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ABSTRACT In modern networks, the use of drones as mobile base stations (MBSs) has been discussed
for coverage flexibility. However, the realization of drone-based networks raises several issues. One of
critical issues is drones are extremely power-hungry. To overcome this, we need to characterize a new
type of drones, so-called charging drones, which can deliver energy to MBS drones. Motivated by the
fact that the charging drones also need to be charged, we deploy ground-mounted charging towers for
delivering energy to the charging drones. We introduce a new energy-efficiency maximization problem,
which is partitioned into two independently separable tasks. More specifically, as our first optimization
task, two-stage charging matching is proposed due to the inherent nature of our network model, where the
first matching aims to schedule between charging towers and charging drones while the second matching
solves the scheduling between charging drones and MBS drones. We analyze how to convert the formulation
containing non-convex terms to another one only with convex terms. As our second optimization task, each
MBS drone conducts energy-aware time-average transmit power allocation minimization subject to stability
via Lyapunov optimization. Our solutions enable the MBS drones to extend their lifetimes; in turn, network
coverage-time can be extended.

INDEX TERMS Cellular network, charging drone, coverage-time, mobile base station, scheduling.

I. INTRODUCTION
In modern communication systems, the concept of mobile
base stations (MBSs) has been widely and actively discussed
in order to establish flexible wireless and cellular networking
connections [1]–[7]. To realize such MBS services, many
mobile and network computing systems, i.e., vehicles and
drones, have been used [8]–[13]; 1) the vehicles can be
used in urban areas to improve the capacity of wireless and
cellular systems for serving more users and 2) the drones,
also referred to as unmanned aerial vehicles (UAVs), are used
for extending the coverage of wireless and cellular services
in extreme areas. Because MBS drone technologies aim at
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offering robust and flexible connectivity, Internet-of-UAVs
(I-UAVs) are widely discussed nowadays.

However, the MBS drones are extremely energy-limited.
In modern embedded drone platforms, the operation time is
limited to only a few hours due to battery limitation. Thus,
energy-efficient communication plays a crucial role in MBS
drones. The energy-efficient operation is definitely helpful
for extending the MBS drone operation times; in turn, it is
also useful for extending the network coverage and service
time. As discussed in [14], [15], the concept of coverage-time
is defined as the time until one MBS drone totally exhausts
its own energy. Therefore, it is obvious that extending the
coverage-time is required for network lifetime extension.
To this end, new charging techniques are required. In order
to realize seamless MBS operation in drones (i.e., working as
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MBS drones while being simultaneously charged), wireless
charging technologies [16]–[20] but also a new concept of
mobile drone charging and mobile charging drone concepts
(i.e., another type of drones for charging MBS drones such as
aerial tankers) [18] are essentially required.

There have been several recent studies on how to charge
MBS drones in the literature. Among them, the use of
charging vehicles as proposed in our previous work [8].
Even though it shows reasonable performance improvements,
the drones to be charged should move down toward the
charging vehicle. Then, the role of MBS drones may not be
fulfilled properly. To overcome the drawback, we utilize a
new type of drones, so-called charging drones, which are
designed for providing power sources via wireless charg-
ing to MBS drones, which has been widely studied in the
literature [21], [44]. In addition, due to the fact that the
charging drones are also battery-operated, they also need to
be energy-efficient with a demand of being charged. This
motivates us to characterize a charging infrastructure that is
composed of charging towers in this paper. Since the charging
towers are ground-mounted, they are capable of acquiring
power sources without strict limitations. Note that, due to the
fact that the towers have charging plates, the charging drones
can be served via wireless charging. Such a mobile drone
charging system can be widely used as the next-generation
UAVmodel for surveillance and seamless Internet connection
in many extreme wilds where human access may be unavail-
able, e.g. mountainous areas or vast coastlines.
In this paper, we propose a new energy-efficiency max-

imization problem, which is partitioned into two inde-
pendently separable optimization tasks, under our network
model. Toward this end, as our first optimization task,
we design two-stage charging matching/scheduling, i.e.,
(i) charging matching between charging towers and charg-
ing drones and (ii) charging matching between charging
drones and MBS drones. For the second case, in addition
to the matching decision, the amounts of allocating power
from charging drones to matched MBS drones should be
optimally computed due to the limited power in charging
drones. To solve this issue, we first prove that the problem
is non-convex, thereby converting the original non-convex
formulation into a convex setting that can guarantee optimal
solutions. After conducting this two-stage charging match-
ing/scheduling, as our second optimization task we design
energy-aware data transmission in eachMBS drone due to the
fact that the drones are power-hungry. Inspired by the Lya-
punov optimization [22], a time-average energy consump-
tion minimization framework is proposed by controlling the
transmit power in each MBS drone under system stability.
We note that the beauty of this framework is the realization of
distributed operations, i.e., sharing information among MBS
drones is not required.

A. RELATED WORK
As we mentioned above, drones widely used for many
applications, e.g. video provisioning [23], mobile edge

computing [24], and aerial information sensing [25], can be
a key solution for MBS services in cellular networks. In
order to use the drones for cellular networks, theoretical per-
formance analysis under consideration of practical antenna
configurations [26] and mobility patterns [27] is essentially
required.

There are have been a great deal of studies on drone tra-
jectory optimization for various objectives. Most researches
aim at carrying out transmission rate maximization, trans-
mit power control for energy-efficiency, and latency min-
imization. The research in [28] aims at the maximization
of cumulative information rate (i.e., transmission sum rate)
by optimally controlling the direction of drones using rein-
forcement learning (RL). If there are more than two users,
then the drone will move through the optimal choice via
various Q-learning algorithms. However, since researchers
in [28] do not consider drone’s energy, they get the optimal
trajectories for two users considering communication obsta-
cles. In [29], researchers formulated a problem to find the
optimal drone trajectory in multi-drone environments using a
dynamic non-cooperative game theory; however, a charging
technique was also excluded. There was a study that attempts
to conduct joint power and trajectory optimization, where
drones engage in cooperative communications on amplify-
and-forward mode [30]. As a result, the drone finds an
optimal location, i.e., the distance between users and the
BS, that minimizes outage probabilities. In addition, power
control can be performed to consume less communication
power/energy between the drones which are close to each
other [31]–[33]. Nevertheless, the aforementioned studies do
not take into account the concept of mobile drone charging,
which can be thought of as a practically important scenario.

B. CONTRIBUTIONS
The main contributions of this research are four-fold and are
summarized as follows.

• It is the first attempt to characterize a new mobile UAV
charging system aimed at charging both MBS drones
and charging drones, which is a more feasible scenario
in practice.

• In the model, we formulate two-stage optimization prob-
lems for charging the two-types of drones. We ana-
lyze that the optimization problem for scheduling
between charging drones and MBS drones is non-
convex. We then present a method of transforming the
non-convex formulation into the convex setting, thus
resulting in achieving optimal solutions.

• In addition, we perform distributed time-average trans-
mit power allocation at eachMBS drone subject to queue
stability by virtue of Lyapunov optimization theory. Our
method is beneficial in the sense of guaranteed queue
stability and fully distributed operation at MBS drones.

• Through data-intensive simulations, it is demonstrated
that our matching method remarkably outperforms
several baseline schemes in terms of the average
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FIGURE 1. Reference network model where three types of elements are
deployed. Here, two-stage matching/scheduling is required due to the
inherent nature of our network architecture.

residual energy and the fairness among served drones.
The coverage-time and queue stability are also evaluated
to validate the effectiveness of our time-average transmit
power allocation method at each MBS drone.

C. ORGANIZATION
The rest of this paper is organized as follows. Section II
presents the reference network model and related work.
The proposed two-stage mobile charging and traffic-aware
coverage-time extension method is explained in Section III.
Section IV evaluates the performance of the proposed
method. Lastly, Section IV concludes this paper.

II. SYSTEM MODEL
As a potential UAV configuration, we assume our network
model consisting of three types of elements, i.e., charging
towers, charging drones, andMBS drones, as shown in Fig. 1.

First of all, the charging tower is a static and
ground-mounted infrastructure which can provide power
sources for charging drones. The main objective and purpose
of the charging towers is for delivering power/energy sources
to MBS drones via charging drones for extending cellular
network coverage-time. Because the towers are ground-
mounted, they can get power sources without limitations.
Note that the charging towers are equipped with several
charging plates, thus they can charge multiple charging
drones simultaneously.

Next, the charging drones are flying moving objects which
can be charged by charging towers and then provide their
charged powers to their matched/scheduled MBing drones.
The main objective is for providing powers to MBS drones,
as mentioned. Because they are mobile and battery-operated,
energy-efficient operations are essential.

Lastly, the MBS drones work as mobile cellular base
stations, in specific fixed-position cellular network cover-
age areas, which can be charged by charging drones. Thus,
we design the MBS drones to receive energy supply from

charging towers through the charging drones, where theMBS
drones and charging towers are fixed in their own positions.
Because they are also battery-operated, energy-efficient oper-
ations are obviously required.

In this paper, the sets of charging towers, charging drones,
and MBS drones are denoted as T , C, and M, respectively.

III. JOINT MOBILE CHARGING AND COVERAGE-TIME
EXTENSION
This section consists of algorithm design concepts and ratio-
nale (refer to Sec. III-A) and the details (refer to Sec. III-B).

A. ALGORITHM DESIGN RATIONALE
The proposed method in this paper aims at maximizing
energy-efficiency of our UAV charging system, which con-
sists of charging towers, charging drones, and MBS drones,
subject to system stability. To this end, we formulate our
problem:

max : 9(j,k)

(
Ecj , e

c
j [t]

)
+9(i,j)

(
Ecj ,E

m
i , e

c
j [t], e

m
i [t]

)
︸ ︷︷ ︸

mobile charging matching

− 8(α[t])︸ ︷︷ ︸
dynamic TX power allocation

(1)

where ∀i ∈ M, ∀j ∈ C, and ∀k ∈ T as M, C and T
are the sets of MBS drones, charging drones, and charging
towers, respectively; 9(j,k)

(
Ecj , e

c
j [t]

)
is the matching func-

tion between charging tower k ∈ T and charging drone
j ∈ C so that the energy delivered from charging tower
k to charging drone is maximized when Ecj and ecj [t] are
defined as the energy capacity (i.e., the amount of energy
when the drone is fully charged) at charging drone j and
the residual energy at charging drone j, respectively; and
9(i,j)

(
Ecj ,E

m
i , e

c
j [t], e

m
i [t]

)
is thematching function between

charging drone j ∈ C and MBS drone i ∈ M so that the
energy delivered from charging drone j to MBS drone i is
maximized when Emi and emi [t] are defined as the energy
capacity at MBS drone i and the residual energy at MBS
drone i, respectively. Thus, after the optimal two-stagemobile
charging matching/scheduling, the sum of the first two terms
in (1), 9(j,k)

(
Ecj , e

c
j [t]

)
+ 9(i,j)

(
Ecj ,E

m
i , e

c
j [t], e

m
i [t]

)
, rep-

resents the overall maximum energy delivery from energy
sources to individual MBS drones. In addition, the third
term in (1),8(α[t]), is the time-average energy consumption
function with respect to transmit power allocation action α[t]
at time t . Then, we aim at minimizing 8(α[t]) at individ-
ual MBS drones subject to system/queue stability by con-
trolling α[t] at each time. We shall specify the three func-
tions (9(j,k), 9(i,j), and,8(α[t])) in Section III-B where each
mathematical program is provided along with its algorithm
details.

It is worth noting that the mobile charging matching is car-
ried out in terms of the matching indices between ∀k ∈ T and
∀j ∈ C and between ∀j ∈ C and ∀i ∈M, whereas the trans-
mit power allocation is performed in terms of the allocation
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decision α[t]. This implies that the above two tasks, corre-
sponding to 9(j,k)

(
Ecj , e

c
j [t]

)
+ 9(i,j)

(
Ecj ,E

m
i , e

c
j [t], e

m
i [t]

)
and8(α[t]), do not share any control parameters and control
actions are independent of each other. Thus, those two opti-
mization tasks can be linearly and independently separable.

The proposed method in this paper is defined in linearly
separable two algorithms, i.e., (i) two-stage mobile charging
matching and (ii) distributed time-average energy-efficient
transmission optimization (i.e., time-average transmit power
minimization) subject to stability.

• For the first, we design our charging matching method
in two-stage, i.e., matching between charging towers and
charging drones and matching between charging drones
and MBS drones. The reason why joint optimization is
not chosen is that the different type of drones can be
operated by different service providers, thus, separable
operations are needed for scalability. More details are in
Sec. III-B1.

• For the second, in order to achieve more battery-
saving, energy-efficient operations are essential. Thus,
a dynamic and distributed energy-aware transmit power
allocation algorithm is designed. The algorithm dynam-
ically works based on queue-backlog status, and this
concept is formulated via Lyapnov optimization theory.
More details are in Sec. III-B2.

The proposed method assumes that the joint mobile charg-
ing and coverage-time extension computation conducts at a
centralized controller which is connected to charging towers
in order to guarantee the stabilized power supply (refer to [4],
[8], [11], [12], [23], [24], [28], [30] and references therein for
the detailed description).

B. ALGORITHM DETAILS
As discussed, the proposed method consists of two
algorithms, i.e., (i) two-stage mobile charging match-
ing/scheduling (refer to Sec. III-B1) and (ii) energy-aware
transmit power allocation subject to queue stability at MBS
drones (refer to Sec. III-B2). Lastly, the computational
complexity of the proposed method is presented (refer to
Sec. III-B3).

1) TWO-STAGE MOBILE CHARGING
MATCHING/SCHEDULING
The proposed charging matching consists of two-stages as
follows:

• Matching between charging towers and charging drones
• Matching between charging drones and MBS drones

Each matching stage conducts within a single unit time u,
as illustrated in Fig. 2. Each stage is explained as follows, for
more detailed optimization solving procedures.

Matching/Scheduling Between Charging Towers and
Charging Drones:Given Ecj and e

c
j [t], the matching function

9(j,k)(Ecj , e
c
j [t]) is materialized below. Specifically, mathe-

matical program for matching between charging drones and

FIGURE 2. Unit time organization: In each unit time u, two-stage
operation conducts (i.e., u = uc + um), i.e., (i) uc for charging the charging
drones ∀j ∈ C and at charging towers ∀k ∈ T and (ii) um for charging
MBS drones ∀i ∈ M using scheduled/matched charging drones ∀j ∈ C.

charging towers can be formulated as follows:

max :
∑
∀j∈C

∑
∀k∈T

(
Ecj − e

c
j [t]

)
· x t(k,j)[t] (2)

s.t.
∑
∀j∈C

x t(k,j)[t] ≤ n
t
k , ∀k ∈ T (3)

∑
∀k∈T

x t(k,j)[t] ≤ 1, ∀j ∈ C (4)

where x t(k,j)[t] is the matching/scheduling index where it is
1 when the charging tower k where ∀k ∈ T is selected to
provide powers to charging drone j where ∀j ∈ C (whereas
it is 0 when k and j are not matched/scheduled) via wireless
charging technologies, and ntk [t] is the number of charging
plates at charging tower k where ∀k ∈ T , respectively. Note
that all parameters in (2)–(4) except x t(k,j)[t] where ∀j ∈ C,
∀k ∈ T are constants, thus, this mathematical program is for
computing optimal x t(k,j)[t] where ∀j ∈ C, ∀k ∈ T , which can
maximize (2).

In (2),
(
Ecj − e

c
j [t]

)
means the difference between full

energy capacity and current residual energy at charging drone
j. Thus, the amount means how much energy can be charged
for the charging drone j (which is defined as charging capac-
ity at charging drone j). As presented in (2), the match-
ing/scheduling between charging towers and charging drones
is for maximizing the summation of the charging capacity of
matched/scheduled charging drones.

In this mathematical program, we have to state that each
charging tower can charge ntk number of charging drones
where ntk is the number of charging plates at charging tower
k where ∀k ∈ T ; and it is formulated as a constraint in (3).
Moreover, each charging drone can be served by a single
charging tower, as formulated in (4).

Once this matching/scheduling decision is made, each
charging tower starts the charging operation for its
matched/scheduled charging drone. The amount of charging
energy via wireless charging is determined as follows:

E tk · η
t
k · η

c
j ·

(
ut −

d(k,j)[t]
sj

)
(5)

where E tk is the amount of charging energy at charging tower
k where ∀k ∈ T , ηtk is wireless charging efficiency at
charging tower k where ∀k ∈ T , ηcj is the wireless charging
efficiency of charging drone ∀j ∈ C, ut is the operation
time for this matching between charging towers and charging
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drones, d(k,j)[t], is the distance between charging tower k
where ∀k ∈ T and charging drone j where ∀j ∈ C, and sj
is the speed of charging drone j where ∀j ∈ C.
Then, the final energy status in each matched/scheduled

charging drone j where ∀j ∈ C is as follows:

min

e
c
j [t]+ E tk · η

t
k · η

c
j ·

(
ut −

d(k,j)[t]
sj

)
︸ ︷︷ ︸

Amount of charging via wireless charging

,Ecj

 (6)

due to the fact that the summation of current residual energy
and charged energy cannot exceed the full energy capacity at
charging drone j where ∀j ∈ C.
Matching/Scheduling Between Charging Drones and

MBSDrones:Given Ecj , E
m
i , e

c
j [t], and e

m
i [t], another match-

ing function9(i,j)(Ecj ,E
m
i , e

c
j [t], e

m
i [t]) is materialized below.

Specifically, mathematical program for matching between
charging drones and MBS drones can be formulated as
follows:

max :
∑
∀j∈C

∑
∀i∈M

v(i,j)[t] · xm(i,j)[t] (7)

s.t.
∑
∀j∈C

e(i,j)[t] · ηcj · η
m
i · x

m
(i,j)[t]

≤ Emi − e
m
i [t], ∀i ∈M (8)∑

∀j∈C
xm(i,j)[t] ≤ n

m
i , ∀i ∈M (9)

∑
∀i∈M

xm(i,j)[t] ≤ 1, ∀j ∈ C (10)∑
∀i∈M

e(i,j)[t] ≤ ecj [t], ∀j ∈ C (11)

e(i,j)[t] ≥ 0,∀i ∈M, ∀j ∈ C (12)

where e(i,j)[t] is the energy to charge for MBS drone i where
∀i ∈ M via charging drone j where ∀j ∈ C which we have
to calculate, i.e., decision variables, and xm(i,j)[t] ∈ F(i,j)[t]
where ∀i ∈M, ∀j ∈ C, respectively. Here, F(i,j)[t] is the set
of feasible matching between charging drones j where ∀j ∈ C
and MBS drones i where ∀i ∈M at time t .
In (7), v(i,j)[t] is defined as the value while a charging drone

j where ∀j ∈ C, is scheduled for charging a mobile BS drone
i where ∀i ∈ M, via wireless charging technologies. The
v(i,j)[t] can be formulated as follows:

v(i,j)[t] =
(
um −

d(i,j)[t]
sj

)
· ηcj · η

m
i ·

ec,max
(i,j)

emi [t]

·

(
ecj [t]− e(i,j)[t]

)
(13)

where ec,max
(i,j) , max

{
ecj [t]− e

c
(i,j)[t], 0

}
and um is operation

time for this mobile charging matching, d(i,j)[t] is a distance
between charging drone ∀j ∈ C and MBS drone ∀i ∈M, ηmi
is the wireless charging efficiency ofmobile BS drone iwhere
∀i ∈M, and ecj [t] is the residual energy at charging drone j
where ∀j ∈ C, respectively. ec(i,j)[t] is defined as the energy

consumption while a charging drone ∀j ∈ C approaches an
MBS drone ∀i ∈M. It can be formulated as follows:

ec(i,j)[t] =
∫ 1t(i,j)

0
fe(t)dt (14)

where 1t(i,j) ,
d(i,j)[t]
sj

and fe(t) stands for the energy expen-

diture in time t . Here, max
{
ecj [t]− e

c
(i,j)[t], 0

}
means that if

current charging drone j where ∀j ∈ C does not have enough
residual energy to move to MBS drone i where ∀i ∈ M,
the value becomes 0, in turn, v(i,j)[t] = 0. Finally, the charg-
ing drone j where ∀j ∈ C cannot be matched with the MBS
drone i where ∀i ∈ M because v(i,j)[t] = 0 (semantically,
the charging drone does not have enough energy to move to
theMBS drone). Note that all variables in (13), except e(i,j)[t],
are constants.

The summation of charged energy by each matched/
scheduled charging drones for one MBS drone i where ∀i ∈
M cannot exceed the charging capacity, i.e., the difference
between full energy capacity and current residual energy at
time i (i.e., Emi − emi [t] where ∀i ∈ M). This is formu-
lated in (8), and then it can be seen that the charged energy
from charging drone j to MBS drone i can be formulated as
e(i,j)[t] · ηcj · η

m
i .

In terms of matching, each MBS drone i can be
matched/scheduled with nmi charging drones where nmi stands
for the charging plates at the MBS drone i where ∀i ∈ M,
as stated in (9). Similarly, each charging drone i can serve
only one MBS drone, as stated in (10).

The energy charging amount at charging drone j where
∀j ∈ C should between 0 and current residual energy status at
time t , ecj [t] where ∀j ∈ C, as formulated in (11) and (12).
Theorem 1: The mathematical program in (7)–(12) is

non-convex optimization.
Proof: Here, we have to prove that (7) and (8) are

not convex in this mathematical program (7)–(12). Note that
the proof considers the simplest case at first, i.e., |C| =
|M| = 1. In this case, the (7) becomes v(i,j)[t] · xm(i,j)[t]
where v(i,j)[t] is defined in (13); and let this equation
be denoted by f1. To show that this given equation is
non-convex, the second-order Hessian of this given real
function should be non-positive definite [34]–[37]. The Hes-
sian

`2 f1 is as follows where the two variables in (7)

are e(i,j)[t] and xm(i,j)[t]:
[
0 −1
−1 0

]
and then the correspond-

ing two eigenvalues are ±1. These values are not all non-
negative, which shows that the Hessian is not positive
definite, thus, finally it proves that the optimization function
is non-convex.

For (8), in a similar way, its second-order Hessian matrix is

as
[

0 ηcj · η
m
i

ηcj · η
m
i 0

]
, and then the corresponding two eigen-

values are ±
(
ηcj · η

m
i

)
, and thus the values are not all non-

negative, i.e., it also proves that the optimization function is
non-convex.
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Finally, in our mathematical program (7)–(12), two terms,
i.e., (7) and (8), are not non-convex. Thus, our given mathe-
matical program (7)–(12) is not convex. �
According to the fact that optimal solutions cannot be

obtained in non-convex programming, it is required to con-
vert this non-convex programming to convex programming,
if possible.
Theorem 2: For the given non-convex optimization pro-

gram (7)–(12), introducing∑
∀j∈C

e(i,j)[t] · ηcj · η
m
i ≤

(
Emi − e

m
i [t]

)
· xm(i,j)[t], ∀i ∈M

(15)

instead of (8) makes the program convex.
Proof: For the non-convex program (7)–(12), xm(i,j)[t] =

0 means the matching between charging drone j and MBS
drone i does not happen. Thus, the corresponding charging is
not occurred, i.e., e(i,j) = 0 and (15) leads to the same result
when xm(i,j)[t] = 0, i.e.,∑
∀j∈C

e(i,j)[t] · ηcj · η
m
i ≤

(
Emi − e

m
i [t]

)
· 0︸︷︷︸
xm(i,j)[t]=0

= 0, (16)

∀i ∈M and thus,∑
∀j∈C

e(i,j)[t] ≤ 0, ∀i ∈M (17)

because ηcj and ηmi are positive, then, e(i,j)[t] = 0 because
e(i,j)[t] is also non-negative.

On the other hand, if xm(i,j)[t] = 1, this (15) is equivalent
to (8). Therefore, in turn, (7) is updated as follows:

max :
∑
∀j∈C

∑
∀i∈M

v(i,j)[t]. (18)

Then, it is obvious that there are no non-convex terms in
this proposed program (7)–(12). �

Eventually, the final form of mobile charging scheduling
for multi-drone mobile base station life time extension can
be expressed as follows:

max :
∑
∀j∈C

∑
∀i∈M

v(i,j)[t] (19)

s.t.
∑
∀j∈C

e(i,j)[t] · ηcj · η
m
i ≤(

Emi − e
m
i [t]

)
· xm(i,j)[t], ∀i ∈M (20)∑

∀j∈C
xm(i,j)[t] ≤ n

m
i , ∀i ∈M (21)

∑
∀i∈M

xm(i,j)[t] ≤ 1, ∀j ∈ C (22)∑
∀i∈M

e(i,j)[t] ≤ ecj [t], ∀j ∈ C (23)

e(i,j)[t] ≥ 0, ∀i ∈M, ∀j ∈ C (24)

where v(i,j)[t] is defined in (13) and our control/decision
variables are e(i,j)[t] and xm(i,j)[t], ∀i ∈M, ∀j ∈ C. Note that

FIGURE 3. Illustration of MBS drone communication architecture.

the equations, i.e., (19)–(24), in this mathematical program
are all linear combinations, by Theorem 1 and Theorem 2.

2) DELAY-AWARE TIME-AVERAGE OPTIMAL CONTROL VIA
LYAPUNOV OPTIMIZATION
In our system,MBS drones essentially require energy-efficient
operation because they are power hungry. In eachMBS drone
i where ∀i ∈ M, allocating small transmit power is helpful
in terms of energy-efficient operations. However, it trans-
mits relatively small number of packets over the air which
introduces delays with the queue of the MBS drone i where
∀i ∈M. On the other hand, large transmit power allocation
introduces more packet transmission whereas it consumes
more energy sources. Eventually, we can observe the tradeoff
between our objective (i.e., energy-efficiency) and stability.
This paper designs a dynamic power allocation method for
energy-efficient operations while guaranteeing queue stabil-
ity. Note that this kind of delay-aware time-average opti-
mization is definitely needed for computing system design
and implementation [38]–[41]. Our considering network
architecture is as shown in Fig. 3. As explained, each MBS
drone observes its own queue and then its own controller
makes the decision for transmit power control/allocation to
its own transceiver aiming at time-average energy-efficiency
maximization subject to queue stability.

We formulate the mathematical program for minimizing
the time-average energy consumption for processing packets
from the queue, i.e., E(α[t]), where the power allocation
decision is α[t], can be presented as follows:

min : lim
t→∞

t−1∑
τ=0

E(α[τ ]) (25)

s.t. lim
t→∞

1
t

t−1∑
τ=0

Q[τ ] <∞ (stability constraint) (26)

In (25), E(α[t]) stands for the energy consumption for
queue departure process b(α[t]) when the given power alloca-
tion decision is α[t]. As mentioned earlier, the power alloca-
tion decision generates a tradeoff between the minimization
of energy consumption and stability of the queuing system
which is related to the average queuing delay.
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Respect to this tradeoff, the Lyapunov optimization
theory-based drift-plus-penalty (DPP) algorithm [22], [38]–
[42] can be used for optimizing the time-average utility
function (i.e., energy consumption) subject to queue stability.
Define the Lyapunov function L(Q[t]) = 1

2 (Q[t])
2, and let

1(.) be a conditional quadratic Lyapunov function that can
be formulated as

E[L(Q[t + 1])− L(Q[t])|Q[t]], (27)

called as the drift on t . After the MBS drone i where ∀i ∈M
observes the current queue length Q(t), how much power
sources are required in each time slot. According to [22],
this dynamic policy is designed to achieve queue stability
by minimizing an upper bound on drift-plus-penalty which
is given by

1(Q[t])+ VE
[
E(α[t])

]
, (28)

where V is an importance weight for power efficiency.
The upper bound on the drift of the Lyapunov function on

t can be derived as follows:

L(Q[t + 1])− L(Q[t])=
1
2

(
Q([t + 1]2−Q[t]2

)
(29)

≤
1
2

(
a[t]2 + b(α[t])2

)
(30)

+Q[t](a[t]− b(α[t])). (31)

Therefore, the upper bound on the conditional Lyapunov
drift is obtained as follows:

1(Q(t)) = E[L(Q[t + 1])− L(Q[t])|Q[t]]

≤ C + E
[
Q[t](a[t]− b(α[t])

∣∣∣Q[t]], (32)

where C is a constant which can be given by

1
2
E
[
a[t]2 + b(α[t])2

∣∣∣Q[t]] ≤ C, (33)

which assumes that the arrival and departure process rates are
upper bounded. According to the fact that C is a constant and
the arrival process a[t] is not controllable, the minimization
of the upper bound on drift-plus-penalty can be as follows:

VE
[
E(α[t])

]
− E

[
Q[t] · b(α[t])

]
. (34)

Here, the concept of opportunistically minimizing the
expectations is used; therefore, (34) can be minimized by
an algorithm that observes the current queue state Q[t] and
determines α[t] at every slot t , as follows:

α∗[t]← arg min
α[t]∈A

[V · E(α[τ ])− Q[t]b(α[t])] (35)

where α∗[t] is the optimal decision at time t .
In order to verity whether (35) works as desired, sup-

pose that Q[t] = 0. Then, the (35) tries to minimize V ·
E(α[t]), i.e., the amount of allocated transmit powers should
be reduced for energy consumption minimization. This is
semantically true because we can focus on themain objective,
i.e., energy-efficient computing, because stability is already
achieved at this moment. On the other hand, suppose that

TABLE 1. Simulation parameters [44].

Q[t] ≈ ∞. Then, the (35) tries to maximize b(α[t]), i.e., the
amount of allocated transmit power should be increased for
speeding up the service process of Q[t]. This is also true
because stability should bemainly consideredwhenQ[t] even
though we sacrifice certain amounts of energy-efficiency to
avoid overflow.

Finally, we confirm that our proposed closed-form math-
ematical formulation, i.e., (35), controls α[t] for minimizing
time-average energy consumption subject to queue stability.

3) COMPLEXITY OF THE PROPOSED METHOD
The proposed method consists of two algorithms. The first
algorithm in Sec. III-B1, i.e., two-stage mobile charging
matching, basically solves two sequential mixed integer
(0-1 binary) convex optimization programs. Since the
0-1 terms (i.e., x ∈ {0, 1}) can be relaxed to real values
with rounding, our problems can be solvable via pure convex
programming, thus resulting in a polynomial-time complex-
ity [34]–[36]. In addition, the second algorithm in Sec. III-B2
has the complexity of O(N ). Finally, we can confirm that the
proposed method works in polynomial-time.

IV. PERFORMANCE EVALUATION
This section describes our simulation setup for performance
evaluation (refer to Section IV-A) and its related evaluation
results (refer to Section IV-B).

A. SIMULATION SETUP
The performance of the proposed charging and dynamic
transmit power allocation method is evaluated via data-
intensive simulations. The simulator is designed with
cvxpy [43], where parameters used in this paper essentially
follow those in [18], [44], [45] and are summarized in Table 1.

As performance metrics in the sense of energy saving,
we use 1) the residual energy at each drone that has been
served after matching, 2) the coverage-time (i.e., the time
when drones start to drop) [14], [15], and 3) the queue
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FIGURE 4. Illustration of residual energy at charging drones in ascending
order.

backlog that measures the queue stability. Since our charg-
ing network model has never been studied in the literature,
there is no state-of-the-art method for fair comparison; thus,
we adopt a random strategy and two-types of greedy strate-
gies, namely greedy-worst and greedy best strategies, as base-
lines for our two-stage mobile charging matching. Here,
the random strategy performs scheduling at random; and
the greedy-worst (greedy-best) strategy allocates more (less)
weights to the served drones (i.e., charging drones in the
first-stage matching and MBS drones in the second-stage
matching) which have higher amounts of residual energy.
Additionally, we adopt the maximum and minimum trans-
mit power allocation strategies, dubbed ‘Max PA’ and ‘min
PA’, respectively, as baseline for our distributed time-average
transmit power allocation.

B. EVALUATION RESULTS
In this subsection, various simulations are carried out to
validate the effectiveness of ourmethod in terms of the energy
saving and queue stability.

First, we evaluate the performance of the first-stage match-
ing (i.e., matching between charging towers and charging
drones). In Fig. 4, the residual energy at charging drones is
illustrated in ascending order (from the charging drone with
the lowest residual energy status up to the onewith the highest
residual energy status), where 25 charging drones and a single
charging tower are deployed in our network. From Fig. 4,
the following insightful observations are found: 1) it is obvi-
ous to see that the proposed method is quite superior to the
two baseline strategies in terms of the residual energy; 2) the
residual energy tends to be evenly allocated over all charging
drones since the optimization in the first-stage matching of
our method is formulated as

(
Ecj − e

c
j [t]

)
for charging drone

j where ∀j ∈ C, which takes into account fairness, whereas
the randommethod exhibits a much higher standard deviation
of the residual energy among charging drones as it does not
account for the fairness; and 3) the greedy-worst strategy
consistently charges only one drone by up to the full energy,
which implies that the other charging drones do not have an
opportunity to be charged, as illustrated in the figure. The

TABLE 2. Statistics of the average amount of residual energy at charging
drones.

FIGURE 5. Illustration of residual energy at MBS drones in ascending
order.

TABLE 3. Statistics of the average amount of residual energy at MBS
drones.

average amount of residual energy at charging drones is sum-
marized in Table 2. Our method reveals significant energy
saving gains over the random strategy while guaranteeing the
fairness. More specifically, it is shown from the table that our
method offers 52.04% and 26.77% improvements in terms of
the average energy and standard deviation, respectively.

Second, we turn to evaluating the performance of the
second-stage matching (i.e., matching between charging
drones and MBS drones). In Fig. 5, the residual energy
at MBS drones is illustrated in ascending order (from the
MBS drone with the lowest residual energy status to the one
with the highest residual energy status), where 25 charging
drones and 50 MBS drones are deployed in our network. As
depicted in the figure, our second-stage matching charges
MBS drones much more fairly and efficiently than baseline
schemes, where the greedy-best (greedy-worst) method allo-
cates charging drones to MBS drones in ascending (descend-
ing) order of the residual energy at each MBS drone. This is
because our method is designed in such a way that the value
function in (13) jointly takes into account (i) the distance
between two-types of drones, (ii) the energy status at charging
drones ∀j ∈ C, and (iii) the energy status at MBS drones
∀i ∈ M. The average amount of residual energy at MBS
drones is summarized in Table 3. Our second-stage matching
also reveals dramatic energy saving gains over the two greedy
strategies. More specifically, it is shown from the table that
our method offers 132.51% and 259.22% improvements over
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FIGURE 6. Illustration of the coverage-time according to the number of
MBS drones.

FIGURE 7. Queue dynamics behaviors in each MBS drone.

the greedy-best and greedy-worst strategies, respectively,
in terms of the average energy.

Third, Fig. 6 illustrates the coverage-time (in the number
of unit times) [14], [15] of our method as the number of
MBS drones, denoted by |M|, increases, where the number
of charging drones, denoted by |C|, is set to 25 and the number
of charging plates in each MBS drone, i.e., nmi in (21), is set
to 1. In Fig. 6, x-axis and y-axis stand for the number of
MBS drones (from 1 up to 50) and the number of unit times,
respectively. As observed in Fig. 6, the coverage-time consis-
tently decreases until the number ofMBS drones equals to the
number of charging drones — the curve tends to be flattened
after |M| = 5 in our setting. That is, when |M| > |C|,
it is highly likely that some MBS drones are not properly
scheduled and will drop. The reason behind this is explained
as follows. EachMBS drone can be served by charging drones
in each unit time; thus, it is possible to maintain a certain
amount of energy at each MBS drone. However, due to the
distance between MBS and charging drones and the energy
status at each charging drone, the status at each MBS drone
would be consistently deteriorated over time. It remains open
how to further enhance the performance on the coverage-time
in such a case (i.e., |M| > |C|).
Lastly, Fig. 7 illustrates the performance of our

energy-aware time-average transmit power allocation in
Sec. III-B2 in comparison with ‘Max PA’ and ‘min PA’
strategies by plotting the queue backlog (unit: 103 bits

in Fig. 7) versus the number of unit-times. From the figure,
our insightful findings are described as follows. The queue
stability of ‘Max PA’ is consistently guaranteed since the
backlog is almost empty in each unit-time at the cost of
significant reduction in energy efficiency; thus, the situations
of zero delay can be realized. On the other hand, the stability
of ‘min PA’ is not achieved as the queue backlog size is
monotonically increasing with the number of unit-times, thus
resulting in the divergence, which may cause a huge amount
of delay, and the built-in queue in each MBS drone may not
be long enough due to the physical limitations in storage and
processing. That is, queue overflow would occur beyond a
certain unit-timewhen ‘min PA’ is employed. On the contrary,
our dynamic time-average transmit power allocation method
is capable of guaranteeing both queue stability refer to Fig. 7
along with bounded delays and energy efficient successfully.
More specifically, in the early stages, our method tends to
allocate a small amount of power for energy efficiency since
the queue backlog is not long yet. As the number of unit-times
increases, the queue backlog reaches at a certain point where
the transmit power needs to be controlled in order to stabilize
the queue status — it is observed from Fig. 7 that the queue
backlog becomes stable after 340 unit-times. In consequence,
our method operates balancing appropriately between the
queue stability and the energy efficiency, which thus enables
our network to extend the coverage-time as well.

V. CONCLUSION AND FUTURE WORK
This paper proposes a novel joint mobile charging and
coverage-time extension method for drone-enabled future
cellular networks. First of all, a two-stage mobile charging
matching algorithm is designed and optimized where the first
stage is for matching between charging towers and charging
drones and the second stage is for matching between charging
drones and MBS drones. In this case, the second stage needs
to optimize the matching/scheduling and the allocation of
powers in each scheduled pair, i.e., non-convex terms exist,
as discussed. In this paper, we convert the given non-convex
terms into convex terms, and then eventually, we formu-
late the given problem as convex programming which can
guarantee optimal solutions. Next, we also design distributed
time-average optimal transmit power allocation algorithm
subject to queue stability in each MBS drones, inspired by
Lyapunov optimization theory – drift-plus-penalty algorithm.
As presented in performance evaluation via data-intensive
simulations, our proposed method achieves desired perfor-
mance improvement, in terms of i) energy efficiency in each
charging drone, ii) energy efficiency in each MBS drone, and
iii) coverage-time extension in each MBS drone.

We remark that the proposed algorithm in this paper
has built purely upon the energy-efficient operations for
coverage-time extension in UAV networks. As a future
avenue, on top of this proposed energy-aware framework, it is
worthy to consider additional performance enhancement in
terms of sum rate maximization, quality of services (QoS),
quality of experience (QoE), and so forth.
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