
ority through data processing for at least one sub-request.
Although it can be judged as a non-key request only due to
the result of the selected sub-request, it may actually be a key
request. However, our scheduling can reduce the possibility
of false-negatives because it utilizes the data structure when
selecting the sub-request. The latter is a common starvation
prevention technique, adjusting the maximum number of
swaps. These anti-starvation techniques cannot completely
eliminate the overhead caused by false negatives, but they
can reduce the amount of overhead caused by incorrect
scheduling.

E. IMPLEMENTATION OVERHEAD
1) PATTERN MATCHING DETECTION ANALYSIS
The SSD requires sub-request queues as many as the number
of chips, and a pattern matching unit on the data path for each
channel. Here, let m be the number of the pattern matching
units and n be the number of sub-request queues. To leverage
the result from the pattern matching unit, reordering requests
should be sent to all sub-request queues.

If the outputs of all pattern matching units are fully con-
nected to all sub-request queues, it has a complexity ofm×n.
However, the proposed structure accumulates the result of
the pattern matching unit to the result analyzer and the result
analyzer delivers the reordering requests sequentially to each
sub-request queue every cycle. Therefore, the connection
complexity is reduced tom+n, and the buffer size to accumu-
late the request is (m – 1)× (the size of reordering request).
In general, because m is significantly smaller than n, the area
overhead of the result analyzer is not large, and connection
complexity can be significantly reduced.
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A high-capacity SSD that uses a lot of low-capacity chips
may have a large n. In this case, it can increase area overhead
due to connection complexity or increase computational over-
head due to frequent reordering requests. Therefore, the pro-
posed architecture constrains the maximum value of n and
uses grouping to reduce the overheads. If the number of
chips is 128 and the maximum value of n is limited to 32,
the architecture can be organized into four groups.

2) SLACK-AWARE SUB-REQUEST INSERTION
Applying the slack-aware sub-request insertion requires addi-
tional logic to calculate slack. When the depth of the
sub-request queue is d and the size of the slack counter is c,
the total number of registers for the slack counter is d×n×c.
Generally, d is 32 or less, and c is 32 to 64 bits depending on
the resolution to calculate the slack. When N is the number
of flash chips, the complexity of the required logic is O(N ).
In addition, each sub-request queue must estimate the total

execution time of the sub-requests that are being processed or
remain in the queue to calculate the slack for the next input.
The number of registers for the total execution time is n× c.

The request queue manager snoops the estimated total exe-
cution time of each sub-request queue, calculates each slack,
and finds the worst when the new request is dispatched. These
operations require additional operators, and the sub-request
insertion time is delayed by the slack calculation, but it can
be hidden by other operations.

3) REORDERING CALCULATION
The complexity of the reordering is low due to the nature of
the sub-request queue, which is a structure of a doubly-linked
list queue. When a reordering request arrives, comparing the
priority is needed to find the target sub-request and then
find the location to change. However, these comparisons are
at most less than the depth of the sub-request queue. The
reordering operation has no performance loss because the
pointers of elements can be changed in one cycle.

Due to the addition of the slack-aware sub-request inser-
tion, reordering is also required when the sub-requests are
inserted. In this case, the overhead is increased because the
priority comparison of 2-bit to 3-bit size is changed to the
slack comparison of 32-bit to 64-bit size. If the module has
only one comparator, reordering can be processed during
maximum d cycles. Since sub-request queues increase by the
number of chips, it is necessary to use fewer comparators
to reduce area overhead. The reordering time increases by
reducing the number of comparators but the latency can be
hidden by pipelining.

V. PERFORMANCE EVALUATION
This section introduces an experimental setup to evaluate the
proposed scheduling and analyzes the experimental results
against other scheduling.

A. EXPERIMENTAL SETUP
To evaluate the proposed architecture and scheduling,
we developed an in-house behavioral design that models

TABLE 1. Experimental configuration of SSD controller and flash array.

an SSD controller. Our synthesizable design is based on
a state-of-the-art commercial SSD architecture and imple-
mented using Verilog HDL. In addition to the SSD controller,
the testbench environment consists of a host system model,
in-storage memory models, and flash memory models, and
they are implemented using System Verilog. The in-house
simulator supports various configurations and can obtain real-
istic results by applying the parameters of the flash memory.
The basic configuration of the simulation is shown in Table 1.

For in-storage processing, the simulator uses features of
the protocol for storage devices called NVMe. The host
transmits the in-storage processing commands to the storage
device using the packet of the vendor-specific command. The
packet is already in the NVMe specification and processed
by sending and receiving it stored in the host memory. Then,
the storage device updates the results to the host memory
and responds to the host while processing the command. The
results and data are sequentially transmitted to the address of
the allocated host memory. The result includes pattern match-
ing detection information such as the number of matched
patterns for each range of logical blocks, and the results and
data are transmitted in units of 512-byte logical blocks. The
programming interface for the vendor-specific command is
as simple as setting or decoding a packet.

As a benchmark for evaluation, we generate 16 workloads
that are referenced from the traces provided by MSR [43].
Each workload has different read/write ratios, data size,
the ratio between key request and non-key request, and
interference rate of background operations. In Figure 8,
each workload is expressed as the ratio of internal data
migration, write request, and read request. Additionally, read
requests are divided into key requests and non-key requests.
To briefly express the experimental results, we categorize
these diverse workloads into three I/O characteristics: write-
intensive, read-write balancing, and read-intensive.

In this experimental environment, we evaluated the perfor-
mance of six different scheduling methods: baseline (PAQ),
Slacker, CARS, FLIN, 2PM, and 2PM+. The first is PAQ
[31], which is a baseline out-of-order scheduler. PAQ groups
requests without resource contention based on physical loca-
tion. The second is Slacker [15], which is a slack-aware
scheduler. When a new sub-request is inserted into the
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FIGURE 8. Access characteristics per workload.

chip-level scheduler, pending sub-requests can be reordered
based on the pre-calculated slack. The third is CARS [58]
that uses scheduling that filters requests in case of resource
conflict and provide fairness for multi-queue. The fourth
is FLIN [49], a scheduler that also includes reordering for
requests to provide fairness for multi-queue. The fifth is
2PM, proposed scheduling that includes a reordering method
based on pattern matching. The sixth is 2PM+, which adds
anti-starvation and slack-aware queue insertion functions
to 2PM.

B. IN-STORAGE PROCESSING LATENCY
The performance of the proposed scheduling is evaluated
by comparing the latency of query processing. Figure 9
shows the average latency during in-storage processing
of each scheduler according to various workloads. The
request types are separated into key requests and non-key
requests. Figure 9(a) shows the average latency for a
non-key request and Figure 9(b) shows the average latency
for a key request. Generally, prior studies have a bal-
anced improvement for both requests. Among them, Slacker
reduces the average latency for non-key requests and key
request by 5.4 % and 4.5 %, respectively. CARS and FLIN,
which are the fairness-seeking schedulers, only improve from
1 to 3 %. On the other hand, the proposed scheduling
increases the latency for non-key requests by 1.5 % on
average. However, the latency for key requests is reduced
by 52.6 % on average. The factor that determines the QoS
in in-storage processing is the completion of key requests,
not non-key requests. Therefore, the proposed scheduling to
process key requests quickly shows a better QoS in in-storage
processing.

We further evaluated the effectiveness of the proposed
architecture in cases where it supports out-of-order data pro-
cessing. Our two-stage pattern matching method removes the
constraints of processing sub-requests in order and supports
out-of-order data processing. Figure 10 shows the pending
delay for data processing of a sub-request that has completed
data access. In the case of the in-order data processing,
the sub-request delay is much higher than that in the case of
the out-of-order data processing. Experimental results show
that when the out-of-order data processing for sub-requests
is supported, performance can be improved compared to the
in-order data processing.

C. PENALTY ANALYSIS
The 2PM scheduler uses anti-starvation techniques to
reduce the penalty of reordering. We analyzed the penalty to
evaluate the anti-starvation techniques. Figure 11 shows the
average delay and the ratio of delayed key requests. The delay
means the difference between the latency of applying each
scheduling and the latency of applying baseline scheduling.
The inefficiency caused by delayed key requests has been
reduced by about 79.8 % compared to before adding the
anti-starvation techniques on average. The ratio of delayed
requests is about 3 % of all requests, and the tail latency
of 99.99 percentile is also lower than 1 ms. These delays are
negligible losses compared to the overall performance gain.

D. SENSITIVITY STUDY
There are additional experiments for sensitivity studies
to analyze how the effects of the proposed scheduling
depend on the different conditions: the request queue depth,
the sub-request queue size, and the number of chips con-
nected to the result analyzer.

Figure 12(a) shows a comparison of the response time
according to the request queue depth. The larger the queue
depth, the greater the number of processing simultaneously
in the storage device. In this case, more sub-requests are allo-
cated to each chip, and more items in the sub-request queue
are reorderable. As the number of reorderable items increases
at the end of sub-request processing, the gain from reordering
increases. Therefore, the proposed scheduling further reduces
the response time for host requests as the request queue depth
increases.

The second case study is about the sub-request queue size
in terms of resources. Figure 12(b) shows a comparison of
the response time according to the sub-request queue size.
The larger the sub-request queue size, such as the request
queue depth, the greater the effect of reordering. The mini-
mum condition for reordering so that sub-requests of a key
request are processed first is that sub-requests are issued
to the sub-request queue. If the sub-request queue size is
small, the probability increases that sub-requests for key
requests cannot be en-queued due to the constraint. There-
fore, the proposed scheduling further reduces response time
for host requests as the sub-request queue size increases.

The third case study is how the proposed scheduling has
the effect according to the number of chips connected to the
request logic. As the number of flashmemory chips in a group
increases, the number of sub-request queues also increases.
As the number of flash memory chips increases, sub-requests
are distributed evenly, but too many sub-request queues can
increase overhead. Figure 12(c) shows a comparison of the
response time according to the number of chips connected to
the request logic. According to experimental results, the pro-
posed scheduling improves the latency of query processing
until the number of chips increases up to 16. However, from
32, the effect decreases slightly. In general, the performance
of an SSD increases as the number of chips increases until the
SSD can fully utilize internal parallelism but the inflection
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FIGURE 9. The average latency during the in-storage processing according to various workloads. The proposed scheduling reduces the
latency for key requests by 52.6 % on average and increases the latency for non-key requests by 1.5 % on average.

FIGURE 10. Difference in sub-request delay between in-order data
processing and out-of-order data processing. Sub-request delay can be
improved by out-of-order data processing.

point of performance can be changed depending on the char-
acteristic of requests.

VI. RELATED WORK
This section presents related work for in-storage processing
architecture and in-storage scheduling, compared with the
proposed architecture and scheduling.

A. IN-STORAGE PROCESSING ARCHITECTURE
In-storage processing is applied in various fields such as com-
pression, encryption, search, and key-value stores. In particu-
lar, in-storage processing is widely used in database systems
that require large data processing, and the field is expanding
to neural networks. Some studies provide the interface for
running various applications on the storage device [3], [35],
while others offload only specific functions suitable for the
storage device [5], [25], [55], [59]. For in-storage processing,

FIGURE 11. Penalty analysis. The penalty by delayed key requests is
improved by applying anti-starvation techniques.

computing resources to process typical I/O commands on the
storage device are generally used, but most of them process
data by adding separate built-in accelerators. [24], [46] [45].
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FIGURE 12. Sensitivity studies depend on three conditions: request queue depth, sub-request queue size, and the number of chips per group. The
proposed scheduling is more efficient than other mechanisms in various configurations, and it can be more effective in high performance.

Recent literature provides an in-storage processing method
that offloads pattern matching application functions such as
regular expressions for query processing. Several of these
studies have suggested multi-stage data processing meth-
ods [18], [24], [45], [50]. Biscuit [18] proposes an in-storage
processing architecture and framework. Biscuit has an accel-
erator that filters data through pattern matching after data
access, and processes only filtered data in an embedded pro-
cessor. REGISTOR [45] also accelerates regular expression
searches in storage devices where large data sets are stored
to solve the I/O bottleneck problem. Unlike Biscuit, all the
data are processed in an accelerator with a deep pipeline
structure. These two studies provide data processing on the
data path closely related to data access but do not utilize data
processing results for data access. REACT [24] proposes a
regular expression accelerator embedded in an SSD and a
data access scheduling algorithm for sub-requests. REACT
increases throughput by buffering the input data of the accel-
erator into internal SRAM rather than DRAM and providing
context switching in the accelerator. However, the inherent
delay due to the strict separation of data access and processing
cannot be completely overcome, and the constraint by the
in-order processing hinders on-the-fly processing.

In addition to pattern matching applications, the proposed
architecture is also useful for other applications that can skip
computational tasks based on partial results. For example,
the proposed architecture is applicable to conditional com-
putation in neural networks [4], [6].

However, there are still challenges to be addressed before
adopting in-storage processing. For example, compatibility
for various systems and changes to the conventional program-
ming model are required. The proposed method uses the open
protocol specification and provides a simple programming
interface, but minor changes in the host system are required
due to the nature of in-storage processing.

B. IN-STORAGE SCHEDULING
As SSDs have become a representative high-performance
storage solution replacing hard disk drives, I/O scheduling

technologies from various perspectives suitable for the char-
acteristics of NAND flash memory have been proposed.
There have been studies on system level scheduling tech-
niques such as HIOS [29], DLBQ [26], Amphibian [41], and
D2FQ [51]. HIOS [29] showed that it can improve the QoS
of devices by estimating garbage collection (GC) cost and
redistributing I/O requests. DLBQ [26] proposed a dynamic
load balancing queue bymodeling the virtual time for the read
and write ratio of flash memory. Amphibian [41] proposed
size-based ordering and GC-aware dispatching. D2FQ [51]
proposed a fair queue I/O scheduler that utilizes weighted
round-robin arbitration of NVMe. However, system level
scheduling has limitations to fully utilize parallelism at the
flash level.

Meanwhile, to reduce the limitations of system level
scheduling and distribute workloads, device level schedul-
ing has also been studied from various perspectives. Among
them, Several studies suggest cache management and
scheduling methods based on the access pattern in the host
interface layer [19], [36], [47], [48]. The scheduling methods
based on logical addresses at the host interface layer are sim-
ilar to system level scheduling. PGIS [19] increases channel
level internal parallelism by identifying hot data based on
trace characteristics and then collecting hot data. AAS [48]
proposes a method to schedule and mitigate redundant writes
based on the analysis of the address pattern. PBWS [36]
identifies frequently written data with patterns and dispatches
them to the same flash blocks having a small erase count.
Co-Active [47] manages internal write-back cache by sepa-
rating hot and cold data, reducing the number of writes and
improving performance. These techniques have the advan-
tage of reducing unnecessary flash memory access. However,
there is a limitation based on logical address, and it is not
suitable for flash level parallelismwhen translated to physical
address due to data migration in storage.

In storage devices, flash level schedulers have also been
studied steadily to increase the utilization of flash memory.
Early research on flash level scheduling technology included
striping schemes for flash level parallelism and avoidance
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schemes for channel and chip conflict. Due to the nature of
flash memory, flash level scheduling is generally used for
out-of-order execution, separating read and write requests
and prioritizing read requests [9], [28], [42]. [44] PIQ+
[16] is an internal scheduler evolved from PIQ [17] that
considers access conflicts when making decisions to dis-
patch I/O requests and improves performance in heavy access
conflict workloads by grouping non-conflicting requests.
PAQ [31] proposed the scheduling method that reduces the
collision of the flash channels and chips by detecting the
physical flash address. Sprinkler [27] improves flash level
parallelism by scheduling I/O requests based on the sta-
tus of internal resources. CARS [58] increases the utiliza-
tion of flash memory and provides fairness by filtering I/O
requests according to conflict status. Slacker [15] proposed a
slack-aware scheduler that improves response times for hosts
by focusing on critical sub-requests that delay I/O responses.
The slack-aware scheduler reorders to match the end of crit-
ical sub-requests when sub-requests have different slack due
to resource contention on each target flash memory chip.
PIOS [56] allocates requests to different batches without con-
flict and prioritizes smaller requests in each batch. These flash
level schedulers show excellent performance in general I/O
requests and are widely used commercially. However, they
do not consider the nature of in-storage processing, where the
priority is applied differently for each request.

As the characteristics of NAND flash memory get worse,
in-SSD scheduling technology is also being studied in var-
ious forms. They consider the GC processing or the wear
level of the flash memory [34] and change striping or phys-
ical allocation methods when writing [37], [38]. [52], [61].
Recently, several techniques have been proposed to reduce
the GC and thereby reduce the burden on scheduling [13],
[57]. WODSA [34] is one of these I/O scheduling tech-
niques, and unlike other studies, it proposes dynamic write
allocation according to wear conditions of the flash memory.
Furthermore, scheduling that improves fairness in terms of
QoS has also been studied [21], [49]. FLIN [49] focuses
on fairness issues caused by highly concurrent I/O flows on
modern NVMe SSDs. It reorders the sub-requests for flash
operations, thus balancing the fairness of the requested I/O.
In addition, scheduling techniques in multi-layers rather than
just one layer are also studied [60].

Now, there are needs for in-storage scheduling that
supports multiple levels and is suitable for in-storage pro-
cessing while improving performance, QoS, and lifetime of
flash memory. In this paper, we propose multi-level schedul-
ing that is suitable for in-storage processing and improves
performance and QoS. In this paper, the proposed schedul-
ing and advanced flash-aware scheduling technologies such
as PAQ, Slacker, CARS, and FLIN are compared through
experimental results.

VII. CONCLUSION
This paper proposes the two-stage data processing and the
scheduling for pattern matching applications. In the proposed

mechanism, data processing is divided into two stages:
pre-processing for sub-requests and post-processing after
merging data. It is because, in an SSD, a request is divided
into several sub-requests, distributed, and stored in several
flash memory chips. The pre-processing for sub-requests is
executed during data access, and the pre-processing reduces
the execution time of the post-processing stage. In addi-
tion, this paper proposes a reordering method based on
pattern matching detection. The scheduler prioritizes key
requests to ensure they are completed earlier than non-key
requests by leveraging the pattern matching results from the
pre-processing stage. The proposed architecture eliminates
the disadvantage of a strict separation between data access
and data processing in a typical in-storage processing archi-
tecture. In addition, the proposed scheduling improves overall
performance by reducing response time selectively for key
requests that need to be sent to the host. The pattern match-
ing detection-guided reordering method may suffer some
penalties due to incorrect predictions. However, experimental
results show that the proposed anti-starvation technique can
reduce overhead.
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