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ABSTRACT To guarantee safe motion planning, the underlying path planning algorithm must consider
motion uncertainties and uncertain state information related to static, and dynamic obstacles. This paper
proposes novel hybrid A* (HA*) algorithms that consider the uncertainty in the motion of a mobile robot,
position uncertainty of static obstacles, and position and velocity uncertainty of dynamic obstacles. Variants
of the HA* algorithm are proposed wherein a soft constraint is used in the cost function instead of chance
constraints for probability guarantees. The proposed algorithm offers a tradeoff between the traveling
distance and safety of paths without pruning additional nodes. Furthermore, this paper introduces a method
for considering the shape of a mobile robot for probabilistic safe path planning. The proposed algorithms
are compared with existing path planning algorithms and the performance of the algorithms is evaluated
using the Monte Carlo simulation. Compared with the related probabilistic robust path planning algorithms,
the proposed algorithms significantly improved safety without excessively increasing travel distance and
computational time. The results also showed that dynamic obstacles were safely avoided, which is in contrast
to the conventional HA* algorithm that has a high probability of collision. In addition, considering the shape
of the robot in the proposed probabilistic approach led to safer paths overall.

INDEX TERMS Dynamic obstacle, nonholonomic mobile robot, path planning, probabilistic safety.

I. INTRODUCTION
Self-driving cars face with many challenges in terms of per-
ception, localization, and control. A key difficulty in design-
ing an autonomous vehicle is path planning. The vehicle
is required to find a feasible path from its starting pose to
the desired goal pose without collision. For this demand,
many different path planning algorithms have been developed
(e.g., [1]–[3]).

A new graph-search-based path planner called hybrid
A* (HA*) was introduced in the DARPA Urban Challenge
in 2007 [2], [4], which was modified in [5] for multiple,
subsequent goal poses. The HA* algorithm is based on the
A* path planner [6]. However, unlike A*, the HA* algorithm
has expanded its nodes with continuous vehicle coordinates,
thus guaranteeing feasible paths. In general, A*-based path
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planners are piecewise linear. Recent research has enabled
the planner to re-plan [7], [8] or use any angle for the
piecewise linear path [9]. Although these algorithms can find
optimal and feasible paths to a desired goal position, none of
them consider the uncertainty of the environment or robot.
In particular, A*-based approaches tend to find paths that
are very close to obstacles; hence, in such approaches, safety
cannot be guaranteed. Some recent studies used reinforce-
ment learning to teach mobile robots to move from a starting
position to the desired goal position without colliding with
obstacles [10], [11]. Sampling-based planners (SBP), partic-
ularly rapidly-exploring random tree (RRT) algorithms [12],
[13], were modified to guarantee safety. The arrival field
method using Eikonal equations was used in [14] to gener-
ate time optimal paths, where the robot moves slower near
obstacles. Bry et al. introduced the rapidly-exploring ran-
dom belief trees (RRBT) [15] algorithm, which uses local
linear quadratic Gaussian (LQG) control solutions to predict
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distributions over trajectories. A particle-filter based RRT
path planner (pRRT) was developed by Melchior and Sim-
mons [16], where each extension of the search tree was
simulated multiple times under different conditions. Addi-
tionally, nodes were created by clustering the simulation
results. Blackmore et al. presented a probabilistic approach
that used the value of the maximum probability of a robot
colliding with an obstacle [17], [18]. The probability of col-
lision is expressed as a disjunction of deterministic linear
constraints. Luders et al. combined the chance-constrained
method of Blackmore et al.with RRT (CCRRT) and extended
it by including uncertainty for obstacles [19]. The CCRRT
algorithm was then combined with a method for predicting
future obstacle behavior in the planner [20]. Furthermore, for
linear dynamics it was extended for the RRT* algorithm [21],
which they termed CCRRT* [22]. Model predictive control
was combined with the particle approach to achieve optimal
robust solutions [23]. Particle-based approaches were intro-
duced to guarantee probabilistic safe paths, which considered
non-Gaussian uncertainty [24]. Van den Berg et al. proposed
a variant of LQG for motion planning to consider motion
uncertainty and imperfect state information [25]. A novel
motion planner [26] was modified to consider perception and
control uncertainties for self-driving vehicles in [27].

Existing works mainly extend sampling-based planners
to enhance the probabilistic robustness, in which results
for nonlinear mobile robot dynamics observed a ‘‘zig-zag’’
motion leading to large traveling distances [24]. By con-
trast, modified HA* path planning algorithms that consider
the motion uncertainty of mobile robots and the uncertain
state of static and dynamic obstacles are proposed in this
work. They employ the chance constraints presented in [17]
and [19] to guarantee probabilistic robustness. A disadvan-
tage of the chance constraints for collision avoidance in the
probabilistic robust path planners is the additional pruning
of nodes. Especially in narrow environments, probabilistic
robust approaches may be unable to find a path to a goal pose.
Hence, a novel cost function that allows a tradeoff between
traveled distance and safety is introduced in this work.
Expanded nodes with a large probability of collision incur
large cost penalties when not pruned. Furthermore, existing
path planning models assume point or circular-shaped mobile
robots. Extending probabilistic robustness for the shape of
the robot is difficult due to the computational complexity of
extending the configuration space. The proposed approach
uses an approximation for arbitrary-shaped mobile robots in
a deterministic environment [28] and extends it for state and
environment uncertainties and is, therefore, able to consider
probabilistic robustness for arbitrary-shaped mobile robots.
This work considers linear dynamics and uncertainties in
the position and velocity of dynamic obstacles. The con-
tributions and motivations of this study are summarized as
follows.
(i) Existing path planning models that consider uncer-

tainties in the system states and environment use

incremental sampling-based path planners (e.g., RRT).
We believe this work presents the first HA*-based prob-
abilistic robust path planning algorithm.

(ii) In this work, a soft constraint for the collision proba-
bility is employed, instead of chance constraints, which
increases the search space of the algorithm by keeping
candidate nodes that will be otherwise deleted by the
chance constraints.

(iii) Other existing approaches consider probabilistic safety
only for point or circular-shaped mobile robots. So far,
to the best of our knowledge, probabilistic collision
detection for arbitrary-shaped mobile robots has not
been studied. A novel method to extend the state uncer-
tainty of arbitrary-shaped mobile robots, which explic-
itly considers orientational uncertainties, is proposed in
this study.

Section II presents the problem considered in this study fol-
lowed by the HA* algorithm under Gaussian uncertainty in
Section III. Section IV introduces the extension of the chance
constraints for arbitrary-shaped mobile robots. In Section V
the results are presented, and the effectiveness of the proposed
HA* algorithms is demonstrated in different environments,
and a performance comparison test of the algorithms is given
using the Monte Carlo simulation (MCS). A discussion is
given in Section VI and conclusions and future works are
presented in Section VII.

NOTATION
Rn and Rn×m represent an n-dimensional Euclidean space
and (n × m)-dimensional matrix, respectively; AT and In
represent the transpose of the matrix A and n-dimensional
identity matrix, respectively. Bold uppercase, bold lowercase,
and lowercase letters indicate matrices, vectors, and scalars,
respectively. Uppercase 6 indicates a covariance matrix; σ 2

x
indicates the variance of variable x; σx,y indicates the covari-
ance of variables x, y. The mean of a variable x is given by
µx . εx ∼ N (µx, 6x) denotes the random Gaussian process
disturbance of state vector x.

II. PROBLEM FORMULATION
This study considers a planar motion of arbitrary-shaped
mobile robots whose configuration space C ∈ SE(2) =
R2
× SO(2) is the special Euclidean group which consists

of two-dimensional position and orientation. Furthermore,
the configuration space is divided into open space Cfree ⊆ C
and obstacles Cobs ⊂ C, where Cfree + Cobs = C. In a
deterministic environment, the objective is to find a path
from the start node xS ∈ Cfree to the goal node xG ∈ Cfree.
The complete path P = (x0, x1, . . . , xt , xt+1, . . . , xtgoal ) is
described by the set of nodes whose ends are the start and goal
nodes, xS = x0 and xG = xtgoal , respectively. Moreover, xt is
the parent node of xt+1, t ∈ N is the respective integer time
instant, and tgoal is the final time instant. The optimization
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problem is described as follows:

minimize
tgoal∑
t=1

J (xt )

subject to xt ∈ Cfree ∀t ∈ {0, . . . , tgoal},

where J (xt ) is the cost function. In belief space planning,
the collision condition is described by chance constraints
and the cost function is the expected cost of J (xt ). Accord-
ingly, the stochastic optimization problem is described as

minimize
tgoal∑
t=1

E[J (xt)]

subject to p(xt ∈ Cobs) ≤ 0 ∀t ∈ {0, . . . , tgoal},

where E[·], p(·) and 0 denote the expected value, prob-
ability of the outcome, and threshold value for collision,
respectively.

Static and dynamic obstacles in the configuration space
are represented as convex polygons, as illustrated in Fig. 1,
which allows a fast collision analysis and makes it possible to
incorporate a probabilistic collision check [17]. It is assumed
that each vertex of an obstacle is known, and the obstacles
are obtained from an offline map. In the following section,
the robot is assumed to be a point robot, and therefore col-
lision will occur when the robot point is inside the obstacle.
Using the known obstacle vertices and robot position qt =
[xt , yt ]T, the collision conditions are expressed as follows:

ne∧
i=1

aTi qt < bi, (1)

where ne is the number of edges and ai and bi denote the
parameters of the straight-line equation aTi qt = bi of edge i,
respectively.

FIGURE 1. Convex obstacle representation in the configuration space.

III. HYBRID A* ALGORITHM UNDER GAUSSIAN
UNCERTAINTY
This section describes the uncertainty propagation for a kine-
matic model of a nonholonomic mobile robot [29]. After
briefly explaining the conventional HA* algorithm [4], this
section introduces the collision condition for probabilistic
safe motion. The linear velocity model of dynamic obstacles
and their uncertainty propagation is introduced.

FIGURE 2. Example motions for HA* using the velocity model.

A. UNCERTAINTY PROPAGATION
In this work, the velocity model from [29] is used to model
the kinematics of the nonholonomic mobile robot. The deter-
ministic kinematic model of the form

xt+1 = f (xt ,ut ) (2)

with nonzero angular velocity is as follows [29]:xt+1yt+1
θt+1

=
xtyt
θt

+

−
vt
ωt

sin θt+
vt
ωt

sin (θt+ωtδt)
vt
ωt

cos θt−
vt
ωt

cos (θt+ωtδt)

ωtδt

 , (3)

where xt = [xt , yt , θt ]T ∈ SE(2) is the pose of the robot at
time instant t with xt , yt being the position in the global refer-
ence frame and θt being the heading of the robot. Moreover,
ut = [vt , ωt ]T, where vt and ωt are the linear and angular
velocities, respectively, and δt is the sampling time. The
model for straight motions can be obtained using L‘Hôpital‘s
rule for lim

ωt→0
f (xt ,ut ) as follows:xt+1yt+1

θt+1

 =
xtyt
θt

+
vtδt cos θtvtδt sin θt

0

 . (4)

Example motions using the velocity model for HA* are
shown in Fig. 2. The additive Gaussian process noise is
integrated into the model by replacing ut = [vt , ωt ]T with
ût = [v̂t , ω̂t ]T, where[

v̂t
ω̂t

]
=

[
vt
ωt

]
+ εM (5)

with

εM ∼ N (0, 6M ). (6)

Here, 6M is the covariance matrix of the random vari-
able εM . The Gaussian probability distribution 6xt is
obtained using the prediction step of the extended Kalman
filter [30]. Hence, the nonlinear kinematic model of the robot
has to be linearized at each time instant around the input ut
and state mean µxt

µxt+1 ≈ Ãtµxt + B̃tut

Ãt =
∂f
∂x

(µxt ,ut )
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B̃t =
∂f
∂u

(µxt ,ut ), (7)

where

Ãt =


1 0 −

vt
ωt

cosµθt +
vt
ωt

cos (µθt + ωtδt)

0 1 −
vt
ωt

sinµθt +
vt
ωt

sin (µθt + ωtδt)

0 0 1

 (8)

B̃t =
[
b̃1, b̃2

]
b̃1 =


− sinµθt+sin (µθt+ωt δt )

ωt
cosµθt−cos (µθt+ωt δt)

ωt
0



b̃2 =


vt (sinµθt−sin (µθt+ωt δt))

ω2
t

+
vt cos (µθt+ωt δt)δt

ωt

−
vt (cosµθt−cos (µθt+ωt δt))

ω2
t

+
vt sin (µθt+ωt δt)δt

ωt

δt

 (9)

for ωt 6= 0. For straight motions, the linearization is given as
follows:

Ãt =

1 0 −vtδt sinµθt
0 1 vtδt cosµθt
0 0 1

 (10)

B̃t =

δt cosµθt 0δt sinµθt 0
0 0

 . (11)

With the linearized model, Gaussian uncertainty distribu-
tion 6xt+1 can be updated as follows:

µxt+1 = f (µxt ,ut )

6xt+1 = Ãt6xt Ã
T
t + B̃t6M B̃

T
t , (12)

where B̃t6M B̃
T
t is the mapping of the motion noise from the

control space to state space [29].

B. ALGORITHM OVERVIEW
The conventional HA* [4] is a variation of the A* algorithm
[6]. Unlike the A* algorithm, the HA* algorithm assigns a
continuous mobile robot coordinate to each discrete cell in
the working space. Each node of the planner is expanded by
applying three different actions: no-turn, left turn, and right
turn for forward and reverse motions (see Fig. 2). Reverse
motions are only applied if a forward motion violates a
collision constraint. A kinematic model of the mobile robot
is used to generate new states for the planner ((3) and (4)),
and the same cost-to-goal heuristics as in [4] are applied:
The non-holonomic-without-obstacles heuristic, which uses
Reeds and Shepp paths [31] to compute the shortest path
to the goal (assuming no obstacles) from every point in the
working space, and the holonomic-with-obstacles heuristic,
which employs the occupancy grid of the configuration space
to compute the shortest path to the goal via dynamic program-
ming. The maximum heuristic cost of both heuristics is used
for the path planner.

For every N th node, an expansion of the current node to
the goal with Reeds and Shepp paths is generated, where
N depends on the cost-to-goal heuristic. If the expansion
does not collide with any obstacles, the HA* algorithm is
completed.

The HA* algorithm uses a cost function to penalize the
reverse motion and switching of the motion direction of the
path traveled:

J (xt ) = lt (1+ rtCrev)+ |rt − rt−1|Csw, (13)

where lt is the distance traveled from time instant t−1 to time
instant t , and Crev and Csw are the penalty gains for driving in
reverse and switching the direction of motion, respectively.

This work modifies the HA* algorithm by considering
Gaussian uncertainties in the robot’s motion, as well as the
static obstacle position. Furthermore, dynamic obstacles with
uncertain state information are considered. Hence, the robot’s
uncertain state is updated at each node expansion using (12).
If the condition

p(xt ∈ Cobs) ≤ 0 (14)

is satisfied the current node is probabilistically safe and the
expected cost

E[J (xt )] = µlt (1+ rtCrev)+ |rt − rt−1|Csw (15)

is calculated, where µlt is the mean distance traveled from
time instant t − 1 to time instant t . If the condition is not
satisfied the node will be pruned.

C. STATIC AND DYNAMIC OBSTACLES
1) STATIC OBSTACLES
The static obstacles are expressed in a manner that is similar
to [19]. The probability distributions of the static obstacles
are time invariant, i.e.,[

xS j

yS j

]
︸ ︷︷ ︸
xSj

=

[
xS j

0
yS j

0

]
︸ ︷︷ ︸
x
Sj0

+εS j (16)

with

εS j ∼ N (0, 6S j ) j ∈ {1, . . . , nS}, (17)

where [xS j , yS j ]T is the position of obstacle j, [xS j
0
, yS j

0
]T is

the nominal position of obstacle j, and nS is the number of
static obstacles in the configuration space. Hereafter, all static
obstacles have the same covariance, i.e., 6Sj = 6S .

2) DYNAMIC OBSTACLES
The dynamic obstacles are assumed to be convex with an
estimated mean heading and velocity. This work uses a linear
velocity model for the dynamic obstacle

xDt+1

yDt+1

ẋDt+1

ẏDt+1

 =

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


xDt

yDt

ẋDt

ẏDt


︸ ︷︷ ︸
xDt

+εD, (18)
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where xDt , yDt denote the position, and ẋDt , ẏDt denote the
velocity in x and y direction in the global reference frame,
respectively. εD ∼ N (0, 6D) is a random variable with
Gaussian noise distributionwith covariancematrix6D. In the
following, it is assumed that the robot is able to detect and
track a dynamic obstacle at each time instant for example
with the methods in [32] and [33]. It is often sufficient to
assume a linear motion of a dynamic obstacle [34]. A linear
model allows a one time computation of the mean state and
the covariance of the dynamic obstacle using the Kalman
filter [30]

µxDt+1
= AtµxD0

(19)

6xDt+1
= At+16xD0

(
AT
)t+1

+

t∑
k=0

At−k−16D
(
AT
)t−k−1

, (20)

where µxDt+1
and 6xDt+1

are the mean and the covari-
ance matrix of the dynamic obstacle at time instant t + 1,
respectively. Process noise is used to increase the uncertainty
while propagating the mean state and covariance in time,
which increases robustness without specific knowledge of the
dynamic obstacles’ behavior. In this case, the process noise
of the dynamic obstacle can be tuned based on confidence of
the unknown future behavior of the dynamic obstacle. If it is
certain that the dynamic obstacle will continue moving in the
measured direction at the measured velocity, small values for
the process noise matrix can be selected as parameters inside
the algorithm. If the dynamic obstacle behaved in a nonlinear
manner in previous time instants, larger values for the process
noise should be selected.

D. PROBABILISTIC COLLISION CHECK
This section introduces two methods for calculating the prob-
ability of collision.

1) CHANCE CONSTRAINTS
The objective is to guarantee that the probability of a collision
with any obstacle is less than the assigned value 0. In a
deterministic world, a collision will occur if (1) is satisfied.
Hence, in belief space context the inequality, i.e.,

p(xt ∈ Cobs) = p

( ne∧
i=1

aTi qt < bit

)
≤ 0 (21)

has to be evaluated. Here, bit is only time dependent for
a dynamic obstacle and a is not time dependent since we
assume no rotation of obstacles. Since normality is pre-
served by linear transformations [35], a new random variable,
d ∼ N (µd , σ 2

d ) can be introduced with

µd = aTµqt − b (22)

σ 2
d = aT6qta, (23)

where µqt is the mean value of the position of the mobile
robot with respective covariance matrix 6qt at time instant t .

Mean and covariance are taken from the mean vector and
covariance matrix of robot state xt , respectively. Therefore,
the new inequality condition for the probability of collision
is as follows:

p(d < 0) ≤ 0. (24)

This probabilistic constraint is shown to be equivalent to the
following deterministic constraint using the mean and vari-
ance of d , together with the inverse Gaussian error function
[17], [18]:

µd ≥

√
2σ 2

d erf
−1 (1− 20) . (25)

The left-hand side of the above equation is the mean distance
between the center of the robot and the line segment of the
obstacle, and the right-hand side represents the minimum
allowed distance between the center of the robot and the line
segment. Hence, the chance constraint is satisfied if

ne∨
i=1

aTi µqt − bit ≥
√
2aTi 6qtai erf

−1 (1− 20) (26)

is true. This approach can be extended for obstacles with
an uncertain position and translation [19]. The current work
assumes static and dynamic obstacles. The mean distance µd
is unchanged for static obstacles and can be calculated for
dynamic obstacles with updated parameters bit based on the
translation of the dynamic obstacle at time instant t . The
variance for d for both static and dynamic obstacles is as
follows:

σ 2
d = aT

(
6qt +6O

)
a, (27)

where6O is the covariance matrix of the respective obstacle.
Then, the final inequality equations for a single obstacle are
shown as below:
ne∨
i=1

aTi µqt − bit ≥
√
2aTi

(
6qt +6O

)
ai erf−1 (1− 20) .

(28)

This inequality condition has to be extended for multiple
obstacles, which can be obtained using an upper bound for
the probability of collision with at least one obstacle using
Boole‘s inequality [17], i.e.,

p(xt ∈ Cobs) ≤
nO∑
j=1

p

nOj∧
i=1

aTjitµqt < bjit

 ≤ nO∑
j=1

γj = 0,

(29)

where nOj represents the number of line-segments for obsta-
cle j and nO is the total number of obstacles. It is shown that
this inequality can only be guaranteed if

γj = γ =
0

nO
. (30)
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Hence, the conjunction of inequalities at each time
instant t , i.e.,

nO∧
j=1

nOj∨
i=1

µdji ≥

√
2σ 2

dji erf
−1 (1− 2γ )

 (31)

has to be satisfied to guarantee safe execution. Hereafter,
the HA* algorithm that employs this method for the prob-
abilistic collision check will be referred to as the chance
constraint HA* (CCHA*).

2) EXACT COLLISION PROBABILITY
The inverse Gaussian error function will be over-conservative
for an increasing number of obstacles in the configuration
space (see (30)). Hence, many nodes will be pruned and a
solution may not be found in a many-obstacle case. This
drawback can be circumvented using the Gaussian error func-
tion directly to obtain the exact probability of collision for the
respective obstacle [19]:

δjit =
1
2

1− erf

 aTjiµqt − bjit√
2aTji

(
6qt +6O

)
aji

 , (32)

where δjit is the probability of collision with line segment i
of obstacle j at time instant t . The inequality equation for all
obstacles at one time instant using the Boole’s inequality is
as follows

p(xt ∈ Cobs) ≤
∑nO

j=1mini=1,··· ,nOj
δjit = 1t (xt ), (33)

where 1t (xt ) is the probability of collision for xt at time
instant t . The CCHA* algorithm that uses this method are
referred to as CCxHA*, where ‘‘x’’ indicates that the algo-
rithm uses the Gaussian error function and as such calculates
the exact probability of collision per obstacle.

E. COST FUNCTION EXTENSION
This section introduces an extension of the cost function for
the HA* algorithm

E[J (xt )] = µlt (1+ rtCrev)

+|rt − rt−1|Csw

+k ln(1−1t (xt )). (34)

A new soft constraint is added for considering the prob-
ability of collision for the mobile robot, where k ≤ 0 is a
tuning gain employed as a trade-off between traveled distance
and path safety. Instead of pruning nodes that do not satisfy
the probability of collision 0, the cost function penalizes the
cost of nodeswith high probability of collision. This approach
has the advantage that no nodes will be pruned, and accord-
ingly the algorithm may find a path where other approaches
will fail. This path may, however have a high probability of
collision. Hereafter, all HA* algorithms using the adapted
cost function are labeled SCHA*, where SC refers to ‘‘soft
constraint’’.

FIGURE 3. Segmentation of a rectangular robot into smaller segments.

IV. ARBITRARY-SHAPED MOBILE ROBOTS
In general, path planning algorithms work with point robots
[4]. This can be achieved by inflating the obstacles based on
the robot’s shape and heading. For circular mobile robots,
the obstacles simply have to be inflated by the radius
of the robot. However, for arbitrary-shaped mobile robots,
the obstacles must be inflated using the Minkowski differ-
ence [13], where each possible heading also has to be con-
sidered. This can computationally and memory-wise be very
demanding. Uncertainty in the robot’s heading complicates
the inflation. One simplification for the configuration space
is the segmentation of the robot into smaller circular parts
to achieve a similar result as for circular mobile robots [28],
where the obstacles will be inflated with the radius of the
respective segment of the robot. In this work, the robot is
separated into several smaller circles as shown in Fig. 3.
The collision check for the center of motion is the same as
in (31) and (33) using the parameters for the inflated obstacle.
For the other segments, the uncertainty of the heading has to
be included. The general equation for deriving the center of
each segment is as follows:[

x jt
yjt

]
=

[
xt
yt

]
+

[
cos θt − sin θt
sin θt cos θt

][lxjt
lyjt

]
︸ ︷︷ ︸

g(xt )

, (35)

where (x jt , y
j
t ) is the position of the center of a selected square

segment j at time step t , and indicates the selected square
segment, and (lxjt

, lyjt
) is the corresponding translation value.

This transformation is nonlinear, which means that resulting
variables are no longer Gaussian [35]. Therefore, the transfor-
mation will be approximated by the Taylor series expansion
as follows:[

x jt
yjt

]
≈ g(µxt )+∇ g(xt )|µxt

(
x− µxt

)
=

[
xt
yt

]
+

[
−sµθt −cµθt
cµθt −sµθt

][lxjt
lyjt

]
θt

+

[
cµθt + sµθtµθt −sµθt + cµθtµθt
sµθt − cµθµθt cµθt + sµθtµθt

][lxjt
lyjt

]
, (36)

where sµθt and cµθt are abbreviations for sinµθt and cosµθt ,
respectively; x jt and y

j
t on the right-hand side of this equation
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are of the form x jt = a1xt+b1θt+c1 and y
j
t = a2yt+b2θt+c2

with the constants a1, a2, b1, b2, c1, c2. Hence, it is sufficient
to calculate the expectation and variance for the general case,
i.e., Z = aX + bY + c, where a, b, and c are constants and
X,Y, and Z are random variables. Subsequently, the expecta-
tion and variance are calculated in terms of moment expres-
sion. Since it is a linear transformation, the expectation for Z
is as follows:

E[Z] = E[aX+ bY+ c] = aE[X]+ bE[Y]+ c. (37)

The complete calculation of the variance is shown in
Appendix A, and the resulting equation is as follows:

var(Z) = a2var(X)+ b2var(Y)+ 2ab cov(X,Y). (38)

Therefore, the mean and variance for the transformed coor-
dinates are[
µxjt
µyjt

]
=

[
µxt
µyt

]
+

[
cµθt −sµθt
sµθt cµθt

][lxjt
lyjt

]
(39)σ 2

xjt
σ 2
yjt

 = [σ 2
xt
σ 2
yt

]
+

s2µθt l2xjt + sµθt cµθt lxjt
lyjt
+ c2µθt l

2
yjt

c2µθt l
2
xjt
− sµθt cµθt lxjt

lyjt
+ s2µθt l

2
yjt

 σ 2
θt

+2
[
σxt ,θt 0
0 σyt ,θt

] [
−sµθt −cµθt
cµθt −sµθt

][lxjt
lyjt

]
(40)

Then, cov(x jt , y
j
t ) can be calculated in a similar manner (the

full equation is shown in Appendix A):

cov(a1xt + b1θt + c1, a2yt + b2θt + c2)

= a1a2cov(xt , yt )+ a1b2cov(xt , θt )

+a2b1cov(yt , θt )+ b1b2var(θt ). (41)

The covariance can be expressed in vector form as follows:

σxjt ,y
j
t
= σxt ,yt +

[
σxt ,θt
σyt ,θt

]T [
−sµθt −cµθt
cµθt −sµθt

][lxjt
lyjt

]

+

[
sµθt cµθt

(
l2
yjt
− l2

xjt

)
− c2µθt lxjt

lyjt

]
σ 2
θt
. (42)

Hence, the covariance matrix for the square center posi-
tions is

6qj =

 σ 2
xjt

σxjt ,y
j
t

σxjt ,y
j
t
σ 2
yjt

 . (43)

The above equations can be used to calculate the probabil-
ity of collision for each of the square centers with either (31)
or (33) using the inflated obstacle parameters, where the
maximum probability of collision of all segment centers will
be used per obstacle. An example figure of the resulting
confidence ellipses for the square segments is shown in Fig. 4,
where the robot’s heading is 45◦ and the selected covariance
matrix of the robot is

6x =

 0.003 −0.0009 −0.00005
−0.0009 0.003 −0.00005
−0.00005 −0.00005 0.05

 .

FIGURE 4. Rectangular robot with 95% confidence ellipses.

It is shown that the confidence ellipses for four square
centers are angled and have larger radii than the ellipse of
the robot’s center. This follows from the fact that variance
σ 2
θ of the heading and covariances σx,θ , σy,θ are considered.

Hereafter, algorithms (i.e., HA*, CCHA*, CCxHA*, and
SCHA*) that incorporate the shape of the robot are labeled
with the prefix ASR (arbitrary-shaped robot).

V. RESULTS
This section demonstrates the validity of the approaches
applied in this paper. The variants of the proposed algo-
rithms (i.e., CCHA*, CCxHA*, SCHA*, ASR CCHA*, ASR
CCxHA* and ASR SCHA*) are examined to evaluate their
strengths and weaknesses. The above proposed algorithms
are compared with existing approaches in a clustered, static
environment, and an environment with a dynamic obsta-
cle. For the comparison, the conventional A* [6], the HA*
algorithm [2], [4], ASR HA* considering the shape of the
robot using the approach of [28], the RRT algorithm [12],
the closed-loop RRT (CLRRT) algorithm [1], [36], the heuris-
tic arrival time field-biased random tree (HeAT-RT) [14] well
as the probabilistic approaches CCRRT and online CCRRT
(CCxRRT) [19], [24], which are based on CLRRT, are all
implemented. All kinematic planners use the same motion
model, and all probabilistic planners use the same uncer-
tainties and uncertainty propagation method. The RRT-based
planners for comparison are random in their search, which
generate different solution paths in every calculation, and
therefore each RRT algorithm is executed 1000 times for
both environments. The success rate, shortest distance, mean
computation time, standard deviation σtime, mean distance,
and standard deviation of the distance σdist are calculated
for evaluation. A plan is considered successful if it finds a
solution within 20 s. Furthermore, RRT-based planners are
generally unable to exactly reach the goal pose, but the vicin-
ity of µgoal ∈ Xgoal ⊂ SE(2). Here, the vicinity to the goal is
defined to be in a range of 0.5m with a heading difference of
less than 20◦.
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An evaluation of the proposed cost function (see (34))
is presented. Finally, the performance of the algorithms is
evaluated using MCS [6].

The robot used for simulation has a length of 1.27m
and a width of 0.75m. The robot will move with a fixed
linear velocity of v = 0.5m/s (except for HeAT-RT)
and, for the HA*-based planners, an angular velocity of
ω = 10π/180 rad/s. Furthermore, the environments are
discretized with a cell size of 0.5 m and an angle increment of
5π/180 rad. The penalties for driving in reverse and switch-
ing the driving direction are set to the same values, i.e.,Crev =

1.0 and Csw = 1.0, respectively. The algorithms are tested in
ROS Kinetic [37] on a GNU/Linux Ubuntu 16.04 laptop with
an Intel R© CoreTMi7-8550U CPU @ 1.80GHz× 8 and 8GB
memory.

A. RESULTS ON STATIC ENVIRONMENT
In this section, the algorithms are compared in a static envi-
ronment with nine obstacles (see Fig. 5). The process noise
and initial covariance matrix for the robot are as follows:

6M =

[
0.001 0
0 0.0005

]
6x0 = 0.0001I3.

The covariance matrix for the static obstacles is

6S = 0.1I2.

The gain for the soft constraint is k = −1.5 and the chance
constraint parameter is 0 = 0.25.
Fig. 5 shows the resulting path attaining the shortest dis-

tance (solid red) and expanded nodes (solid orange) for the
ASR CCxHA* algorithm. It is shown that the algorithm
pruned all nodes that were too close to the obstacles, and the
final path attempted to keep asmuch distance as possible from
all obstacles. The resulting path attaining the shortest distance
(solid red) using the CCRRT algorithm and a path with
‘‘zig-zag’’ motions (dash-dotted blue) using the CCxRRT
algorithm are shown in Fig. 6. The path segments with ‘‘zig-
zag’’ motions are emphasized with black circles. The paths
for all algorithms are shown in Fig. 7. Both the A* and RRT
algorithms move close to obstacles to generate short distance
paths. The conventional HA* algorithm, which did not con-
sider the robot shape, moved close to the obstacles while
CCHA* moved very conservatively, although it did not con-
sider the shape of the robot. The ASR CCHA* was not able
to find a solution (not shown in the figure) because it pruned
all nodes that were considered ‘‘too dangerous’’. This result
was derived from the number of obstacles, where the allowed
probability of collision per obstacle (see (30)), i.e., γ ≈ 0.028
was very conservative in terms of satisfying Boole’s inequal-
ity. The CCxHA* and ASR CCxHA* algorithms were able
to find a solution that guaranteed1t (xt ) ≤ 0 for ∀t . Further-
more, the SCHA* and ASR SCHA* algorithms found robust
solutions without pruning any nodes. The HA* algorithms
move the robot in reverse only if the forward motion violates

the collision constraints, whereas the CLRRT-based algo-
rithms take a backward motion based on the position of the
randomly expanded node. Therefore, the best solution of the
CLRRT-based algorithms took a different route than the other
algorithms. Table 1 shows the performance of the algorithms.
The probabilistic approaches required more time to check for
collisions than the conventional HA* and CLRRT algorithms.
CCHA* and CCRRT use the samemethod for collision check
and have, therefore, the same collision check computation
time per node. Accordingly, the collision check time per
node is the same for CCxHA* and CCxRRT. The CCHA*
algorithm, which used the inverse Gaussian error function,
required approximately 10 times more time per node than
the HA* algorithm, while the algorithms that employed a
Gaussian error function (CCxHA*, ASR CCxHA*, SCHA*
and ASR SCHA*) needed slightly more; this was because
they calculated the Gaussian error function for each line
segment. Additional time per node was needed if the shape
of the robot was considered. It is shown that a trade-off
occurred between computation time and robustness. The
RRT-based planners were able to find paths that are shorter
in distance than the HA*-based algorithms, but the mean
distance of all trials was larger than the distance of any
HA*-based planner. Furthermore, only 9.5% of the paths of
CCRRT were successful in finding a path within the given
time frame. The mean computation time of CCRRT and
CCxRRT is much larger than that of CCHA* and CCxHA*.
In addition, the standard deviation of the distance and com-
putation time is large for the CCRRT and CCxRRT path
planners. The HeAT-RT algorithm expanded fewer nodes
than most other planners but generated a path near an
obstacle and had a larger mean computation time compared
to the proposed probabilistic algorithm CCxHA*. In addi-
tion, the HeAT-RT had the largest standard deviation of the
distance.
The best performance of the proposed algorithms in the static
environment in terms of travelling distance and computation
time are provided by the CCxHA* and the ASR SCHA*.

B. RESULTS IN A DYNAMIC ENVIRONMENT
In this section, the algorithms are evaluated in a dynamic
environment. The dynamic obstacle had a square size of 0.5m
with linear velocity v = 0.3536m/s and a heading direction
of 135◦. The initial covariance matrix and process noise of
the dynamic obstacle are given as follows:

6xD0
= 0.001 I4

6D =


0.001 0 0 0
0 0.001 0 0
0 0 0.0001 0
0 0 0 0.0001

 .
The covariance matrix of the static obstacles was the same

as in the static environment, and elements of the covari-
ance matrix and the process noise of the mobile robot were
increased for this environment, where 6x0 = 0.01I3 and the
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TABLE 1. Traveled distance and computation time per node in static environment.

FIGURE 5. The resulting path (solid red) and all expanded nodes (solid
orange) using the ASR CCxHA* algorithm (the dashed ellipses are plotted
every 5th node with a confidence of 95%).

process noise is given as follows:

6M =

[
0.01 0
0 0.005

]
.

The parameters for the chance constraints and the soft
constraint are 0 = 0.4 and k = −1.5, respectively.

Results are shown in Figures 8 and 9, where the former
shows the result of the ASR CCHA* algorithm at a selected
node. The robot attempted to cross the path of the dynamic
obstacle behind it while considering its own uncertainty and
that of the dynamic obstacle. Fig. 9 shows the results for
all the algorithms. Most HA* algorithm variants crossed
the path of the dynamic obstacle behind it, except for the
HA* algorithm, the CCxHA* algorithm, which did not con-
sider the robot shape and the ASR SCHA* algorithm, which

FIGURE 6. The resulting path attaining the shortest distance (solid red)
using the CCRRT algorithm and a ‘‘zig-zag’’ motion (dash-dotted blue)
using the CCxRRT algorithm (the black circles emphasize the path
segments with a ‘‘zig-zag’’ motion).

conservatively crossed the path of the dynamic obstacle ahead
of it. Table 2 shows the results for each of the planner. It is
shown that the SCHA* variations expanded many nodes and
therefore had a larger computation time. Due to the dynamic
obstacle, the soft constraint part increased, which will lead
to the expansion of many nodes. Furthermore, most of the
algorithms had a similar traveled distance as the HA* and
ASR HA* algorithms. The CCxRRT algorithm had a similar
computation time as the CCxHA*, but a larger mean distance
with a large standard deviation. The CCRRT algorithm had
the second-largest mean computation time, which is more
than two times larger as for the ASR CCHA*. Both the A*
and RRT moved, as in the static environment, very close
to the obstacle. Furthermore, the HeAT-RT expanded the
fewest nodes but had the largest standard deviation of the
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FIGURE 7. Resulting paths for all algorithms in a clustered, static
environment.

FIGURE 8. The ASR CCHA* algorithm result at a selected node.

distance and a larger mean computation time compared to the
proposed CCHA*, CCxHA* and SCHA* algorithms.

The CCxHA* and ASR CCxHA* performed best among
the proposed algorithms in terms of computation time and
travelling distance.

C. RESULTS FOR DIFFERENT SOFT CONSTRAINT GAINS
This section compares the result of the HA* algorithm with
those of the SCHA* algorithm using different k gains for
the soft constraint. Fig. 10 shows the resulting paths, where

FIGURE 9. Resulting paths in the dynamic environment.

FIGURE 10. Results for different gains of the SCHA* algorithm.

the conservatism of the SCHA* algorithm increases with a
decreasing gain value for k . Furthermore, Table 3 shows that
the number of expanded nodes, the traveled distance and the
computation time also increases. For k = −0.1, the traveled
distance is less than for the HA* algorithm (see Table 1);
however the SCHA* algorithmwith k = −0.1moves close to
the obstacles. The traveled distance of the SCHA* algorithm
with k = −0.5 and k = −1.5 is similar to the traveled
distance of HA*. Based on these results, the gain value of
the soft constraint should be set between −0.5 and −1.5
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TABLE 2. The traveled distance and computation time per node in a dynamic environment.

FIGURE 11. Monte Carlo simulation for static and dynamic environments.

to achieve a good traveling distance, computation time, and
safety.

D. PERFORMANCE COMPARISON
This work adapted the MCS algorithm in [38], which was
modified for dynamic obstacles and robots with nonlinear

dynamics, where the robot state was updated at each
expanded node for the motion command of the final path.
Algorithm 1 shows a pseudo-code of the MCS algorithm.
Variable pcoll(R, ·) denotes the probabilities for robot R
to not collide with the tested obstacle. S i,Dj denote static
obstacle i and dynamic obstacle j, respectively.AR,AS i and
ADj denote the area of the robot R, static obstacle i and
dynamic obstacle j, respectively. O is the set of all obstacles
and nS , nD is the number of static and dynamic obstacles,
respectively. Function randc() calculates the Gaussian ran-
dom variable. This work used P = 1000 particles for the
MCS, and the probability of collision was calculated based on
the shape of the robot. The results of the static and dynamic
environments are shown in Fig. 11. The red lines indicate the
MCS results for the proposed algorithms assuming a point
robot, the blue lines indicate the algorithms that consider
the shape of the robot, and the green and purple lines show
the results of the planners used for comparison, except A*
and RRT, which cannot be evaluated using the MCS since
they do not use a robot model. The probability of collision
was significantly reduced for the static environment. Only
CCxRRT and the proposed CCxHA* had high values, likely
because they did not consider the shape of the robot and
allowed a probability of collision of 1t (xt ) ≤ 0.25. The
result of the dynamic environment was similar. In both envi-
ronments, the CCHA* algorithm variation indicated almost
no probability of collision while the CCxHA* algorithm had
a small value based on the setting of 0. It can be seen
that the algorithms that do not consider uncertainties had
the largest probability of collision. Furthermore, the ASR
variations (blue lines) of the proposed algorithms have a very
low probability of collision in both the static and dynamic
environments.

VI. DISCUSSION
The performance of the algorithms was evaluated using a
clustered, static environment, and an environment with a
dynamic obstacle. In addition, the true probability of a col-
lision was calculated using the MCS.
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Algorithm 1Monte Carlo Simulation
1: procedure ProbabilisticCollisionCheck
2: for all Nodes do
3: reset(pcoll)
4: for j← nS do
5: for i← P do
6: û← u+ randc(0, 6M )
7: xt+1 = f (xt , û)
8: xS j = xS j

0
+ randc(0, 6S )

9: S j← xS j

10: if AR ∩AS j = ∅ then
11: pcoll(R,S j)← pcoll(R,S j)+ 1
12: end if
13: end for
14: end for
15: for j← nD do
16: for i← P do
17: û← u+ randc(0, 6M )
18: xt+1 = f (xt , û)
19: xDj

t+1
= µx

Dj
t+1

+ randc(0, 6Dj )

20: Dj
← xDj

t+1
21: if AR ∩ADj = ∅ then
22: pcoll(R,Dj)← pcoll(R,Dj)+ 1
23: end if
24: end for
25: end for
26: pcoll(R,O)← 1
27: for k ← 1 to nS do
28: pcoll(R,O)← pcoll(R,O) · pcoll(R,Sk )
29: end for
30: for k ← 1 to nD do
31: pcoll(R,O)← pcoll(R,O) · pcoll(R,Dk )
32: end for
33: pcoll(R,O)← 1− pcoll(R,O)

PnO
34: store(pcoll(R,O))
35: end for
36: end procedure

The results showed that the proposed algorithms were able
to find probabilistically safe paths within the set threshold,
i.e., 0. Furthermore, the CCHA* algorithm was very con-
servative, thus exhibited a very low probability of collision
(Fig. 11). However, with an increase in the number of obsta-
cles, the CCHA* algorithm may fail to find a solution due to
the pruning of all expanded nodes. The CCxHA* algorithm
showed good results with a small increase in the compu-
tation time per node compared with the CCHA* algorithm
(Tables 1 and 2). All proposed algorithms were able to avoid
the dynamic obstacle with a decreased probability of collision
(Table 2). The method considering arbitrary-shaped mobile
robots further increased probabilistic safety at the cost of
additional computation time per node. Therefore, the ASR
variations of CCHA*, CCxHA*, and SCHA* can be used as

global approaches for predicting an initial probabilistically
safe path.

The proposed soft constraint approach successfully found
probabilistic robust paths for both environments. However,
computation time and number of expanded nodes was large
for the dynamic environment, which indicates that the heuris-
tics approach should be extended to consider dynamic obsta-
cles. The ASR SCHA* outperformed both ASR CCHA* and
ASR CCxHA* in the static environment. The ASR CCHA*
failed to find a solution and the ASR CCxHA* had a large
computation time (Table 1). Moreover, results indicated that
the gain values for the SCHA* algorithm should be in the
range of k = −0.5 to −1.5 to achieve good results for safety
and traveled distance (Table 3).

TABLE 3. Traveled distance and computation time per node in a static
environment for the SCHA* algorithm.

CCHA* and CCxHA* outperformed CCRRT and
CCxRRT in terms of mean computation time and mean
traveled distance (Tables 1 and 2). In addition, the results of
the HA* algorithms are deterministic, whereas the results of
the RRT-based planners are random. The shorter computation
time of the proposed HA*-based planners is the result of
two factors. First, the RRT-based planners compute a new
motion command for each node, whereas the HA*-based
planners use a fixed motion command that can be stored
beforehand in a lookup table. Second, HA*-based planners
store each expanded node in a list, and the node with the
lowest total cost (heuristic cost plus cost-so-far) is selected
for expansion. Such a procedure requires a heap algorithm;
here, binary heap [39] is used, which has an average time
complexity for inserting a value ofO(log n) and extracting the
minimum value of O(log n), where n is the number of nodes
in the list. Meanwhile, the RRT-based approaches use a list
for all expanded nodes, where the cost of each node has to be
updated based on the newly expanded node, which requires
O(n) time. In CLRRT, CCRRT and CCxRRT the updated list
has to be sorted, which takes O(n log n) time [40].

The larger mean distance of the RRT-based planners is
a result of detours and ‘‘zig-zag’’ motions (Fig. 6) caused
by random selection of new nodes in the configuration
space [24]. In contrast the proposed algorithms are guided
by heuristics, therefore expand nodes close to the goal, and
change motion directions only if a collision constraint is
violated, hence avoiding ‘‘zig-zag’’ motions (Fig. 5).

The heuristics approach used for the proposed algorithms
do not consider dynamic obstacles, which result in a large
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number of node expansions. Therefore, future studies should
extend the algorithms with heuristics considering dynamic
obstacles to reduce the number of expanded nodes and com-
putation time.

VII. CONCLUSION
This work proposes novel variations of the HA* algorithm,
that consider the probability of collision with an obsta-
cle. Furthermore, a method is proposed that considers the
shape of the robot in the probabilistic collision calculations.
The proposed algorithms outperformed the RRT-based algo-
rithms in terms of mean computation time and mean trav-
eled distance. The proposed algorithms that consider the
arbitrary-shaped robots further increased the probabilistic
safety of the obtained paths.

Future work will modify the heuristics for dynamic obsta-
cles and heuristics in belief space will be incorporated to
reduce the number of expanded nodes of the proposed algo-
rithms. The probabilistic robust approach will be extended
for non-Gaussian uncertainties. In addition, uncertain hybrid
discrete-continuous systems known as jump Markov linear
systems [41], [42] will be considered.

APPENDIX A
LINEAR TRANSFORMATION OF VARIANCE AND
COVARIANCE
It is known that variance and covariance can be expressed
using the expectation of random variables as follows:

var(X) = E[(X− E[X])2], (44)

cov(X,Y) = E[(X− E[X])(Y− E[Y])]. (45)

Furthermore, the expectation of aX+ bY+ c is

E[aX+ bY+ c] = aE[X]+ bE[Y]+ c. (46)

Using (44) and (46)

var(aX+ bY+ c)

= E[(aX+ bY+ c− E[aX+ bY+ c])2]

= E[(a(X− E[X])+ b(Y− E[Y])+ c− c)2] (47)

Using the principles of (46) again and the binomial
formula,

= E[a2(X− E[X])2]+ E[b2(Y− E[Y])2]

+E[2ab(X− E[X])(Y− E[Y])] (48)

Hence,

var(aX+ bY+ c) = a2var(X)+ b2var(Y)

+2ab cov(X,Y). (49)

The covariance for Z1 = a1X1 + b1Y1 + c1 and Z2 =

a2X2 + b2Y2 + c2 can be calculated similarly, i.e.,

cov(Z1,Z2)

= E[(a1X1 + b1Y1 + c1 − E[a1X1 + b1Y1 + c1])

(a2X2 + b2Y2 + c2 − E[a2X2 + b2Y2 + c2])],

(50)

which can be simplified using (46),

cov(Z1,Z2) = E[(a1(X1 − E[X1])+ b1(Y1 − E[Y1])

(a2(X2 − E[X2])+ b2(Y2 − E[Y2])].

(51)

Rearranging above equation and using (45) led to the final
result for the covariance as follows:

cov(Z1,Z2) = a1a2cov(X1,X2)+ b1 b2cov(Y1,Y2)

+a1 b2cov(X1,Y2)+ a2 b1cov(X2,Y1).

(52)
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