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ABSTRACT Current clinical approaches to diabetic foot (DF) treatment mainly rely on clinician vigilance
and laboratory test, which have significant limitations, such as the high cost involved in the diagnosis and
the high demands for professional skills of clinicians. At present, the research on DF prediction has mainly
focused on the regression analysis of clinical data and the recognition based on foot ulcers skin. In view of
this situation, we examine the patients’ fundus images to explore an efficient way for DF prediction. In this
paper, we have proposed a DF prediction model through fundus images by radiomics features. Twelve kinds
of radiomics features are extracted, including a variety of features first applied in the field of medical imaging,
describing the information of image texture, direction, phase, and gradient. Subsequently, a two-step feature
selection model is put forward for a large number of radiomics features we extracted for the purpose of
searching for the best combination. Considering the simplicity and performance of the model, we chose
19 features to train the support vector machine model. The obtained model is evaluated with 5-fold cross
validation on abundant clinical data, and the mean prediction performance: area under the curve: 0.9678;
sensitivity: 0.9786; specificity: 0.9161; accuracy: 0.9247, showed the excellence of the model prediction.
Here, we present a new, noninvasive, and efficient detection means for the automatic prediction of DF,
which can help clinicians find potential diabetic foot patients earlier and is expected to be a novel auxiliary

diagnostic tool.

INDEX TERMS Diabetic foot, feature selection, fundus image, radiomics, support vector machine.

I. INTRODUCTION

According to the Global report on diabetes [ 1], first published
in 2016 by World Health Organization (WHO), the preva-
lence of diabetes has risen sharply over the past 30 years.
The number of adults living with diabetes has tripled in the
last 40 years. In 2014, the global prevalence of diabetes was
8.5%, and the number of adults with the disease has reached
422 million. In 2012, the number of deaths directly caused by
diabetes was 1.5 million, ranking it in the top eight causes of
death and the top five among women. Diabetes has become
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one of the major causes of death, disability, and shortened life.
The real horror of diabetes lies not in itself but in a series of
related complications, such as diabetic retinopathy, diabetic
nephropathy, and diabetic foot (DF), which is the main cause
of amputation in diabetic patients.

DF is a common chronic complication in type 2 diabetes,
which is mainly caused by the destruction of vascular endings
and neuropathy, resulting in infection or ulcer of the lower
limbs, or even amputation if treatment is not timely. Bi Y’s
study [2] showed that the average prevalence of DF in the
world was 6.3%. The prevalence rate in North America was
13%, ranking first, and that in Africa was 7.2%, ranking sec-
ond. Asia and Europe were ranked third and fourth with
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5.5% and 5.1%, respectively. Australia had the lowest inci-
dence, only 3%. The current clinical examination methods for
DF mainly include neurologic examination, vascular exam-
ination, and foot pressure examination, but these methods
involve tedious steps and strict requirements for the exam-
iners. A simple and efficient inspection method is urgently
needed.

In recent years, radiomics, with its extraction and anal-
ysis of hidden information in medical images, has helped
researchers make significant achievements in various fields
of medical imaging, especially tumor research [3], [4].
Radiomics refers to the high flux to extract the image features
of a region of interest (ROI) in great quantities, to help
researchers in the data mining of medical images; this data
can be recognized by machine learning algorithms, so as to
help doctors diagnose patients, assess the stages of cancer,
determine the best treatment more accurately, and reduce the
burden on doctors.

Radiomics mainly consists of four steps, namely dividing
the ROIs, extracting the features of the ROIs, selecting and
reducing the dimensions of the features extracted, and estab-
lishing a model to complete the prediction or classification
of diseases. Compared with traditional clinical examination
methods, computer-aided diagnosis technology is known as
the doctor’s “third eye” due to its noninvasive nature, high
efficiency, and accuracy, which plays a crucial role in the
diagnosis and recognition of many diseases [5]-[8].

How to use machine learning algorithms for the data min-
ing of massive raw data remains a current research hot spot.
As a comprehensive data mining method, ensemble learning
has made great achievements in opinion mining [9], [10], text
mining [11]-[13], web mining [14], and medical information
mining [15]. The main idea is to construct a better and more
comprehensive model by comprehensively considering the
results of various feature selection algorithms or classifier
algorithms. Inspired by the idea of ensemble learning, we
separate the features into two steps and get better results than
the single basic algorithm.

Fundus imaging is crucial to medical imaging research.
Since the blood vessels in the fundus are the only blood
vessels that can be observed directly from the body surface,
doctors can check whether there are lesions in the optic nerve
and retina of the fundus by analyzing the fundus images. For
the fundus examination of diabetic patients, current studies
mainly focused on the automatic recognition and classifica-
tion of diabetic retinopathy [16], [17], while another com-
plication of diabetes, DF, has not been reported. In view of
this research status, we proposed an automatic prediction
model for fundus images of DF patients based on radiomics
features. The main contributions of this paper are as
follows:

» To our best knowledge, this is the first time that DF
has been determined by an automated analysis through
fundus images, with encouraging results. It can be used
as an effective way to find potential DF patients.
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FIGURE 1. Main process of the proposed method.

» On the basis of the four commonly used gray-scale
matrix features, we added a total of eight categories
of feature descriptors, which greatly enriched the
extracted information. At the same time, compared
with the case that used only the four gray-scale matrix
features, the newly added features can play a role in
assisting the classification and improving the predic-
tion performance.

» Compared with other researches on radiomics,
the method we proposed does not require a professional
physician to delineate the ROIs of microaneurysms or
bleeders, but adopts a threshold segmentation method
to generate a holistic mask, which saves a lot of man-
power.

> A two-step feature selection model was proposed to
reduce the complexity of the model and find the optimal
combination of the features extracted, which produced
a good effect.

Il. MATERIALS AND METHODS

In this section, we mainly describe the clinical data set used
in the experiment and all the details of our proposed method.
The main work of this paper is shown in Fig. 1.

A. DATASET

This study retrospectively analyzed the general clinical data
and color fundus images of 1198 patients with type 2 dia-
betes admitted to Nanfang Hospital, Guangdong, China from
2004 to 2018, including 1026 cases of common diabetes mel-
litus (DM) and 172 cases of DF, as shown in Table 1. The fun-
dus images are all 1400 x 1400 pixels resolution. All patients
were photographed binocularly by professional nurses using
the mydriasis-free TRC-NW2000 fundus camera (Topcon,
Japan) centered on the macular area and the mid-point of
the optic disc. Among them, there were 125 cases of left
eye image deletion and 87 cases of right eye image deletion.
Finally, we obtained 2184 fundus images. Due to the long
collection time span, the quality of the fundus images was
not uniform, which was caused by various factors. Some of
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TABLE 1. Characteristics of patient cohort.

Type DM DF
Male 560 83
Female 466 89
Male Age Range (y) 18-86 37-89
Female Age Range (y) 18-94 29-89

TABLE 2. Distribution of training and test set.

Type Training Test
DM 1232 521
DF 192 90
Total 1424 611

FIGURE 2. Fuzzy image example. The top line images are of DF patients,
and the bottom line are of DM patients.

the fundus images were very fuzzy, as shown in Fig. 2, which
will adversely affect the follow-up studies. After removing
the fuzzy images, the final dataset was randomly divided into
a training set and test set according to the ratio of 7:3, and
the specific distribution is shown in Table 2. DF patients and
DM patients are labeled as 1 and 0, respectively, which will
be used as the classification label of our model.

B. FEATURE EXTRACTION

In this section, we describe in detail how we got features from
the original dataset, and briefly introduce the basic principles
of the radiomics features we adopted.

1) DATA PREPROCESSING

Image size also has a certain impact on feature extraction.
As we know, high-resolution images contain more informa-
tion, which may have a beneficial impact on the prediction
model. However, sizes that are too large will also increase the
cost of calculation. In this paper, we discussed two different
sizes of images, 350 x 350 pixels and 1400 x 1400 pixels,
to explore the impact of image size on feature extraction.
The results will be shown in section 3. At the same time,
the original fundus images also contained some useless text
information of patients and shots, which needed to be elimi-
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FIGURE 4. Image preprocessing steps on images of different quality.

nated. As shown in Fig. 3, experiments show that the structure
of the fundus images extracted from the green channel was
more obvious, which was more conducive to feature extrac-
tion. Meanwhile, it was necessary to use CLAHE [18] on
the green channel image to eliminate the impact of external
factors as much as possible. Fig. 4 shows the preprocessing
step in detail.

2) TEXTURE FEATURE EXTRACTION

Texture features reflect both the homogeneity phenomenon in
the image and the surface structure arrangement attribute of
the object with slow or periodic changes. In order to extract
more abundant texture features of the ROIs, we tested many
types of texture features, and the specific types are shown
in Table 3. Different from previous radiomics studies, it was
not necessary to manually sketch any ROIs, but a threshold
segmentation algorithm was used to automatically generate a
mask.

Global features are commonly used first-order statisti-
cal features, which can show the statistical characteristics
of images. Gray-level co-occurrence matrix (GLCM [19]),
gray-level run-length matrix (GLRLM [20], [21]), gray-level
size zone matrix (GLSZM [22]), and neighborhood
gray-tone difference matrix (NGTDM [23]) are four common
matrix-based texture features in texture classification. GLCM
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TABLE 3. Radiomics features list.

Descriptor Name Dimension
GLOBAL 3
GLCM 9
GLRLM 13
GLSZM 13
NGDTM 5
LBP 256
MRELBP 800
BPPC 1062
IWBC 2048
GDP 256
LFD 512
MBC 3072
LTrP 256

describes the joint distribution of two pixels with a certain
spatial position relationship and can be regarded as the joint
histogram of two-pixel gray pairs, which is a kind of second-
order statistics. GLRLM can reflect the comprehensive infor-
mation of gray images about direction, adjacent interval, and
amplitude variations. GLSZM is used to calculate the con-
nected number of voxels in an image. If the adjacent voxels
have the same gray level, then these voxels are connected.
NGTDM represents the difference between the gray value of
a point and the average gray value in its neighborhood, and
stores the sum of the differences between all gray levels and
their average gray values in the matrix. Before extracting the
above features, we carried out three preprocessing operations
on the images, namely wavelet band-pass filtering, isotropic
resampling, and gray-scale transformation to obtain more
abundant texture features with reference to [24].

i) Wavelet band-pass filtering: to avoid the influence of
noise and highlight the difference of different band-
widths, we used the “Sym8” wavelet basis function
to decompose and reconstruct the images in this work.
We use ‘W’ to denote the ratio of high and low fre-
quency coefficients.

ii) Isotropic resampling: to make the extracted texture fea-
tures more abundant, this operation was taken to obtain
images with different resolutions. We use ‘S’ to denote
the size of isotropic resampling.

iii) Quantization and gray level transformation: to reduce
computational complexity and extract more texture
features, this operation was taken to convert images
to different gray levels. Two important parameters in
this operation, namely, the quantization algorithm and
number of gray levels, were denoted by ‘Algo’ and
‘Ng’, respectively. With respect to the quantization
algorithm, two algorithms were chosen in our work,
namely, equal-probability [24] and Lloyd-Max quan-
tization [25], [26].
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TABLE 4. Parameters used in gray matrix-based texture features.

Values
W=[1/2,1,3/2]

S = {in-pR*, 1,2, 3}
Algo = {Equal, Lloyd}
Ng =8, 16, 32, 64]

Parameters Name

Wavelet band-pass filtering
Isotropic voxel size
Quantization algorithm

Number of gray level

*in-pR, Ng denote initial in-plane resolution, and gray levels, respectively.

The same preprocessing procedure with different parame-
ters resulted in different features. All parameters are shown
in Table 4. It is remarkable that procedure iii) was used on
GLCM, GLRLM, GLSZM, and NGDTM only.

Local binary patterns (LBPs) [27] are a kind of common
local texture descriptor; it encodes the pixel points by com-
paring the pixel values between the central pixel and the
surrounding pixels, and concatenates them in a certain order.
Finally, the histogram is calculated to obtain the characteris-
tics of the local texture. LBPs have been widely used in pat-
tern recognition, face recognition, medical image classifica-
tion, and other fields for its excellent description performance
and robustness. Following their success, many varieties of
LBPs and the features inspired by LBP’s coding have been
developed. Reference [28] proposed a novel variant of an
LBP named Median Robust Extended Local Binary Pattern
(MRELBP), which can calculate multiscale LBP descriptors
by comparing the median of the image on a novel sampling
scheme effectively, so that it can capture more texture infor-
mation of micro and macro structure to make features more
robust. Binary Pattern of Phase Congruency (BPPC) [29]
combines phase congruency and LBPs to highlight the edges
and lines to get multiscale local features. Yang et al. [30]
advanced the IWBC, which improved the performance in
some uneven areas compared with the weber local descriptor
(WLD). Gradient directional pattern (GDP) [31], [32] is a
kind of feature descriptor that encodes the texture informa-
tion of the local area by quantifying the gradient direction
angle. The obtained GDP features retain more information
than the method based on gray level, because the gradient
operator can effectively enhance the edge information of
the image. A local frequency descriptor (LFD) [33] is a
descriptor that represents local phase and amplitude infor-
mation; it was first proposed for low-resolution face image
recognition, and achieved relatively robust performance. The
LFD is also included in the list of texture feature extrac-
tion because there are also low-resolution images caused by
photographic conditions in medical images. Monastic binary
coding (MBC) [34], [35] is a kind of texture feature descrip-
tor based on monogenic signal analysis. The original image
can be decomposed into three complementary components:
amplitude, direction, and phase through monogenic signal
analysis and a Reese transform. Then, a series of MBC fea-
tures can be obtained by coding the selected neighborhood,
where have lower time and space complexity than those based
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on the Gabor transform. LTrP [36], [37] encodes the transition
of intensity change in different directions over a local area.

The above 13 kinds of radiomics features include the infor-
mation of image gray, gradient, direction, phase, frequency
and so on, which can describe the fundus image more com-
prehensively.

C. FEATURE SELECTION

Due to the high dimensions of radiomics features and the
large amount of redundant information they contain, feature
selection operation is needed so as to screen out the best
feature combination. The feature subset needs to be concise,
representative, and distinguishable. Concise meaning that the
number of features we choose could not be too much. Oth-
erwise, the complexity of the model will be increased. Rep-
resentative meaning that the features we choose must be
the main component of all the features and highly relevant
to the categories. Distinguishable meaning that the features
we choose need to have low correlation between each other
to prevent redundant information and overfitting. In conclu-
sion, this paper proposed a two-step feature selection model.
Firstly, the basic feature selection algorithm was used to pre-
liminarily screen the features to obtain a preliminary feature
subset containing K features. For the obtained preliminary
feature subset, forward feature selection was used to fur-
ther screen the optimal feature combination. In this process,
the bootstrap4-0.632 method was used to ensure the stability
of the model.

1) LASSO REGRESSION FEATURE SELECTION
Since the feature subset in 2.2 contains many kinds of fea-
tures, their value ranges are also different. Normalization is
needed for the feature subset to eliminate the influence of
different dimensions. The normalization formula used is as
follows:

X - Xmin
Xinax — Xomin
where X denotes the features, Xmin and Xpax denote the
minimum and maximum value of that dimension feature,
respectively, and Xporm denotes the normalized feature. Lasso
regression [38] refers to adding an L regularization term on
the basis of the original loss function. Regularization function
is the embodiment of the structural risk minimization strat-
egy, which is to select the model with a smaller loss function
and model complexity at the same time. L| norm can help the
model to obtain a sparse solution more easily, so as to filter
features.

The basic loss function used in our experiment was the
mean square error (MSE), and the L| regularization term was
added to the MSE to form the loss function J (w) used in our
work:

Xnorm =

1 m
Jw) =~ Z i —wlx)? + A wll; (x> 0)

where w, m, x, and y denote weight, number, value and label
of the feature respectively. A denotes the penalty coefficient,
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which is set by experiment. Considering the computational
complexity and Lasso selection results, we set the size of
feature subset to 30 in this work.

2) SUPPORT VECTOR MACHINES

In our work, we used a cost-support vector machine (C-SVM)
[39], [40] as the prediction model for DF prediction. C-SVM
has two main parameters: penalty factor C and the type
of kernel function. In addition, there is another significant
parameter y when the type of kernel function is ‘RBF.” C is
the penalty coefficient, that is, tolerance to error. The larger
the C, the less tolerance of error. The generalization ability
may be poor if C is too large or too small. So, it is appropriate
to use a grid search method to determine the range of C and
y values. Then, after follow-up experiments to find the best
combination of parameters, a 5-fold cross validation was also
used to select the parameters in our work. More experimental
details will be described in section 3.2.

3) BOOTSTRAP+0.632

The partition of the training set and test set also plays a
key role in the performance of the model when training
the prediction model. The same model may behave differ-
ently in the partition of different datasets. In order to elim-
inate the model performance instability caused by the dif-
ferent partition of datasets, we adopt the imbalance-adjusted
bootstrap+0.632 [41] method to achieve this purpose, which
is sampling with return. For example, assuming that D is the
sample set with d samples, we sample one at a time with
return, d times. Let D* denote the sample set selected, named
the internal training set, and D? denote the sample set that did
not appear, named the internal test set. Since the probability
of selecting each sample is 1/d and the corresponding proba-
bility of not being selected is 1-1/d, the probability of never
being sampled ford times is (1-1/d) d. If d is relatively large,
the probability is approximately 0.368, that is, 36.8% of the
samples are used as the test set, and the proportion of the cor-
responding training set is 63.2%. The nBoot internal training
set and corresponding internal test set can be obtained after
repeating the operation above nBoot times, which is set to
200 in our work. The evaluation index of this method will be
explained in section 3.1.1 in detail.

4) FORWARD SELECTION

In order to fully consider the diversity of the combination of
features, we used the method of forward selection to further
screen features based on AUC g32 of SVM. Considering the
conciseness of the final model, we plan to control the order of
the model within 20, that is to say, we will ultimately select up
to 20 features to build the prediction model. The pseudocode
of the forward selection is shown in Fig. 5 below.

D. ESTABLISHMENT OF PREDICTION MODEL

Regarding the final prediction model, we once again chose
SVM owing to its excellent performance. Finally, the model
was tested on the pre-divided test set, and the specific
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ALgorithm:

Forx=1to p
@ =@u feature _x
for order =1: maxorder
@ =0@u feature _k v...0 feature _k,, (k=12,...pnk#x,
@ has C;\"" combinations)
Compute AUC, ., and S, ., on all ¢ and chose the best one for each order
end

Return: Best combination of each order with its performance

FIGURE 5. The pseudocode of forward selection.

performance indicators of the model will be analyzed and
discussed in followed section.

Ill. EXPERIMENT SETUP AND RESULTS ANALYSES

In this section, we introduce all details of the experiment and
analyze the results. We first introduce the experimental steps
and tools of implementation. Results of the methods proposed
in this paper are indicated in sequence.

A. EXPERIMENTAL STEPS

1) EVALUATION

In order to evaluate our experimental results more objectively,
seven evaluation criteria are adopted in this paper: accuracy
(acc), sensitivity (sens), sensitivityg g3z, specificity (spec),
specificityg ¢32, area under the curve (AUC), and AUCy ¢3>.
Among them, the accuracy can represent the overall clas-
sification accuracy of the model, and it is also the most
commonly used evaluation index. However, when the num-
ber distribution of classification objects is unbalanced like
the dataset used in our work, it cannot fully represent the
advantages and disadvantages of the model. Sensitivity can
show the sensitivity of the model to the positive samples. The
higher the sensitivity, the lower the missed diagnosis rate.
The higher the specificity, the lower the misdiagnosis rate.
AUC refers to the area under the ROC (receiver operating
characteristic) curve. The horizontal axis of the ROC curve
is the false positive rate (FPR) and the vertical axis is the true
positive rate (TPR). The specific definitions of each index are
shown in the following formulas:

N TP
spec = ——, sens =TPR= ———
TN + FP TP + FN
FP TP + TN
FPR

TINtrP T TPYFPLIN+FN

where TN and TP denote true negatives and positives,
respectively. Meanwhile, FN and FP denote false negatives
and positives, respectively. AUCy ¢32, specificityg 32, and
sensitivityg 32 are the evaluation indices formed by the
bootstrap+0.632 self-service sampling method, which are
used to evaluate the model performance when training the
model. The specific definitions are as follows: AUCy 632, as
shown at the bottom of the next page,
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where AUC(X*, X7¢) and S(X*¢, X¥?) denote the AUC
and S of the model which was trained on X*? (internal
training set) and tested on xrd (internal test set). Accord-
ingly, AUC(X, X) and S(X, X) are similar. In addition, 5-fold
cross validation [42], [43] is used to ensure the stability and
reliability of the results.

2) IMPLEMENTATION

The proposed algorithms were implemented and verified in
MATLAB (2017a). CNNs were constructed and trained in
python (3.6) and keras (2.2.4). All the experiments were car-
ried out on a computer with Intel(R) core(TM) i15-6500 CPU
@ 3.20GHz, 8 GB memory, and one NVIDIA Titan X GPU.
The computer operating system was Windows 7 Professional
(x64).

B. RESULTS

1) COMPARISON WITH OTHER METHODS

In order to highlight the advantages of the proposed model,
we compare some other algorithms and discuss them in this
section. Three algorithms were considered as the basic fea-
ture selection algorithm, which are Lasso, ReliefF [44], and
Mutinffs [45]. Lasso is affected by the parameter value ‘A’
and ReliefF is affected by the parameter value ‘k’. In this
paper, the feature selection algorithm and its specific param-
eters were determined by pre-experiment. The specific steps
are as follows. Three algorithms were used to select fea-
tures on the pre-divided training set containing 1424 fundus
images. Then, a C-SVM was trained on the selected features
and tested on the pre-divided test set containing 611 fundus
images. The RBF kernel was used as the kernel function.
Since it is the pre-experiment of the selection algorithms,
we did not search the grid to find the parameters, but set the
default parameters uniformly as C = 1000 and y = —0.2.
Considering the uneven distribution of the two types of data,
we added weight information to the selection of features and

training of C-SVM. The setting of weight is shown below:
Weightpositive _ Numberpositive

welg htnegative Number negative

As shown in Fig. 6, the best parameter ‘k’ of the ReliefF
algorithm is 16. There are two kinds of parameter values of
the Lasso algorithm, ‘LambdaMinMSE’ and ‘LambdalSE.
shown in Fig. 7. In this paper, ‘LambdalSE’ was selected as
the optimal parameter, so that more feature information can
be obtained within the allowable error range. Then parameter
‘A’ of Lasso was set to 0.075, and 33 features were selected.
In addition, we directly used the Lasso regression model to
predict DF, and compared with the model proposed in this
paper. The specific results are shown in Table 5.

We also used transfer learning (learning from Ima-
genet) to train three classic CNN models (Alex-Net [46],
VGG-Netl6 [47], and Res-Net18 [48]) and compared them
with the proposed method. The weights of the layers before
the fully collected layer were frozen during fine tuning.
When training the network, the pre-divided training set was
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k=20 0.791
k=19 0.784

k=18 0.793
k=17 0.795
k=16 0.796

k=15 0.787
k=14 0.772

k=13 0.761

k=12 0.773

k=11 0.769

k=10 0.769 # AUC of the model

0.74 0.75 0.76 0.77 0.78 0.79 0.8

FIGURE 6. AUC of prediction model with different values of parameter ‘k’
in ReliefF algorithm.

divided into a training set (1137 images) and verification set
(287 images) according to the ratio of 8:2, and the pre-divided
test set (611 images) was still used to evaluate the network
performance. Since training CNN required a large amount
of data, we obtained small patches by randomly cutting the
ROI of the original images (1400 x 1400 pixels) for 10 times.
Then, we used affine transformation, such as flip and rotation,
to further enlarge the data by 5 times, and finally obtained
62535 training data and 15785 validation data. CNN training
parameters were set as follows: learning rate = 107>, loss
function = ‘focal loss’, optimizer = ‘SGD’, batch = 16,
number of iterations = 200.

As shown in Table 5, the performance of Lasso and ReliefF
was significantly higher than that of Mutinffs, and Lasso’s
was slightly better than ReliefF’s. In light of the results,
Mutinffs does not work well on unbalanced data, that is to say,

Cross-Validated MSE of Lasso Fit

0.5
0.45
0.4+
0.35+
L
%)
b X L e —
0.3+
0.25+
0.2+ e T - MSE with Error Bars
o LambdaMinMSE=0.036
o Lambda1SE=0.075
015 PR N x TIPS P N N PR N " PR
107 1072 1073
Lambda

FIGURE 7. The parameter ‘A’ of Lasso algorithm was selected through
10-fold cross validation and MSE evaluation.

it prefers to forecast the sample to the majority class. Lasso
and ReliefF were used as the basic algorithm of the two-step
feature selection model in the following experiments. The
results showed that compared with the model constructed by
the single feature selection algorithm, the two-step feature
selection model proposed in this paper can effectively find
the optimal feature combination, and the Lasso-SVM model
has the best performance. Although we used focal loss to
increase the cost of misclassification of DF, the prediction
model based on CNN:ss still generally performed poorly in the

D
AUC) 632 = é Z x[(1 — a(d)) - AUCX, X) + a(d) - AUC'(X*¢, XV 9]

d=1
where AUC'(X*?, x7%) =

max{0.5, AUC(X*?, X7},

@ 0.632
o =
1 —0.368 - R(d)
lifAUC(x*, xvd) < 0.5,
AUCX,X) — AUC(x*, xvd AUC(X, X
and R(d) = X, X) ( ) g AVCXX)
AUC(X,X)—0.5 AUC(X*d, xrd)
0 otherwise.

1 D
Soer2 = 55 D [(1 = @) - SX, X) +a(d) - SK*, X7

d=1
0.632
h dy=—""——,
where o(d) = T4 38 R ()
S(X,X) — S(x*, xrd) S(X,X)
1 > 1,

and R(d) = SX, X) Sx*d, xrd)

0 otherwise.

for S : Sensitivity, Specificity
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TABLE 5. Performance of three feature selection methods.

TABLE 7. Features in initial feature subset.

Algorithm AUC Sen Spec Acc Order Feature x Feature name  Feature x  Feature name
Mutinffs+SVM 0.7495 0.7111 0.8196  0.8036 30 feature 1 NGTDM feature 16 LFD
ReliefF+SVM 0.7960  0.8000 0.8388  0.8331 30 feature 2 GLSZM feature 17 IWBC
Lassot+SVM 0.8412 0.8889 0.8445 0.8511 30 feature 3 NGTDM feature 18 MBC
Lasso Regression 0.8737 0.8111 0.8848 08747 33 feature 4 GLSZM feature 19 MBC
Alex-Net 0.8031 0.7222 0.7486  0.7021 \ feature 5 MBC feature 20 MBC
Vgg-Netl6 0.8124 0.6889 0.8273  0.7758 \ feature 6 MBC feature 21 MBC
Res-Net18 0.8673  0.7778 0.8733  0.8592 \ feature 7 LTrP feature 22 BPPC
ReliefF-SVM(proposed)  0.9136  0.9222  0.8522  0.8625 15 feature 8 MBC feature 23 IWBC
Lasso-SVM(proposed) 0.9471 09889 0.8829 0.8985 19 feature 9 GDP feature 24 MBC
feature 10 MBC feature 25 MBC
) ) L. feature 11 MBC feature 26 MRELBP
TABLE 6. Comparation between high and low resolution images. feature 12 MBC feature 27 MBC
feature 13 LFD feature 28 MBC
Resolution Model Time feature 14 MBC feature 29 MBC
(pixels) order cost AUC Sen Spec Acc feature7 15 MBC feature73 0 MBC
1400x1400 17 1215s  0.9486 1 0.8887  0.9051
350%350 19 74s  0.9471  0.9889 0.8829  0.8985

sensitivity index, which indicates that it is difficult for CNNs
to capture the features of DF in the prediction.

In addition, we analyzed the effect of different resolution
images from two aspects: the efficiency of feature extrac-
tion and the performance of the prediction model, using the
Lasso-SVM model. It can be seen from Table 6 that the
prediction performance of the model constructed from the
features extracted from high-resolution and low-resolution
images was almost the same, but the time that feature extrac-
tion took was nearly 16 times longer for the high-resolution
images. Considering both of them, it is advisable to reduce
the image resolution, extract features, and build models.

2) FEATURE ANALYSIS AND MODEL VALIDATION

Known by the results of section 3.2.1, it can be seen that
the Lasso-SVM model proposed in this paper had the best
prediction performance. Further analysis and validation are
discussed in this section.

After Lasso filtering, many features were set to 0, and the
top 30 features were selected by weight order. The details
of the 30 features of the initial feature subset are shown
in Table 7. As shown in the table, there are nine types of
features selected, of which MBC is the largest proportion.

Fig. 8 shows the model performance curves of different
orders obtained by using the proposed method. It can be seen
that each index fluctuates greatly at the initial two orders,
and then presents according to their respective trends. The
specificityg ¢32 of the model keeps increasing and is stable
at about 0.93. Meanwhile, the AUCy¢3; is basically sta-
ble at about 0.95. In addition, the sensitivityp 32 gradually
decreases and remains stable at about 0.96. Considering the
stability and performance of the model, we finally determine
the order of the model as 19. The features selected in the final
model are listed in Table 8.

For the selected features, we used the grid search method
to determine the approximate range of model parameters,
as shown in Fig. 9, and then the values of SVM parameters
were obtained by the experiments as follows: C = 219,
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TABLE 8. Features in Lasso-SVM model.

Feature x  Feature name  Feature x Feature name
feature_22 BPPC feature_24 MBC
feature 2 GLSZM feature 15 MBC
feature 3 NGTDM feature_16 LFD
feature 21 MBC feature 25 MBC
feature_30 MBC feature_4 GLSZM
feature_1 NGTDM feature 14 MBC
feature_8 MBC feature 9 GDP
feature_29 MBC feature 17 IWBC
feature 20 MBC feature 11 MBC
feature 13 LFD
1 — — T — T — —
0.95r 7 Bl 3
o 091 ]/
3]
C
@
£ 0.8
g .
0]
a
=
2 o7}
&
2
2
o
06 —AUC0.632
Sensitivity0.632
- - - Specificity0.632
0.5
012345678 91011121314151617181920
Model Order

FIGURE 8. Model performance of different order.

y = 27°. To observe the prediction performance of the
model more clearly, we drew the SVM decision value sigmoid
curves on the training and the test sets (Fig. 10), and listed the
corresponding confusion matrix (Fig. 11). The corresponding
evaluation indices of the training set and test set are shown
in Table 9. At the same time, the ROC curves of the model on
the training and test sets are shown in Fig. 12.

The pre-divided training set did not participate in the train-
ing process of feature selection, which reflected the general-
ization ability of the model to a certain extent. However, there
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TABLE 9. Index of the proposed model on training and test set.
1t
Index AUC Sen Spec Acc
08 Data
- Training set ~ 0.9793 1 0.9237 0.9340
» Test set 0.9471 0.9889 0.8829 0.8985
So6}
©
£ 0 5 I
2 TABLE 10. The results of 5-fold cross validation.
E 0.4 (a). Training set
e | Train CV1" CV2 CV 3 CV 4 CV 5 Mean
. L AUC 0.9813  0.9809 0.9815 09816 0.9807  0.9812
0.2
Sen 1 1 1 1 1 1
— Sigmoidal response Spec 0.9233  0.9229 0.9223 09230 0.9221  0.9227
” o s orot Acc 09339 0.9335 09330  0.9337  0.9329  0.9334
: . . ! (b). Test set
4 2 o 2 4 Test CVl __CV2 CV3 CV4 CV5  Mean
SVM decision value AUC 09677 09679 09672 09662 09702 0.9678
. . . . Sen 0.9747 09817 0.9788 0.9725 0.9854  0.9786
FIGURE 10. SVM decision value sigmoid curve on training (above) and Spec 09132 09198 09172 09163 09138 0.9161
test (bottom) set.
Acc 0.9219 0.9283 0.9258 0.9238  0.9238  0.9247

" “CV x” means the x" 5-fold cross validation.
is a risk that the model may be unstable due to the single

data partition. Therefore, we combined the two data sets effectiveness of our experiments. The results in Table 10 show
and conducted a 5-fold cross validation to further verify the that the performance of the model could withstand testing.
92784
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FIGURE 12. ROC curve of training and test set.

TABLE 11. Correlation between features of different index and label.

Feature x Spearman coefficient Cross MIC
— r value p value entropy

feature 1 0.4575 7.7043e-106 7.0400 0.3525
feature 2 0.4628 1.5672e-108 13.1020 0.3056
feature 3 0.4875 5.7851e-122 6.4296 0.3586
feature_4 0.2869 7.4200e-40 4.7479 0.2173
feature_8 0.0135 0.5421 14.3499 0.0120
feature 9 0.0272 0.2195 12.4798 0.0220
feature_11 0.0600 0.0068 16.9948 0.0174
feature 13 0.0433 0.0510 12.3310 0.0193
feature 14 0.0207 0.3500 14.1200 0.0171
feature 15 0.0065 0.7680 13.8064 0.0066
feature 16 0.0159 0.4729 13.2334 0.0204
feature_17 0.0243 0.2740 13.0886 0.0165
feature_20 0.0390 0.0790 13.3677 0.0226
feature_21 0.0515 0.0201 12.4459 0.0534
feature 22 0.0893 0.0001 12.3114 0.0579
feature 24 0.0265 0.2327 15.6442 0.0133
feature 25 0.0197 0.3736 15.4821 0.0037
feature 29 0.0027 0.9042 12.5419 0.0139
feature 30 0.0325 0.1433 10.0550 0.0405
G(x) 0.5623 5.0389¢-170 2.3202 0.4742

In order to analyze the role of each feature in the logistic
regression model and prove the superiority of the model,
Spearman coefficient, cross entropy [49], and maximum
information coefficient (MIC) [50] were calculated on the
features. It is clear that the response of the SVM model (G(x))
has better performance than any other single feature shown
in Table 11. Moreover, the traditional texture features based
on a gray matrix still remain as good indicators, while some
new texture features do not perform well in each evaluation
index, but the indices of the model that trains them together
are better than all the individual features. This shows that
the new features play an active role in the construction of a
high-dimensional feature classifier.

IV. DISCUSSION AND CONCLUSION
Diabetic foot, as a serious complication of type II dia-
betes, has the characteristics of being difficult to check,
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expensive treatment, and serious consequences, leading to
lifelong struggles for patients and their families. The tradi-
tional method of DF examination is tedious and not timely.
In order to explore a more convenient and efficient diagnostic
method, we focused on the fundus image of patients, and
proposed an SVM classification model based on radiomics
features. Fundus imaging is a routine method of ophthalmic
examination, which has the characteristics of low cost and
simple operation, that is, it can be obtained immediately
without invasion. In the feature extraction stage, we extract
11882 radiomics features, including many texture features
that are used for the first time in the medical image field.
After verification, some of them were proved to improve
the classification performance. A two-step feature selection
model was adopted to reduce the model complexity and
prevent over fitting. Regarding the first feature selection step,
we compared three feature selection algorithms through pre-
experiment, and finally decided to use Lasso and ReliefF
for basic feature selection method to get a feature subset
containing 30 radiomics features. On the basis of these
30 radiomics features, a forward selection method based on
SVM was designed to further screen the most concise and
optimal radiomics featurescombination. In this process, the
bootstrap+0.632 method was used to generate 200 sets of
internal training and test sets to ensure the stability of the
model. Finally, considering the performance and complexity
of the model, we chose 19 features to train the SVM model,
and obtained excellent prediction results in the pre-divided
and 5-fold cross-validated test set. In addition, we compared
the DF prediction model based on the CNN and single feature
selection algorithm. The model proposed in this paper had
obvious advantages in each index, and further illustrates the
importance of the optimal feature combination.

On the basis of commonly used texture features based
on the gray matrix, we tried using some new features inno-
vatively. Although the performance of these features was
not satisfactory in some correlation evaluation indices, our
experiments proved that they can achieve good results by
combining them reasonably and training the classifier. The
addition of new features provides some new information for
the establishment of the model, such as phase and gradient
information. It has been proved that this information has high
value for DF prediction based on fundus images. The value
of these features for other medical problems remains to be
verified, but our work has presented new ideas for future
research.

However, our model still has some limitations. For exam-
ple, our data are all from the same hospital. Using multicenter
data to verify the model is the key to its clinical application.
In addition, this paper mainly focused on the texture fea-
tures of fundus images, and was not combined with clinical
features. How to combine clinical features with radiomics
featuresis the next direction we need to explore.

Our next work will focus on the integration of deep
learning technology and radiomics. As a new technology,
deep learning has made good achievements in various fields
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with its powerful performance. In the future, we will apply
ourselves to combine the deep learning technology with
radiomics features to improve the prediction performance.
Meanwhile, we plan to integrate this method into clin-
ical examination, and take the result of the model pro-
posed in this paper as an examination index to assist
clinicians in comprehensive diagnosis and analysis of
patients.
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