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ABSTRACT In the safety protection system of the railway electric multiple unit (EMU), the safety of the
running part is extremely important. The daily detection of the internal hazard defects of the wheels in
the running parts relies on a professional trackside fault online diagnosis system based on the ultrasonic
sensor probe array data. However, the on-line ultrasonic diagnosis of EMU wheels is usually accompanied
by various interference noises. The defect echo signals collected by the sensor probe array are weak and
are easily submerged by noise, which makes it impossible to perform effective defect identification. This
paper proposes an improved threshold function to overcome the discontinuous shortcomings of the classical
wavelet soft threshold function and hard threshold function in view of the non-stationary characteristics of
the ultrasonic detection signal of the EMU wheels. This paper proposes a sine-type threshold processing
function. It is characterized by adopting gradual compression processing to denoise the echo signal of the
ultrasonic sensor probe array. In order to verify the validity, the continuity at the threshold is observed through
the linear space vector signal, and the algorithm is simulated and tested through the three-dimensional
Gaussian echo mathematical model of the ultrasonic signal and the measured ultrasonic envelope signal.
Experimental results show that the improved threshold function can suppress the noise in the ultrasonic echo
data, improve the signal-to-noise ratio, and retain the waveform characteristics of the defect signal, which is
conducive to defect recognition.

INDEX TERMS EMU wheel, fault diagnosis, ultrasonic data, wavelet transform, threshold denoising.

I. INTRODUCTION
In the high-speed rail system [1], [2], wheels are extremely
important parts in the running unit of the EMU. The wheels
of the EMU play the role of carrying and guiding, and need
to bear large static and dynamic loads. Its quality is directly
related to the operational safety of high-speed rail. Prob-
lems with the wheels may cause wheel collapse, axle cutting,
and even vehicle subversion [3], [4]. Wheel status is one of
the main factors that affect the safe operation of EMU. At the
same time, this is also the focus of the safety inspection of
the running unit, the railway management department has to
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spend a large amount of budget to inspect and maintain the
wheels safety every year [5].

At present, the technical route of wheel safety protection
is mainly developed from off-line detection mainly based
on manual to automatic on-line intelligent detection. The
off-line inspection of wheels [6] requires the train to be out of
service, and the related parts are disassembled and assembled
in the maintenance workshop for non-destructive testing of
ultrasonic, electromagnetic, eddy current and other meth-
ods [7], [8]. The efficiency of overhaul is low, and the quality
of overhaul is subject to operational skills. The overhaul cycle
is every hundreds of thousands of kilometers or months, and
the daily detection of wheel failures cannot be achieved.
The on-line detection method of wheels mainly adopts two
types of vehicle-mounted and rail-side, and the method of
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vehicle-mounted detection mainly depends on the monitoring
system of multiple temperature and vibration acceleration
sensors installed on each bearing [9]. By monitoring the
bearing temperature and vibration signals tomonitor the bear-
ing and estimate the health of the wheel [10], [11], the system
is complex and huge. The trackside system is placed next to
the rails and is not directly loaded on the train. It can be placed
at some keymonitoring stations. In the normal operation state
of high-speed trains, the trackside system can monitor thou-
sands of wheels of all passing trains every day [12], [13]. The
rail-side system mainly uses electromagnetic ultrasonic [14]
and piezoelectric ultrasonic [15] methods, and the electro-
magnetic ultrasonic method mainly detects wheel surface
defects. Piezoelectric ultrasonic method can not only detect
wheel surface defects, but also detect deep internal defects
through specially designed ultrasonic sensor array [16],
which is the main development direction of EMU wheel
fault diagnosis methods. Its significance lies in its ability to
guarantee the safety of vehicle operation and the personal
safety of passengers.

The types of wheel defects are mainly circumferential
cracks and radial cracks [17], [18]. According to the tech-
nical requirements of the on-line detection system of EMU
wheel faults by railway management department, the detec-
tion range of wheel faults is circumferential crack and radial
crack of the rim, and the corresponding detection sensitivity
is respectively the flat bottom ellipse equivalent defect of
40mm for long axis and 30mm for short axis and the trans-
verse hole equivalent defect of ∅3 × 100. The EMU wheel
trackside diagnosis system uses the wheel tread as the contact
surface between the probe and the wheel. To overcome the
shortcomings of small depth of surface wave flaw detection
method, the longitudinal wave and transverse wave probes
were selected. The reliable coverage method for the main
areas where circumferential defects and radial defects occur
is to use transverse wave probes with different incidence
directions and multiple focusing straight probes to form an
ultrasonic sensor array. Longitudinal wave straight probes
are sensitive to circumferential defects, and transverse wave
probes are sensitive to radial defects. The combination of
multiple probes can detect harmful defects. In the actual
application, the signal-to-noise ratio of ultrasonic echo data
is low [19]. Firstly, due to wheel-rail force, the tread has
scratches, peeling and other damages, and the material inter-
face absorbs and spreads attenuation greatly, resulting in
weak reflection echo. Secondly, due to the high-speed signal
acquisition in the online dynamic process, the ultrasonic echo
is often accompanied by various interference waves, mainly
manifested as background noise and scattered noise, the echo
signal of small defects is weak and easy to be submerged
by noise [20]. In addition, the original voltage signal output
by the ultrasonic sensor array is extremely weak, so that
the weak acoustic signal has a greater degree of attenuation
after long-distance transmission. The relatively low signal-
to-noise ratio of ultrasound data is a prominent problem,
which is not conducive to the determination of damage.

Denoising has become an indispensable data processing link
in the online trackside diagnosis system for EMU wheel
faults.

The ultrasonic sensor array echo signal collected by the
wheel rail fault diagnosis system contains both useful defect
information and useless interference information. The useless
interference signal is mainly noise. Severe noise can cover
useful signals, making it difficult to find defects in the echo
signal or the judgment of defects is prone to errors, which
brings great difficulties to the identification of the signal.
To get a true and reliable signal, effective noise suppression
methods need to be adopted to improve the signal-to-noise
ratio. The traditional methods of denoising wheel ultrasonic
data of EMU mainly include linear filtering methods and
non-linear filtering methods [21], such as median filtering
and Wiener filtering. The disadvantage is that the entropy
after signal transformation is increased, the non-stationary
characteristics of the signal cannot be characterized, and the
signal cannot be achieved. Based on time-frequency domain
analysis of short-time Fourier transform [22], [23],Mallat fast
algorithm [24], matching pursuit method [25], etc., multiple
iterations of noise reduction make the calculation amount
very large. Besides, the signal reconstruction method will
cause some defect feature information to be lost. To overcome
the above shortcomings, based on the analysis of the wheel
ultrasonic data and noise characteristics obtained, this paper
applies wavelet analysis to the denoising processing of wheel
ultrasonic data of EMU. This provides effective data sup-
port for the multi-level defect-recognition model integrating
micro-features and macro-expert knowledge in the next step.

The main contribution of this paper is to propose a sine-
type threshold processing function to improve the traditional
soft and hard threshold processing functions of wavelet in
view of the non-stationary characteristics of the ultrasonic
detection signal of the EMU wheel trackside fault diagnosis
system. It is characterized by adopting slow-variation com-
pression processing. As the wavelet coefficients continue to
increase, the amount of compression continues to decrease.
When the wavelet coefficients are greater than a certain
value, no compression processing is performed, so that it can
smoothly transition from the soft threshold function to the
hard threshold function can better process the noise compo-
nents in the ultrasonic signal, retain the signal characteristics,
improve the signal-to-noise ratio, and facilitate the qualitative
identification and analysis of defects.

II. WAVELET DENOISING OF EMU WHEEL ULTRASONIC
DATA
A. WAVELET DENOISING PRINCIPLE AND ALGORITHM
Assuming s (ti) is the original signal, n (ti) is an independent
and identically distributed Gaussian white noise[26] with an
expected 0 and a variance of σ 2, then the acquired signal can
be expressed as equation (1).

f (ti) = s (ti)+ n (ti) (i = 1, . . . ,N ) (1)
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It can be known from the linear properties of the wavelet
transform that the wavelet coefficient wj,k obtained by
the decomposition consists of two parts [27], [28]. One is the
wavelet coefficient uj,k corresponding to the signal s (ti). The
other part is the wavelet coefficient vj,k corresponding to
the noise n (ti).
The variance of white noise in binary wavelet transform

W j
2n (t) can be expressed as equation (2) [29], [30].
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It can be seen from the above formula (2) that as the scale
j increases, the mean value of W j

2n (t)
2
decreases, that is,

white noise has negative singularity. The maximum modulus
of wavelet transform decreases as the scale increases. For the
original signal, the maximum value of the wavelet transform
modulus increases as the scale increases. It is the change
trend of the maximum modulus in the multi-scale space to
distinguish signal and noise [31].

B. IMPROVED THRESHOLD PROCESSING FUNCTION
The classical hard and soft threshold denoising methods pro-
posed by Donoho [32], the formula (3) shows the hard thresh-
old function, and the formula (4) shows the soft threshold
function, both of which have been widely used in practice
and achieved positive results, but both methods have some
potential disadvantages. In the hard threshold method, ŵj,k
is discontinuous at λ, and the signal reconstructed by ŵj,k
will generate some oscillations. In the soft threshold method,
although the estimated ŵj,k has overall continuity, when∣∣wj,k ∣∣ > λ, there is always a constant deviation between ŵj,k
and wj,k , which directly affects the degree of approximation
between the reconstructed signal and the real signal.

ŵj,k =

{
wj,k ,

∣∣wj,k ∣∣ ≥ λ
0,

∣∣wj,k ∣∣ < λ
(3)
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(4)

In order to overcome the shortcomings of soft and hard
threshold functions, formula (5) is an improved bivariate
wavelet threshold algorithm proposed by Liu et al. [33].
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=
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(5)

where α and β are variable parameters, and β is an integer,
which can adjust the order of the transition region.

Although the classic method proposed by Donoho and the
threshold function improved by subsequent scholars have
achieved positive results for specific engineering applica-
tions, in the processing of the EMU wheel fault signal,
the hard threshold algorithm only processes wavelet coeffi-
cients less than the threshold λ, and the wavelet coefficients
greater than the threshold λ also have interference noise.
The derivative of the soft threshold algorithm is discontin-
uous, and there is a deviation between the estimated wavelet
coefficient value and the original coefficient, which makes it
difficult to distinguish between small singular signals, that is,
small defect echo signals and noise. To overcome the short-
comings of classic threshold functions, this paper proposes
an improved wavelet threshold algorithm. When the wavelet
coefficient is larger than a certain value, the compression
process is no longer performed, so that the soft threshold
function can be smoothly transitioned to the hard threshold
function. The expression defines as equation (6), as shown at
the bottom of the next page.

In the formula, µ is a controlling factor and controls∣∣wj,k ∣∣ < λ. n is an adjustment factor that adjusts the degree

of change in the threshold of sin
(∣∣∣λ−µwj,k
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2

)
.

From equation (6), when
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recognized that the sine-type threshold function is a continu-
ous function like the soft threshold function. This overcomes
the problem caused by the discontinuity of the function dur-
ing hard threshold denoising.

When w ≥ λ, f (w) = w − sin
(
λ
w×

π
2

)
× λ,

then when w approaches ∞, f (w)
w = 1−

sin
(
λ
w×

π
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w tends
to 1. When w ≤ −λ, f (w) = w + sin

(
λ
w×

π
2

)
× λ,

then when w approaches −∞, f (w)
w = 1+

sin
(
λ
w×

π
2

)
×λ

w tends
to be 1, so when w increases continuously, f (w) will
gradually exhibit the characteristics of a hard threshold
function.

When w approaches ±∞, f (w) − w tends to 0,
which means that the sinusoidal threshold function takes∣∣wj,k ∣∣ = wj,k as the asymptotic line.
In order to intuitively reflect the influence of parameter

changes on the improved threshold function, the values of µ
and n are respectively taken as µ ∈ [0, λ] and n = 3, and
the threshold function graph is drawn with µ = λ/40 as the
gradient, as shown in Fig. 1.
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FIGURE 1. Comparison of the effects of three threshold functions on
linear space vector processing.

The red line in Fig. 1 is the median curve of the noise
reduction function when the parameters µ = λ/4 and
n = 3, taking into account the characteristics of soft and
hard threshold functions. When the threshold is constant,
the sinusoidal threshold function proposed presents a smooth
transition from soft threshold function to hard threshold
function near the threshold as µ changes, thus avoiding the
problem of oscillations of reconstructed signals caused by
discontinuity of the hard threshold method. At the same time,
the value ofµ directly changes the threshold processing result
of wavelet coefficients. This overcomes the disadvantage
that the permanent deviation of wavelet coefficients in the
soft threshold method leads to the difference between the
reconstructed signal and the actual signal. It can be seen
that the sinusoidal threshold function proposed in this paper
has the characteristics such as continuity, graduality and
high - order derivability.

From the above analysis, it can be known that the sinu-
soidal threshold function combines the advantages of the
soft threshold function and the hard threshold function while
avoiding the disadvantages of the two.

III. SIMULATION AND EXPERIMENT
A. PERFORMANCE EVALUATION OF ULTRASONIC SENSOR
ECHO SIGNAL PROCESSING METHOD
The signal processing method applied to the wheel defect
detection of an EMU requires a processed signal with a
higher signal-to-noise ratio and less signal distortion [34].
For the evaluation and comparison of denoising results, three
indicators of signal-to-noise ratio (SNR), root mean square
error (RMSE), and related coefficient (r) are used, which are
defined as equations (7) to (9).

SNR = 10log10

∣∣∣∣∣
∑

n s
2 (t)∑

n |f (t)− s (t)|
2

∣∣∣∣∣ (7)

RMSE =

√
1
n
[f (t)− s (t)]2 (8)

r [f (t) , s (t)] =
Cov [f (t) , s (t)]

√
Var [f (t)]Var [s (t)]

(9)

Here f (t) is the original signal and s (t) is the denoised
signal. Among them, Cov [f (t) , s (t)] is the covariance
of the original signal f (t) and the denoised signal s (t),
and Var [f (t)] is the variance of the original signal f (t),
Var [s (t)] is the variance of s (t) after denoising.

The unit of the SNR is decibel (dB). The RMSE and r are
dimensionless quantities. The larger the signal-to-noise ratio,
the better the denoising effect. The smaller the root mean
square error and the higher the related coefficient, the higher
the degree of similarity between the denoising signal and the
original signal.

B. SIMULATION SIGNAL TEST
According to the mathematical model of the ultrasonic defect
echo signal [35], a simulation model of the ultrasonic dam-
age data of the EMU wheels is established as shown in the
following equation (10).

s (p, t) = βexp
[
−b (t − τ)2 − αt

]
cos [2π fc (t − τ)+ ϕ]

(10)

β– Defect reflection coefficient
b– Transducer bandwidth
τ– Delay
α– Attenuation coefficient
fc– Centre frequency
ϕ– Initial phase

ŵj,k =
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, 0 ≤ µ ≤ λ (6)
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FIGURE 2. Simulation signal.

A set of ultrasonic signals containing a cubic Gaussian
echo model with noise added is expressed by equation (11).

f (t) =
3∑
i=1

s (pi, t)+ n (t) (11)

The parameters p = [β b τ α fc ϕ] are set as listed in
equation (12), and n (t) is the additional white Gaussian
noise. 

p1 = [0.6 0.5 10 0 0.75 0]
p2 = [0.4 0.5 30 0 0.75 0]
p3 = [0.4 0.5 50 0 0.75 0]

(12)

The noiseless simulated A-scanning signal is shown
in Fig. 2 (a), which is composed of the initial wave, the pri-
mary echo, and the secondary echo. The simulated signal
with white Gaussian noise is illustrated in Fig. 2 (b), which
is superimposed by 5dB noise on the simulation signal. It can
be seen in Fig. 2 (b) that the secondary echo is almost
submerged in the noise, and its SNR is −5dB, RMSE is
0.0895, and the related coefficient r is 0.6066. Without noise
reduction, the secondary ultrasonic echo is difficult to be
directly detected.

In this paper, the noise reduction method of EMU wheels
based on the damage data and wavelet analysis is used. The
processing steps are shown in Fig. 3.

1) DETERMINATION OF WAVELET FUNCTION
Since the useful signals in the ultrasonic detection of EMU
wheels are mainly reflected by the sudden change of the

FIGURE 3. Basic steps of wavelet denoising.

signal, the ultrasonic detection signal usually appears as a
waveform signal with exponential decay in the time domain.
Therefore, the selected wavelet function should have tight
support, exponential decay, and symmetry properties in the
time domain. In order to obtain the correct detection infor-
mation, the defect signal in the ultrasonic detection signal
is highlighted as much as possible, so the selected wavelet
function should have a certain order of vanishing moment.

Four wavelet functions, sym8, db8, coif2, and bio6.8 are
used to process the ultrasonic signals of the EMUwheels. The
other denoising parameters are: signal-to-noise ratio −5dB
before denoising, 4 layers of decomposition, and heursure
threshold criteria, mln threshold adjustment criteria, and soft
threshold functions. From the denoising performance indi-
cators in Table 1, it can be seen that using the four wavelet
functions of sym8, db8, coif2, and bior6.8, the denoising
effect when processing the ultrasonic noise signals of the
EMU wheels is better, this article chooses the db8 wavelet
function.

TABLE 1. Denoising performance index using four different wavelet
functions.

2) SELECTION OF THE NUMBER OF DECOMPOSITION
LAYERS
According to the multi-resolution theory of wavelet, it can
be known that the signal analysis and processing process of
wavelet theory are essentially a process of processing wavelet
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coefficients at different resolutions or different scales. A sig-
nal with a data length of N can theoretically be decomposed
into 2logN layers, and the data length after each decomposi-
tion will be reduced by half. However, each additional level of
decomposition level requires a corresponding increase in the
amount of calculation and storage space required for one level
of decomposition, which does not contribute to engineering
practice. Besides, corresponding research points out [36] that
before the number of decomposition layers does not reach
the ideal number of decomposition layers, the increase in the
signal-to-noise ratio is directly related to the increase in the
number of layers. However, after reaching a certain number of
decomposition levels, the signal-to-noise ratio will no longer
increase too much, and in some cases, it will even be greatly
decreased. Therefore, it is not appropriate to decompose the
signal more from the perspective of the calculation amount,
storage amount, or from the perspective of processing effect.
Therefore, in the wavelet denoising process of the wheel
ultrasonic detection signal, the number of decomposition lay-
ers should be appropriately selected. If the number of layers
is too low, the effect of improving the signal-to-noise ratio of
the processed signal is insufficient. If the number of layers is
selected too high, the amount of calculation will increase and
the processing effect will be basically unchanged or reduced.

When analyzing the effect of different decomposition lay-
ers on the denoising effect of the ultrasonic detection signal,
the number of decomposition layers is selected to be 2, 3,
4, 5 and 6, and the other denoising parameters are: signal-
to-noise ratio before denoising -5dB, heursure threshold cri-
terion, db8 wavelet basis, mln threshold adjustment criterion,
and soft threshold function. The denoising effects of different
levels of decomposition are shown in Table 2. It can be seen
that the number of decomposition layers directly affect the
pros and cons of the denoising effect. When the number of
decomposition layers is too small, the noise after denoising
is still relatively large. When the number of decomposition
layers is too hefty, the amount of calculation will increase,
loss of useful information is serious. Therefore, for the ultra-
sonic detection signal of the EMU wheels, the reasonable
number of decomposition layers should be 4 layers, and the
comprehensive performance index is optimal at this time.

TABLE 2. Performance index of wavelet denoising using different levels
of decomposition.

3) CHOICE OF THRESHOLD
In the process of wavelet denoising, different threshold crite-
ria have different threshold expressions. If threshold λ is too
small, the wavelet coefficients will contain too much noise

components after applying threshold processing. If threshold
λ is too big, the useful signal may be removed, which will
cause distortion. The following selects different threshold cri-
teria to compare the denoising effect. Other relevant denois-
ing parameters are: signal-to-noise ratio before denoising is
-5dB, db8 wavelet, mln threshold adjustment criterion, and
soft threshold function, and the number of decomposition
layers is 4 layers.

From the wavelet threshold λ and the denoised signal-
to-noise ratio of the different threshold criteria shown
in Table 3, it can be seen that the denoising effect using
the heursure threshold is better than the rigrsure, sqtwolog
and minimaxi threshold criteria, retaining the usefulness of
the ultrasonic signal to the maximum section. Therefore,
the selection of the heursure threshold is suitable for the
analysis and processing of the wheel ultrasonic detection
signal.

TABLE 3. Wavelet threshold and SNR using different threshold criteria.

4) SELECTION OF THRESHOLD PROCESSING FUNCTION
Choosing different threshold processing functions will have
a significant effect on the wavelet denoising effect of the
ultrasonic detection data. The following are the representative
soft and hard threshold functions and the improved thresh-
old processing function described in this article to compare
the noise reduction of simulated signals with noises ranging
from −5dB to 5dB. The denoising parameters are set as
follows: db8 wavelet base, 4-layer decomposition, heursure
threshold criterion, mln threshold adjustment criterion, using
the signal-to-noise ratio after denoising as an indicator, and
compare their effects on ultrasound signals under different
noise levels. It can be seen from Fig. 4 that the signal-to-noise
ratio of the improved threshold function is higher than the soft
and hard threshold functions.

Fig. 5 shows the denoising effect of the soft thresh-
old function, the hard threshold function and the improved
threshold function on the noisy signal with a signal-to-noise
ratio of −5dB shown in Fig. 2(b). It can be seen from
Fig.5(a) and Fig.5(b) that after using the soft threshold func-
tion and the hard threshold function to denoise, the noise is
removed, but the secondary echo submerged in the noise is
lost, and the original signal and the primary echo signal have
large distortions. Fig.5(c) shows that after using the improved
threshold function to process the noise signal, the secondary
echo signal can be effectively detected.

Under the premise of smooth transition between the noise
and the signal, the parameters µ and n of this proposed
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FIGURE 4. Denoising comparison of different SNR signals.

FIGURE 5. Noise reduction effect comparison.

method will affect the noise denoising effect. The optimum
denoising effect will be obtained by choosing the appropriate
values of µ and n. As shown in Table 4, when µ = λ/4

TABLE 4. Comparison of denoising performance of different threshold
functions.

and n= 3, the SNR and related coefficient obtained by the
improved threshold algorithm is the largest, and the RMSE
of the original signal and the estimated signal is the smallest.
The higher the similarity coefficient is, the estimated signal
is closer to the original signal, and the denoising effect is
better. Compared with the classic soft and hard threshold
functions proposed by Donoho, the improved threshold func-
tion proposed in this paper can further obtain better denoising
performance by adjusting the parameters µ and n.

C. MEASURED SIGNAL TEST
The trackside wheel fault diagnosis system adopts piezoelec-
tric ultrasonic technology to realize the fault detection of
moving EMU wheels, the detection process does not require
manual intervention, its field application is shown in Fig. 6.
The system is mainly composed of probe array units, data
acquisition units, data processing module and other parts,
as shown in the Fig. 7. The probe array units mainly use the
longitudinal wave dual-crystal straight probe with a center
frequency of 2.5MHz. The longitudinal wave straight probe is
more sensitive to wheel circumferential defects and is mainly

FIGURE 6. Field test of ultrasonic diagnosis of EMU wheels.
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FIGURE 7. Online fault diagnosis system for EMU wheels.

used to detect hazardous cracks inside the EMU wheels.
The data acquisition unit excites and collects the ultrasonic
signals. After the ultrasonic echo signals are collected by the
AD chip with a sampling rate of 80MHz, they are filtered and
compressed. In practical applications, flaw detectors are used
to observing the envelope signal to obtain details such as the
distance and amplitude of the ultrasonic echo signal. In data
processing module, decimation and envelope detection are
carried out on the original signal collected at high speed. The
data volume is reduced but the signal details are retained. The
echo signals are composed of 248 data points. The test data
used in the experiments in this paper are multiple sets of data
collected by selecting different types of defects on the EMU

model wheel shown in Fig. 8 through trackside diagnostic
system. The model wheel consists of through hole defect,
flat bottom hole defect, and circumferential crack defect.
The sample wheel damage is detected by the longitudinal
wave method, and the incident angle of the acoustic wave
is 0◦. The test method is to move the sample wheel through
the ultrasonic sensor probe array one by one to measure the
three artificial damage defects five times, and obtain a total
of 15 measurement samples. According to the above noise
reduction method, the ultrasonic sensor probe array signal is
preprocessed, the ultrasonic echo envelope signal is shown
in Fig. 9, and the noise reduction effect is shown in Fig. 10,
Fig. 11 and Fig. 12.
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FIGURE 8. Artificial defects of EMU model wheel.

FIGURE 9. Defect echo envelope signal of model wheel.

FIGURE 10. Denoising effect of through hole defect.

FIGURE 11. Denoising effect of flat bottom hole.

The soft threshold, hard threshold and improved threshold
algorithm are used to denoise the measurement samples.
Table 5 to Table 7 are the performance evaluation indicators
obtained by using soft and hard thresholds and improved

threshold methods. In order to compare the noise reduction
effect more intuitively, Fig. 13 to 15 are two-dimensional
graphs showing the average values of the noise reduction
performance evaluation indicators in Tables 5 to 7. It can
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FIGURE 12. Denoising effect of circumferential crack.

TABLE 5. Performance of through-hole defect denoising under different methods.

TABLE 6. Performance of flat bottom hole defect denoising under different methods.

TABLE 7. Performance of circumferential crack defect denoising under different methods.

be seen that the performance evaluation indexes obtained by
using the improved threshold method for defects are the best,
which are represented by the highest signal-to-noise ratio,
the smallest root mean square error, and the largest simi-
larity coefficient. In addition, it can be seen from the time-
domain Fig. 10 to Fig. 12 and Table 8 that the peak center
position and amplitude characteristics of the noise reduction

signal obtained after the improved threshold method are com-
pared with the signal before noise reduction, the defect peak
center position does not change, and the defect amplitude
characteristics are almost the same, with the lowest deviation
rate, which will not affect the qualitative and quantitative
evaluation of defects. In summary, the three threshold meth-
ods can improve the signal-to-noise ratio and the resolution
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TABLE 8. Peak coordinate values comparison under different threshold functions.

FIGURE 13. SNR comparison of different threshold function denoising.

FIGURE 14. RMSE comparison of different threshold function denoising.

of the signal, but the improved threshold method has better
performance.

IV. DISCUSSION
The experimental results show that both the classical soft and
hard threshold functions proposed by Donoho and the sinu-
soidal threshold functions presented in equation (6) in this
paper can suppress noise. Compared with the hard threshold
and the soft threshold function, both the bivariate wavelet
threshold function mentioned in equation (5) and the sinu-
soidal threshold function proposed in equation (6) add a
smooth transition region within the critical threshold, which
makes the new threshold function have such characteristics as
continuity, graduality and high-order differentiability. Table 9

shows the average denoising signal-to-noise ratio index of the
two functions in equation (5) and (6). It can be seen that the
threshold function of equation (6) has enhanced SNR index
than that of equation (5).

In the wavelet domain, the improved threshold function
improves the discontinuity of the hard threshold function,
which can make the signal after denoising using the new
threshold function relatively smooth, and retain the original
signal edge characteristics. In the measured echo signal of
the wheel ultrasonic sensor array, the signal-to-noise ratio is
often low due to factors such as material interface absorption
and propagation attenuation. Through the improved wavelet
threshold function to reduce noise, it can effectively ensure
that the time domain peak center position and amplitude
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FIGURE 15. Related coefficient comparison of different threshold function denoising.

TABLE 9. SNR comparison under different improved threshold functions.

remain unchanged. The improved signal-to-noise ratio is not
only conducive to defect location and quantification, but also
conducive to the extraction of time-frequency features and
defect characterization [37] of subsequent ultrasonic signals.

In the field of ultrasonic nondestructive testing, defect
positioning, quantitative and qualitative assessment are the
three key issues [38]. Many experimental studies have made
great progress in locating and quantifying defects, and are
constantly maturing and improving. However, due to the dif-
ferent nature, orientation, geometry, surface roughness, and
inclusions of the defect, the reflection characteristics of the
defect to ultrasonic waves are also different. In addition,
the characteristics of the detection system usedwill also affect
the reflection characteristics of the defect to ultrasonic waves.
It shows that the ultrasonic response of defects obtained by
ultrasonic inspection is a comprehensive response, which
makes the characterization of defects a difficult problem.
So far, due to the complexity of the actual ultrasonic sensor
array sound field, the signal-to-noise ratio of the ultrasonic
signal is relatively low. For a specific complex background
and high-speed operation equipment such as the EMU wheel
fault trackside diagnostic system, better defect positioning,
quantitative and qualitative should be performed. The effec-
tive preprocessing of ultrasonic data, such as effective acous-
tic signal recognition and noise removal, still needs further
study.

V. CONCLUSION
According to the prominent noise problem in the applica-
tion of trackside ultrasonic damage data of EMU wheels,
combined with the distribution characteristics of noise in the
time-frequency domain and the advantages of wavelet soft
and hard threshold denoising methods, an improved thresh-
old function is proposed. The linear space vector processing
results show that adjusting the values of µ and n by the
improved threshold function can make the improved thresh-
old function flexibly change between hard and soft thresh-
olds. The appropriate adjustment value enables the improved
threshold function to retain the high frequency part of the
useful signal during threshold processing, which is better
to suppress the signal oscillation phenomenon. The noise
reduction results of the simulated signal and the measured
signal show that the improved threshold function improves
the signal-to-noise ratio compared with the soft threshold
function and the hard threshold function, while further reduc-
ing the root mean square error and has a higher similarity
coefficient. The improved threshold function is easy to imple-
ment in engineering applications, which provides favorable
conditions for intelligent diagnosis of EMU wheel defects
through damage morphological data.
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