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ABSTRACT One of the biggest challenges hindering a table tennis robot to play as well as a professional
player is the ball’s accurate motion control, which depends on various factors such as the incoming ball’s
position, linear, spin velocity and so forth. Unfortunately, some factors are almost impossible to be directly
measured in real practice, such as the ball’s spin velocity, which is difficult to be estimated from vision
due to the little texture on the ball’s surface. To perform accurate motion control in table tennis, this
study proposes to learn a ball stroke strategy to guarantee desirable ‘‘target landing location’’ and the
‘‘over-net height’’ which are two key indicators to evaluate the quality of a stroke. To overcome the spin
velocity challenge, a deep reinforcement learning (DRL) based stroke approach is developed with the spin
velocity estimation capability, through which the system can predict the relative spin velocity of the ball and
stroke it back accurately by iteratively learning from the robot-environment interactions. To pre-train the
DRL-based strategy effectively, this paper develops a virtual table tennis playing environment, throughwhich
various simulated data can be collected. For the real table tennis robot implementation, experimental results
demonstrate the superior performance of the proposed control strategy compared to that of the traditional
aerodynamics-based method with an average landing error around 80 mm and the landing-within-table
probability higher than 70%.

INDEX TERMS Ball motion control, reinforcement learning, spin velocity estimation, table tennis robot.

I. INTRODUCTION
The sports have become a frontier of robot application area
since the success of AlphaGo and AlphaZero [1]. With the
development of both the hardware and the algorithm, the ulti-
mate goal of a sport robot switched from playing with human
to playing the role of a professional human player. In such a
case, the sport robot should be able to act as a humanoid sys-
tem both physically and intelligently. For example, the table
tennis robot studied in this research has been designed like
a humanoid system, which can sense the position, speed and
spin velocity of the incoming ball, and then make the decision
of stroke strategy followed by the controlling the robot to
stroke back the ball. In such a case, building an accurate
physical model of the table tennis environment is essential for
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designing the robot control system [2], [3]. Table tennis can
be considered as a complicated physical system including the
ball flying physical model, collision model, racket hit model.
Therefore, we have to build an entire physical system that
combines all of above models for robot controller design. The
accuracy of the model decides the control performance of the
table tennis robot [4].

Other than the modeling work, the state observation is
another challenge of the robot control system design. Fully
observing the environment changes is almost impossible for
the table tennis game, because of the high speed of ball
flying and spinning. Based on our testing result, during the
table tennis game, the ball flying speed and spin velocity can
reach as high as 25 m/s and 300 rad/s respectively. Although
many studies have been made on the ball tracking and trajec-
tory prediction of the table tennis [3]–[5], seldom attempts
had been made for the ball’s spinning velocity estimation.
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Although obtaining an accurate spin velocity is a crucial step
for the stroke strategy decision of the table tennis robot to
play and compete with human players, it is very difficult to
capture the spin velocity of the ball using a regular vision
based method. From the point of view of the human player,
the spin type (such as the top, back and side spins) and the
velocity usually are judged by observing the swingmovement
of the opponent player empirically with a rough spin velocity
of the table tennis ball.

Several attempts have been made to estimate the spin
velocity of the table tennis ball, and generally can be divided
into two categories. The first one is to use the high-speed
camera to record the trajectory of the table tennis and identify
the trademark or other signs on the ball [6]–[8]. Because of
the little texture on the surface of the ball (almost the uniform
color), even a high-speed camera was used, a relatively big
estimation error exists.

Other than the ones used the trademark on the surface of
the ball, artificial markers are also used to increase of esti-
mation accuracy of the spin velocity. For example, Liu et al.
drew several marker points on the ball and obtained the pose
information in real-time through analyzing the images cap-
tured by a high-speed camera. They used a nearest-neighbor
interpolation method to estimate the pixel difference between
two adjacent frames, and obtained the spin information with
the help of the conjugate gradient method [6]. In [7], com-
bining the process of recognition, segmentation and center
point extraction, the spin velocity of the table tennis ball was
calculated with a controlled error. However, in real practice,
drawing any marker on the ball is not allowed during the table
tennis game, and that makes this marker based method only
work in the laboratory but not the game court. Therefore,
amarkerless estimationmethod is needed for the spin velocity
estimation in real practice.

Another way to estimate the spin velocity is to analyze the
incoming trajectory of the ball [3], [9]–[11]. Nakashima et al.
obtained the spin information of table tennis by minimizing
the error between the actual trajectory and theoretical tra-
jectory, which was derived based on an aerodynamic model
of the table tennis [9], [10]. The position information of the
table tennis was used to estimate the spin velocity directly,
followed by a descending simplex method to minimize the
error. However, the accuracy of this method is based on the
accurate trajectory estimationwhich is difficult to be obtained
in real practice. Therefore, how to estimate the spin velocity
accurately is still a great challenge of the motion control of
the table tennis robot.

To date, more and more intelligent methods have been
implemented to enhance robotic automation, thanks to the
rapid development of artificial intelligence [30]. It has been
adopted as effective approaches for controlling the robots that
can play table tennis. For instance, Y. Zhu et al. proposed to
utilize Monte-Carlo based optimization method to let robot
learn how to return a ball [31]; O. Koc et al, developed
an intelligent on-line optimal trajectory generator to assist
the table tennis robots [32]. Different from the traditional

neural network-based method [30], whose approximating
capability is constrained by the limited number of neurons,
or the supervised learning methods that require ground truth
labels [33], in this study, a deep reinforcement learning (DRL)
algorithm has been developed to estimate the ball spin veloc-
ity through interacting with the environment continuously.
The DRL algorithms have been proved effectively to allow
agents to accomplish various tasks in the research areas of
robotics [13]. For example, the Deep Deterministic Policy
Gradient (DDPG) algorithm that combines the deep network
and Actor-Critic frame, as well as an off-policy model-free
algorithm, have been widely used in robot applications, such
as motion control for biped robot [13] and inserting a clip
into a rigid object [14]. Recently, there are a number of
algorithm improvements on the DDPG which increase either
the sample efficiency [15]–[21] or practicality [22]. The Twin
delayed DDPG algorithm [20] is used to complete the usual
manipulations such as reaching, pushing and pick-and-place
only with the pixel input and the reward shaped by image
difference [12]. In addition, maximum entropy reinforcement
learning framework is combined with Actor-Critic frame
which overcomes the explore problem to a great extent and
thus enhance the agent to complete a more complex task such
as the humanoid robot with 21-dimension of freedom [23].
In [24], an asymmetric Actor Critic algorithm [22] was used
to bridge the ‘sim-to-real’ gap, and control a five-fingered
humanoid hand to manipulate a block from an initial to a goal
configuration only with simulation interaction. In this paper,
a modified DDPG is designed as the backbone network to
estimate the spin velocity of the table tennis ball.

Different from regular usage of DRL, which outputs the
action, we use it to predict the spin velocity of the ball from
the incoming flying trajectory through interacting with the
environment. This is more like the traditional deep learn-
ing (DL) based method, but the difference is the DRL does
not need the supervised label of the spin velocity which is
required for the DL which is hardly obtained as mentioned
above. It should be noted that instead of absolute spin veloc-
ity, the output of the DRL network is a relative spin velocity
which includes the environment factors. This is because the
flying trajectory of the ball is affected by various factors like
the moving speed, spin velocity, gravity, buoyancy, air resis-
tance and Magnus force, which is a highly coupled physical
system. We encoded all the environment various other than
the physical model into the relative spin velocity which can be
learned from the DRL algorithm directly and used that as one
of the inputs of our stroke strategy. This ensures the accuracy
of the motion control of the table tennis ball.

Compared to the existing researches (e.g., [28] and [29]),
which are unable to return a marker-free spinning table tennis
ball, the DRL-based method proposed in this paper signifi-
cantly improve the capability of handling this situation. Con-
tributions of this research can be summarized as following:
1) It is the first time that DRL method is implemented to
estimate spin velocity of a flying table tennis ball. Compared
to the methods by employing extra cameras and markers,
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the proposed DRL method provides a relatively low cost and
marker-free solution. 2) The developed table tennis robot,
with DRL-based flying ball spin velocity estimation capa-
bility, is one of the best robots that can play table tennis,
which significantly enhances the success rate of returning a
ball when it presents a spin motion.

This paper is organized as follows. A dynamic model of the
table tennis ball is built in Section II, The model includes the
physical ball flying model of table tennis, a ball-table colli-
sion model, and a ball-racket collision model. A DRL-based
table tennis ball stroke strategy is designed in Section III.
In Section IV, the effectiveness of the algorithms is verified
in the simulation environment. Experimental implementation
and test results of the proposed method conducted by a phys-
ical robot platform are demonstrated in Section V. Finally,
we conclude this paper in Section VI.

II. DYNAMIC BEHAVIOR MODELING OF THE TABLE
TENNIS
The dynamic behavior of the table tennis is a critical part
of designing the control system of the table tennis robot.
Usually, a more accurate model always comes with less con-
troller design work. In this section, a dynamic model of the
table tennis has been built ahead of the controller design. The
entire table tennis environment includes a flight model of the
incoming table tennis ball, a ball-table collision model, and a
ball-racket collision model as follows.

1) Ball Flying Model: It is a physical flying trajectory
model of the incoming ball. The input of this model
includes the initial position, flying velocity, and the
spin velocity of the ball, and the output of this model
is the flying trajectory of the ball before colliding with
the table.

2) Collision Model: It is a physical collision model
between a ball and a table. The collision model is
designed to obtain the trajectory and the spin velocity of
the ball after the collision with the table. The input and
output of this model are the trajectory and spin velocity
of the ball before and after the collision with the table
respectively.

3) Racket Hit Model: It is a physical hit model between a
ball and a packet. Given the expected return point and
the expected height above the net, the batting parame-
ters are calculated by the algorithm.

Before the model building work, the coordinates of the
table tennis environment are defined as shown in Fig.1. The
world coordinate system coordinate is set as the Z-axis (Zw)
perpendicular to the table, Y-axis (Yw) parallel to the long
side of the table, and the origin of the coordinate at the center
point of the table. For the racket coordinate system, the Z-axis
(ZR) is set as the normal direction of the racket, and the
Y-axis (YR) is along the direction of the racket handlebar
and points to the opposite direction of the racket handlebar.
The origin of the coordinates is the center of the racket
surface.

FIGURE 1. World coordinate and racket coordinate.

A. PHYSICAL ROTATION FLIGHT MODEL OF TABLE TENNIS
BALL
The table tennis ball, a typical example of rotational flying
objects, has a small mass with the high moving speed. The
trajectory of the ball can be affected by both the flying and
spin velocity. It can be seen that the comprehensive force of
the rotary table tennis ball is non-linearly related to the state
of motion, and the motion model has a high order nonlinear
characteristics.

A spinning table tennis ball is mainly subject to gravity Fg,
air resistance Fd , and Magnus force Fm in the air, as shown
in Fig. 1(c). The flying velocity of the table tennis ball
at the time t in the world coordinate system is defined as
V (t) = [vx(t), vy(t), vz(t)]T , and the spin velocity is W =
[wx ,wy,wz]T . These forces can be described as follows.

Fg = −m[ 0 0 g ]T ,

Fd = −
1
2
CdρA‖V (t)‖V (t),

Fm =
1
2
CmρrA(W × V (t)), (1)

where m denotes the mass of standard table tennis ball, g is
the acceleration of gravity,Cd represents the coefficient of air
resistance, Cm denotes the Magnus force coefficient, and ρ
represents the air density under standard conditions. A stands
for the cross-sectional area of table tennis, and r is the radius
of the table tennis ball. ‖V (t)‖ is the 2-norm of V (t), and
W × V (t) is described as the cross of the spin velocity and
the linear velocity. Notice that when the ball is flying in the
air, the spin acceleration is small, so the spin velocity can be
treated as a constantW .

It can be seen from the Eq. (1) that the magnitude of
the air resistance is proportional to the square of the flying
velocity. The proportionality factor is determined by the air
resistance coefficient, air density and the cross-sectional area
of the table tennis ball. The magnitude of the Magnus force is
proportional to the outer product of rotation and flight speed,
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and the direction of theMagnus force is perpendicular to both
rotation speed and flight speed.

According to Newtonianmechanics, the acceleration of the
flying ball can be described as (2),

V̇ (t) = −
1
2m

CdρA ‖V (t)‖V (t)+
1
2m

CmρA(W × V (t))

− [0, 0, g]T , (2)

and the discrete motionmodel of a moving ball can be derived
as:

xk+1

yk+1

zk+1

vk+1x

vk+1y

vk+1z


=



xk

yk

zk

vkx
vky
vkz



+



vkx
vky
vkz

−kd‖V k
‖vkx + km(wyv

k
z − wzv

k
y )

−kd‖V k
‖vky + km(wzv

k
x − wxv

k
z )

−kd‖V k
‖vkz + km(wxv

k
y − wyv

k
x )− g


Ts. (3)

where kd = − 1
2mCdρA, km = −

1
2mCmρAr , the superscript

k and k + 1 denote the iteration step. The iteration period
used to generate the virtual data in this paper is defined as Ts.
To generate versatile data for the simulation study, the initial
flight velocity of the ball is set between the minimum flight
velocity Vmin, and the maximum Vmax randomly. Similarly,
the initial rotation velocity is selected randomly between
Wmin and Wmax .

B. BALL-TABLE COLLISION MODEL
The collision between the table tennis ball and the table
shows two distinct behaviors due to the generated sliding
friction and rolling friction, which is induced by the angle
between the incident velocity direction and the normal direc-
tion of the table local surface. Therefore, the collision model
between the ball and table is established based on the sliding
friction model and the rolling friction model according to
the incoming ball flying status. When the incoming ball’s
angle is greater than the critical friction angle, sliding friction
will occur between the ball and the table. Otherwise, rolling
friction occurs between the ball and the table. The velocity
relationship before and after collision with the table can be
described as follows,

V j+1
= AvV j

+ BvW j,

W j+1
= AwV j

+ BwW j, (4)

where V j+1 andW j+1 represent the linear and spin velocities
after rebounding, respectively, while V j and W j denote the
linear and angular velocities before rebounding. Av, Bv, Aw

and Bw are coefficient matrices about case dependent param-
eter a, and they can be generally represented as follows [25],

Av =

 1− a 0 0
1 1− a 0
0 0 −en

 ,
Bv =

 0 ar 0
−ar 0 0
0 0 0

 ,

Aw =


0 −

3a
2r

0
3a
2r

0 0

0 0 0

 ,

Bw =


1−

3a
2

0 0

0 1−
3a
2

0

0 0 1

 , (5)

where r denotes the radius of the table tennis ball, and the
case-dependent parameter a can be described as:

a=


µ(1+ en)

|vbz|
|vbt |

, Vs > 0

2
5
, Vs ≤ 0,

Vs=1−
5
2
µ(1+en)

|vbz|
|vbt |

.

(6)

In (6), |vbz| denotes the velocity magnitude along the axis
of the world coordinate and |vbt | represents that in the hor-
izontal plane of the world coordinate. When Vs > 0, a is
calculated as the sliding friction coefficient; otherwise, a is
treated as the rolling friction coefficient. In the representation
of Vs, en indicates the coefficient of elastic recovery between
the ball and the table, and µ represents the friction ratio
between the ball and the table.

C. BALL-RACKET COLLISION MODEL
The collision model between the table tennis ball and the
racket is an incomplete elastic collision model, which satis-
fies the following calculation formula [26],[

v1 − VR
w1

]
= RRRM (α, β)

[
v0 − VR
w0

]
, (7)

where v0, v1 represent the linear velocity of the flying ball
before and after collision with the racket, respectively;w0,w1
denote the associated spin velocity before and after the colli-
sion, respectively; VR denotes the linear velocity of the racket
and RR, represented as (9), is the transformation matrix of
the racket coordinate system relative to the world coordinate
system, with α and β being the yaw and pitch angles of the
racket,

RRRM (α, β) =
[
RR 0
0 RR

] [
Avv Avw
Awv Aww

] [
RR 0
0 RR

]T
,

(8)
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FIGURE 2. Schematic diagram of the proposed LSTM and DRL-based table
tennis robot control method.

with RR, Avv, Awv having the following expressions [26],

RR =

 cosβ sinβsinα sinβcosα
0 cosα −sinα
−sinβ cosβsinα cosβcosα

 , (9)

Avv = diag(1− kv, 1− kv,−er ),

Aww = diag(1− kwr2, 1− kwr2, 1),

Avw = kvrSc,

Awv = −kwrSc, (10)

where r denotes the radius of the ball, kv represents the
tangent recovery coefficient of the racket, er represents the
normal recovery coefficient of the racket, kw denotes the
rotation conversion coefficient of the racket, and Sc is denoted
as (11),

Sc =

 0 1 0
−1 0 0
0 0 0

 . (11)

To enhance the efficiency of batting strategy learning,
this paper develops a virtual table tennis robot environment
according to the established flying ball model, to carry out
the batting policy training and strategy verification (details in
Section 4).

III. LSTM AND DRL-BASED TABLE TENNIS BALL STROKE
STRATEGY
To precisely stroke back the incoming ball with a desired
flying trajectory, the LSTM and DRL-based batting strategy
is developed in this section, the schematic diagram is shown
in Fig. 2. In detail, to stroke back a ball desirably, the method
consisted of LSTM and DRL networks is employed to esti-
mate the relative spin velocity of an incoming ball, which is
then served to the following inverse stroke solver to gener-
ate the stroke action, and the integrated control method is
named ‘‘Stroke control scheme’’. In order to provide a spin
velocity in advance, the DRL method takes the incoming ball
trajectory estimation generated by the LSTM module as the
input, which can predict the ball flying trajectory precisely.
The critic value network is employed to evaluate and train the
‘‘Stroke control scheme’’, which is also named as ‘‘Learning
scheme’’ (as shown in Fig. 2).

The stroke action, which is determined by the parameter
[vR,x , vR,y, vR,z, α, β] (with vR,∗, α, β representing the linear
velocity components, pitch and yaw of the racket, respec-
tively) is generated according to the incoming ball trajectory,
the desired landing location and the ideal over-net height.
To determine the bat velocity and the orientation given the
linear and spin velocity of the incoming ball, the inverse
dynamics of the ball should be solved first.

A. DESIRED RACKET MOTION DERIVATION
To determine the motion of the racket, the flight state of the
ball after collision with the racket should be formulated first.
The purpose of the flight state estimation is to obtain the
expected linear velocity Vh = [vx , vy, vz] after stroke accord-
ing to the expected hit point ph = [xh, yh, zh], the expected
landing point pd = [xd , yd , zd ], and the expected point pn =
[xn, yn, zn] for the ball passing the net. To lower the calcula-
tion burden for real time implementation, the spin velocity of
the ball after the stroke is set to zero, in other words, the robot
tries to conquer the spinning motion of the incoming ball for
stroking it back accurately. The flying trajectory of the return
ball can be approximated as a parabolic curve. According
to the three non-overlapping points (rebounding, net-passing
and landing), a quadratic curve z = dy2 + by + c can be
uniquely determined, where coefficients d, b and c can be
calculated as follows,

d =
(yd − yh)(zh − zn)− (yh − yn)(zd − zh)

(yh − yn)(yn − yd )(yd − yb)
,

b =
zh − zn
yh − yn

− d(zh + zn),

c = zh − dy2h − byh. (12)

The quadratic coefficients determine the initial flight direc-
tion of the ball, to obey the physical laws, d < 0 has to be
guaranteed while determining the flying trajectory, otherwise
the expected landing point and the height above the net have
to be altered to ensure that the expected trajectory conforms
to the physical laws.

Based on the setting of uniform motion in y direction
(effect of the air resistance is negligible for relatively low
flying speed), the speed in y direction can be obtained as
vy =

√
g/(2d). Flight time of the entire trajectory is calcu-

lated as td = (yd − yh)/vy.
According to the uniform speed movement in x direc-

tion and the uniform acceleration movement in z direction,
the expected speed in x direction and z direction with respect
to the world coordinate system can be obtained as follows,

vx =
xd − xh
td

,

vz =
zd − zh
td
−
gtd
2
. (13)

To realize the expected linear velocity Vh = [vx , vy, vz]
obtained above for the return ball, the robotic bat should
perform a desired stroke which is determined by the bat
linear velocity VR and orientation [α, β]. According to the
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ball-racket collision model, the expression of racket velocity
can be obtained as follows [26],

VR = v0 + RR(I − Avv)−1(RTR (v1 − v0)− AvwR
T
Rw0). (14)

Substituting (14) into (7), the collision model of table ten-
nis ball and racket can be further obtained as the expression
of spin velocity before and after the rebounding,

w1 = S(v1 − v0)+ RR(Awv(I − Avv)−1Avw + Aww)RTRw0

= S(v1 − v0)+ w0, (15)

which is derived based on the constraint (16),

Awv(I − Avv)−1Avw + Aww = I , (16)

and S has the following expression,

S = −RRAwv(I − Avv)−1RTR =
kwr
kv

Ss(α, β) (17)

with Ss(α, β) being denoted as

Ss(α, β)=

 0 cosαcosβ sinα
−cosαcosβ 0 cosαsinβ
−sinα − cosαsinβ 0

 . (18)

By defining ξ = kwr
kv

(v1 − v0) and η = w1 − w0, (15) can
be simplified as η = Ss(α, β)ξ . Ss(α, β) is an antisymmetric
matrix, therefore the linear velocity difference and the spin
velocity difference before and after rebounding satisfies the
orthogonal relationship in (19),

(v1 − v0)T (w1 − w0) = 0. (19)

Performing expansion to η = Ss(α, β)ξ , and the following
expressions can be obtained,

ηx = ξy cosα cosβ + ξz sinα, (20)

ηy = −ξx cosα cosβ + ξz cosα sinβ, (21)

ηz = −ξx sinα − ξy cosα sinβ. (22)

By combining (20) and (22), the following expression can
be obtained,

ξ2y cosα
2
= (ηx − ξzsinα)2 + (−ηz − ξxsinα)2, (23)

which can be simplified as psinα2 + 2qsinα + n = 0, where
p = ξ2x + ξ

2
y + ξ

2
z , q = ξxηz − ξzηx , n = η2x + η

2
z − ξ

2
y .

After solving the quadratic equation about the sine function
to get the value α, the value of β, and the racket linear velocity
VR can be further calculated according to (14). In summary,
once the linear and spin velocity of the incoming ball is
obtained, the action of the racket can be determined according
to the desired landing location and the location while the ball
passing the net.

FIGURE 3. Structure of deep reinforcement learning algorithm.

B. SCHEMATIC OF THE LSTM AND DRL-BASED STROKE
STRATEGY
To precisely stroke back the ball, the incoming trajectory of
the ball is employed in this study, which contains the infor-
mation of its linear velocity and the spin velocity. Compared
to the linear velocity, the spin velocity is more difficult to
estimate and usually contains uncertainty. Besides, the afore-
mentioned desired racket moving strategy only considers the
uniform flying velocity case and neglects the complicated
aerodynamics of the ball, which brings more uncertainties to
the racket control system. Therefore, this paper employs the
DRL-based method, which has been proven to be sufficiently
robust, to estimate the incoming ball status and to rectify
the desired racket motion. The structure of the DRL-based
racket control strategy is shown in Fig. 3, where one can
see the robotic racket control strategy (action policy net-
work) is basically comprised of the LSTM network [34] and
the deploy function (the racket motion generator). For the
real-time implementation, the LSTM is employed to estimate
the incoming ball status, and the deploy function is utilized
to generate racket motion.

For every episode, the first 20 equal-time-interval table
tennis ball trajectory spatial positions generated in the vir-
tual table tennis robot environment are served as the input.
Then, the LSTM network (pre-trained in trajectory predic-
tion) encodes the input to an LSTM state (50-dimension vec-
tor) which is served as the state in the common DRL setting.
The five-dimension action vector consists of three-dimension
linear velocity components and two-dimension pitch and yaw
of the racket, which is predicted by a deploy function. The
deploy function is predicted by a 3 layer dense actor network.
The critic value network takes the LSTM state vector and
the action as the input, and outputs the state action value Q.
To overcome the overestimation bias in Actor-Critic, a twin
critic network frame is adopted here, where two value esti-
mation deep neural networks with the same structure (3 layer
dense network) and different parameters are used to calculate
the Q and the minimum Q is taken as the final state-action
value. The reward function we used in the DRL algorithm is
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shown as follow:

Reward

=

{
−1 (fail),
max(1−distance_loss−height_loss,−1) (success),

(24)

where distance_loss and height_loss represent the deviation
loss of the space position of the actual ball return point
and the height across the net, respectively. The distance_loss
and height_loss of the space position of the return ball is
calculated by the following expression:

distance_loss

=


a0‖1P‖22, s.t. ‖1P‖2 < c1,
a1‖1P‖2 + b1, s.t. c1 ≤ ‖1P‖2 < c2,
min(a2‖1P‖2 + b2, 1), s.t. ‖1P‖2 ≥ c2,

(25)

where 1P = Prebound_real − Prebound_set .

height_loss

=


d0‖1H |2, s.t. ‖1H‖ < f1,
d1‖1H‖ + e1, s.t. f1≤‖1H‖< f2,
min(d2‖1H‖ + e2, 1), s.t. ‖1H‖ ≥ f2,

(26)

where 1H = Hreal − Hset .
The virtual table tennis robot uses the predicted table tennis

spin velocity (Action), preset Prebound_set and the net height
Hset of the table tennis ball return ball. The actual table
tennis ball return point Prebound_real and the ball are obtained
through the state estimation of the trajectory and the stroke
strategy. The heightHreal is calculated by using the difference
between the preset and actual ball return points. The follow-
ing constraints should be satisfied to preserve continuity of
deviation_loss and distance_loss, respectively.

a0c21 = a1c1 + b1,
a1c2 + b1 = a2c2 + b2,
a2 > a1 > 0,
0 < c1 < c2 < 1.

(27)


d0f 21 = d1f1 + e1,
d1f2 + e1 = d2f2 + e2,
d2 > d1 > 0,
0 < f1 < f2 < 1.

(28)

As the DRL algorithm in our setting is used to solve one
step decision problem, some notations are also different from
the common setting (Markov Decision Process, MDP) [35],
[36]. The detail differences are list as follows: 1)Q−target =
Reward instead of Q − target = Reward + Qmaxa′ (s′, a′).
2) TD − error = Q(s, a)–Reward instead of TD − error =
Q(s, a)–(Reward + Qmaxa′ (s′, a′). The experiment result
shows that the algorithm is still convergent to good result at
this setup.

TABLE 1. Parameter setting of the virtual table tennis environment.

IV. SIMULATION VERIFICATION THROUGH VIRTUAL
ENVIRONMENT
A. SETUP OF THE VIRTUAL ENVIRONMENT
In order to evaluate the performance of the stroke strategy
quantitatively, we randomly generate 50,000 sets of virtual
table tennis ball trajectory data in the established virtual
environment. Configuration of the virtual environment is set
according to Table. 1, parameters of which are determined
according to the physical environment [25], [26]. The virtual
environment is running on a computer with Ubuntu 16.04 OS
installed. The number of LSTM states is set to 50, the number
of the fully connected layers is set to 3, and the total number
of parameters of the proposed networks is 22981, optimized
using the method Adam [27], in which, the learning rate
is set to 0.001, the first order moment coefficient is set to
0.9, and the second order moment coefficient is set to 0.999,
empirically.

During the policy training process, the state of the stroke
strategy is set to the first 20 points of the flying trajectory
of the table tennis ball with or without noise, to mimic the
ball position estimation error using the LSTM network in the
real world. The action value is generated based on the esti-
mated spin velocity before the ball hits the racket. Following
the action generated by the DRL-based strategy, the racket
performs the stroke accordingly. After the stroke, the reward
value is obtained by calculating the deviation of the landing
location of the ball and the height while it is passing the net.

To fully train the ball stroke strategy, the linear and spin
velocity of the incoming ball are selected from [Vmin,Vmax]
and [Wmin,Wmax], randomly. First, the ground truth virtual
flying ball motion data is utilized to verify the proposed DRL
strategy. Then, the random noise is added to the randomly
generated virtual ball flight trajectory to mimic the mea-
surement error of the flying ball position in the real world
(Note that, the ball flying velocity is estimated according
to the ball location in the adjacent images, thus only the
position measurement error is considered in this paper). From
these simulation tests, the relation between the measure-
ment accuracy and the DRL strategy performance can be
revealed.

99822 VOLUME 9, 2021



L. Yang et al.: Ball Motion Control in Table Tennis Robot System Using Time-Series DRL

FIGURE 4. Moving reward gets improved during the training process with
Wx , Wy , Wz ∈ [−100, 100] rad/s (group-100-0-0-0) and
Wx , Wy , Wz ∈ [−300, 300] rad/s (group-300-0-0-0), respectively.

B. COMPARATIVE RESULTS OF THE DRL-BASED STRATEGY
TRAINED WITH GROUND TRUTH DATA
To study the spin velocity influence on the performance
of the DRL strategy, it is assumed that the linear velocity
V = [vx , vy, vz] can be estimated exactly (noise range is set to
zero for each component of V ). Two groups of training data
withW components selected from two predefined ranges, are
randomly generated for comparison. The two groups of data
are named as group-100-0-0-0 and group-300-0-0-0 to reflect
the data property, e.g. group-100-0-0-0 indicates each speed
of the spin velocity is selected from range [−100, 100]rad/s,
and noise ranges for linear velocity component vx , vy, vz are
all set to zero.

As shown in Fig. 4, the moving rewards of the two
cases keep improving during the training process at the
beginning stage. After a certain number of episodes, it is
hard to see obvious improvement of the DRL strategies,
indicating these policies converge to the local optimal solu-
tions. It is noted that the data with lower spin velocity
(group-100-0-0-0) converges faster than that with higher spin
velocity (group-300-0-0-0). Besides, the final moving reward
of group-300-0-0-0 is a little lower than that of the group-
100-0-0-0 with lower variance. This phenomenon should be
attributed to the fact that fast spin velocity is harder to be con-
quered, leading to slower success experience accumulation,
lower performance reward (regarding the landing accuracy
and the flying height accuracy while the ball is passing the
net) and higher uncertainty.

After 50, 000 training episodes, ideal reward convergence
can be achieved for both policies with different training set-
tings. The typical testing results (1000 episodes) are shown
in Fig. 5. All the data are counted on the case that the ball
lands within the table, and the probability of this case is
denoted as η. For the group-100-0-0-0 policy, η = 100%, and
for the group-300-0-0-0 policy, η = 99.5%. The distributions
of the x/y-axis difference between actual landing location and
desired location are illustrated in Fig. 5(a), (b) and (d), (e),
respectively. One can see the mean landing error is pretty
close to zero (at the mm level) for the two cases, which
is ideal. When it comes to the standard deviation of land-
ing error, group-300-0-0-0’s is larger than that of the

FIGURE 5. Testing results of the stroke strategy for flying ball with
randomly selected spin velocity from [−100,100] rad/s and
[−300,300] rad/s, respectively. (a)-(c) landing location deviation along the
x/y-axis and the height deviation while the ball passing the net (policy
trained with group-100-0-0-0 data), (d)-(f) performance of the policy
trained with group-300-0-0-0 data.

FIGURE 6. Spin velocity estimation performance for the policy trained
with group-100-0-0-0 data and group-300-0-0-0 data, respectively.
(a)-(c) spin velocity estimation error along the x, y, z-axis (policy trained
with group-100-0-0-0 data), (d)-(f) performance of the policy trained with
group-300-0-0-0 data.

group-100-0-0-0, indicating faster spin velocity is more dif-
ficult for the DRL policy to tackle. Fig. 5(c) and (f) illustrate
the passing height performance while the ball flying across
the net with the two DRL strategies. Similar to the landing
performance, the standard deviation of group-300-0-0-0 is
larger than that of group-100-0-0-0, and this should be
attributed to the same reason: unconquered spin velocity
generates unexpected linear velocity during rebounding, and
it leads to a biased flying trajectory.

To directly demonstrate the estimation accuracy of the spin
velocity from the table tennis ball flying trajectory, 1, 000
sets of random trajectory data are selected as the input of the
trained DRL strategy, and the estimated ball spin velocity is
compared with its theoretical value to produce the deviation
distributions in three dimensions. The estimation error in
three dimensions is shown in the Fig. 6, where for the group
100-0-0-0 (as shown in Fig. 6(a), (b) and (c)), the estimation
error is mostly within ±40 rad/s (±3σ range) for both x and
z-axis, and the estimation error is mostly within ±150 rad/s
about y-axis. The reason for the larger error about y-axis
should be attributed to that the main velocity of the table
tennis ball is usually in y direction, thus the spin speed
about y-axis has the weakest effect on the trajectory, which
makes it more difficult to obtain during DRL strategy train-
ing. Similar results can also be found in the distributions of
group-300-0-0-0 (as shown in Fig. 6(d), (e) and (f)). Consis-
tently, the estimated spin velocity of group-300-0-0-0 shows
a much wider standard deviation, leading to a lower accuracy
of ball motion control.
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FIGURE 7. Moving rewards keep improving during the training process
with the four different training settings.

C. COMPARATIVE RESULTS OF THE DRL STRATEGY
TRAINED WITH ADDITIVE NOISY DATA
As mentioned, the linear velocity estimation of an incoming
ball is performed by comparing its location appeared in the
two adjacent images, and the spin velocity is also evaluated
based on the ball locations sequence latently. However, it is
impossible for a measurement system to obtain an error-free
position of the flying ball in real implementation. Therefore,
random noise is added to the estimated position of the flying
ball in the virtual environment. It is assumed that the additive
noise conforms to the uniform distribution with probability
density function expressed as (29),

f (u) =


1

b− a
, a ≤ u ≤ b,

0, else,
(29)

where u denotes the selected random value, and a, b repre-
sents the lower and upper boundary, respectively.

To quantitatively characterize the noise effect on the train-
ing and testing process of the DRL-based strategy, different
noise settings are considered in this study. There are four dif-
ferent cases, denoted by group-100-1-1-3, group-100-2-2-5,
group-300-1-1-3 and group-300-2-2-5, respectively. For
instance, group-100-1-1-3 represents the case that compo-
nents of the spin velocity and linear velocity estimation error
are randomly selected from [wx ,wy,wz] ∈ [−100, 100]rad/s,
vx ∈ [−1.0, 1.0]mm/s, vy ∈ [−1.0, 1.0]mm/s and
z ∈ [−3.0, 3.0]mm/s, respectively. Same as the noise-free
study, 50, 000 training episodes were performed to the DRL
strategies with the four settings above. The reward curves
obtained during the training process are illustrated in Fig. 7.
As shown in Fig. 7, the reward curves of the DRL

method of the four different settings keep climbing along
with training episodes, and they converge quickly at the
early stage, similar to that of the noise-free case. However,
the added random estimation errors influence the DRL per-
formance seriously, which increases the variance and low-
ers the final reward, indicating a larger trajectory deviation
for the rebounded ball. Based on the training performance
shown in Fig. 7, it can be seen that the larger spin veloc-
ity and heavier noise lead to worse training performance.

FIGURE 8. Testing performance comparison of the DRL-based stroke
strategy with four different noise settings, (a)-(c) landing location
deviation along the x/y-axis and the height deviation while the ball
passing the net (policy trained with group-100-1-1-3 data),
(d)-(f) performance of the policy trained with group-100-2-2-5 data,
(g)-(i) performance of the policy trained with group-300-1-1-3 data,
and (j)-(l) performance of the policy trained with group-300-2-2-5 data.

By comparing the similar performance of the group-100-2-2-5
policy and that of the group-300-1-1-3 strategy, it can be
concluded that the proposed DRL strategy is more sensitive
to position estimation error in contrast to the range effect of
spin velocity, since spin velocity range altered by two folds
while the position error changed by around one fold.

To conduct a detailed performance comparison, the landing
and net passing errors of the four cases are illustrated in Fig. 8.
For the policy trained with group-100-1-1-3 data, the ball-
inside-table probability is η = 89%; for group-100-2-2-5,
η = 83.5%; for group-300-1-1-3 η = 83.3%, and for
the policy trained with group-300-2-2-5 data, η = 73.9%,
indicating lowest performance of the policy trained with
group-300-2-2-5 data. However, when it comes to the vari-
ance of error distributions shown in Fig. 7, the four settings
demonstrate similar performances, which are far behind the
performances of policies trained with ground truth data (as
shown in Fig. 5). Specifically, for the x-axis, the standard
deviation of the landing location error is around 0.32 m; for
y-axis, it is around 0.26 m, and for the net passing error, it is
around 0.13m. These testing results may be explained as that
once the DRL strategy can correctly estimate the incoming
ball rough status, it can perform robust action to stroke the
ball to the desired area.

To illustrate the accuracy of the DRL strategy in estimating
the spin velocity of the ball with noise, the distributions of
the error between the estimated and the actual spin velocity
are shown in Fig. 9. From the estimation error during the test
one can see the standard deviation in the direction x and the
direction z is around 42 rad/s and 54 rad/s, which is uniform
for the four noise settings and demonstrates the robustness
of the DRL-based strategy. When it comes to the y direction,
the estimation error standard deviation increases by around
1 fold for group-100-*-*-* settings and about 2 folds for
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FIGURE 9. Spin velocity estimation performance for the policy trained
with the four noise settings, (a)-(c) spin velocity estimation error along
the x, y, z-axis (policy trained with group-100-1-1-3 data),
(d)-(f) performance of the policy trained with group-100-2-2-5 data,
(g)-(i) performance for group-300-1-1-3, and (j)-(l) performance for
group-300-2-2-5.

TABLE 2. Main parameters of table tennis robot.

group-300-*-*-* settings. Although the spin velocity estima-
tion error of y direction is wider and the robustness is lower,
it has a weak influence on the flying ball trajectory.

To summarize, comparedwith the influence from the larger
spin velocity range, the position estimation error of the flying
ball is much more detrimental for the proposed DRL-based
strategy, leading a robot to stroke the ball outside the table
more frequently.

V. EXPERIMENTAL STUDY BASED ON THE TABLE TENNIS
PLAYING ROBOT PLATFORM
A. SETUP OF THE TABLE TENNIS ROBOT PLATFORM
In order to verify the effectiveness of the proposed method
in the real implementation, the virtual data-based pre-trained
DRL strategy is applied to the table tennis robot developed
by the research team, and table tennis balls with various
types of spin velocity are served to the table tennis robot by
a serving robot. Specifications of the table tennis robot are
listed in Tab. 2. In this study, the stereo vision FPS is set
to 200 Hz, which is triggered by a hardware counter. Based
on this setup, the incoming ball motion can be captured and
processed within 5 ms.

As shown in Fig. 10, the experimental platform consists of
a standard table for playing table tennis, a table tennis robot
and a serving robot. The high speed binocular stereo vision
module in the table tennis robot can capture the scene images
and estimate the position of the flying ball, and an RNN
module is employed to predict the trajectory of the flying ball

FIGURE 10. Experimental platform for testing table tennis ball stroke
strategies in a self-made table tennis robot system. (Details of testing
experiments can be found in the supplementary material: video1).

in real-time. A serving robot is used for serving balls to the
table tennis robot with various spin velocities continuously.
A world coordinate system for the vision system is defined
the same as that shown in Fig. 1.

B. COMPARATIVE TESTS OF THE TABLE TENNIS ROBOT
To verify the effectiveness of the proposed method, the table
tennis ball striking strategy proposed in this paper is imple-
mented in the table tennis robot, and two sets of experiments
were carried out. One of the two settings uses the proposed
DRL-based strategy, comprised of time-series-based DDPG
policy and racket motion control module, to estimate the
spin velocity of the incoming ball in real time and performs
the stroke action. The other setting employs only the racket
motion control module and sets spin velocity to a constant
value, specifically, 80 rad/s (average spin speed of the incom-
ing balls) for this test. The serving robot is controlled to serve
various types of spin to the table tennis robot, including up
spin, backspin and sidespin. A stereo vision system is used
to capture the landing position and the height of the ball
while it is passing the net after stricken back by the table
tennis robot. The DRL-based method is fine-trained based
on the pre-trained network when implemented in the table
tennis robot. During the fine-training process, the reward
is calculated based on the difference between expected and
actual landing position and passing-net height captured in real
time. The training result is shown in Fig. 11, where one can
see the lower boundary of the reward has been improved by
the fine training.

During the experiment, for the traditional method, 100
tests were conducted using the serving robot, and for the
DRL-based method, 292 tests were carried out. The reason
for more testing sets on the DRL-based method is that the
neural networks-based method is non-transparent compared
with the traditional dynamics-based approach, thus it needs
more tests to perform fare comparison. For the traditional
method, there are only 16 times having the ball landing within
the table (η = 16%); for the DRL-based method, there are
210 times, which reaches η = 71.9%.
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FIGURE 11. Moving reward curve of the fine training using the table
tennis robot.

FIGURE 12. Testing performance comparison of table tennis robot with
two settings, (a)-(c) landing location deviation along the x/y-axis and the
passing-net height error of the traditional method, (d)-(f) performance of
the proposed DRL-based ball stroke strategy.

Comparison is further performed to the landing-
within-table data. The obtained deviation distributions for
both settings are shown in Fig. 12, where one can see
the DRL-based method demonstrates better performance
in terms of the mean value and the standard deviation
of the landing error shown in Fig. 12(a) and (d). For
the passing-height accuracy, though the distribution of the
DRL-based method is narrower than that of the traditional
method, the mean values show obvious positive bias for both
methods. This is because the DRL-based strategy prefers to
stroke the ball a little higher to avoid hitting the net when there
is environmental uncertainty in the real world. Otherwise,
this episode is prone to get the lowest reward as it has a
larger chance to hit the net. A similar reason to the traditional
method, the higher-flying balls have a better chance to pass
the net, thus it shows obvious positive bias in the distributions
of Fig. 12(c) and (f).

VI. CONCLUSION
A DRL-based table tennis ball playing strategy considering
the spin velocity of the incoming ball is proposed in this
paper. To fulfill the training process of the DRL-based policy,
a virtual table tennis robot environment is developed, which
is utilized to meet the data diversity requirement of DRL
type methods. Based on the virtual environment, different

noise settings were adopted to train the DRL method, and
associated analysis on the influence of noise on the accuracy
of landing and height over net is carried out. The simulation
tests reveal that the ball’s position estimation error is as
detrimental as that of the spin velocity estimation error. The
experimental results show that the proposed motion control
approach can effectively stroke back the ball to the desired
area. Compared with the traditional method, the DRL-based
method shows significant improvement in playing back the
ball (e.g. landing-within-table probability: 70% vs. 16%,
x-axis average landing deviation: 72 mm vs. 209 mm). More-
over, the proposedmethod does not require making additional
markers on a ball, thus the simple flying ball trajectory-based
technique makes practical implementations more possible
than traditional ways.

In the future, we are going to focus on improvement of the
returning ball strategy, which will employ faster and more
accurate flying ball behavior predictionmethods, and this will
be able to save more time for the robot physical system to
execute precise stroke. Besides, player motion analysis-based
returning ball strategywill be investigated to get better chance
of surpassing highly skilled human players.
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