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ABSTRACT The calculation and analysis of a power distribution network (PDN) require accurate device
parameters. However, a PDN hasmany points, and the distribution area is very wide. The PDNparameters are
influenced by manual entry, and most are relatively random. Additionally, these parameters are affected by
the operating status. Thus, this paper proposes an algorithm that accurately identifies PDN parameters based
on the Markov chain and Monte Carlo (MCMC) method. The algorithm assumes that the PDN parameters
conform to a nonlinear probability space. The parameters are the line resistance RL , line reactance XL ,
short-circuit loss Pk , short-circuit voltage percentage Uk%, no-load loss P0, no-load current percentage
I0%, etc. The algorithm in this paper uses the Monte Carlo method to provide parameter values that
conform to the initial probability distribution and then combines the data collected from the actual feeder to
perform power flow calculations to obtain the loss function. The data include the head and end voltages
and active and reactive power on the low voltage side. The Markov chain and loss function update the
initial parameter probability distribution. The low voltage side voltage of the power flow calculation is
iteratively calculated under the new given parameters to obtain the new loss function, and finally, the PDN
line and transformer parameter values are identified. Actual feeder data verification results show that this
MCMC PDN parameter identification method can obtain high-precision parameter values without phase
angle information; additionally, this method is insensitive to the initial values and exhibits fast convergence.

INDEX TERMS Distribution network, parameter identification, Markov chain andMonte Carlo, power flow
calculation, posterior probability distribution.

I. INTRODUCTION
With increasing power grid construction and economic devel-
opment, the scale of China’s distribution network has gradu-
ally expanded, and the power network structure has increased
in complexity. In recent years, with the increasing access
to distributed generation and new energy vehicles, distri-
bution network operation has also increased in complexity.
Therefore, it is necessary to effectively control distribution
networks to ensure the security and stability of power sys-
tems. Reliable and accurate power network parameters are the
basis of the security analysis, control, state estimation, line
loss calculation, power flow calculation, protection setting
and fault analysis of a power distribution network (PDN).
However, most of the distribution network parameters in the
current power grid database are static parameters usually
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provided by the manufacturers. The methods used to obtain
these parameters do not take into account the impacts of
power grid operation and environmental conditions, and the
parameters do not reflect the real-time operation status of
electric equipment, results in poor parameter calculations for
the distribution network. A distribution network is composed
of distribution transformers and lines. At present, the iden-
tification methods for the parameters of the transmission
lines and transformers are as follows: the theoretical for-
mula calculation method based on the self-geometric spacing
method, where the mutual geometric spacing of the conduc-
tors and the manufacturing materials of the conductors are
combined with the weather, temperature and other external
conditions [1], [2], and the identification method based on
field measurements of the voltage, current, power, frequency
and other network parameters using electrical instruments.
With the popularization and application of the supervisory
control and data acquisition (SCADA) method, the power
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management unit (PMU) method and the advanced meter-
ing infrastructure (AMI) method, some new identification
methods have also been proposed [3]–[9], such as the least
squaresmethod, the improvedweighted least squaresmethod,
the residual method, the sensitivity analysis method and the
Lagrange multiplier method [10].

However, the above methods have the following issues.
These methods require data regarding the voltage, current,
active power and reactive power on the high and low voltage
sides, which is constrained by the lack of real-time measure-
ment equipment in a distribution network. The premise of
the least squares method assumes that the parameter space
is convex and that the default local extremum is the global
extremum; hence, this method is sensitive to the initial values
of the nonconvex parameters, and the calculations do not
easily converge. The experimental data come from a single
device and are not obtained from actual production, and the
practicability of the above methods need to be discussed.
Moreover, the solution time of the parameter calculations is
long and increases exponentially with an increasing amount
of data. A distribution network covers a large area, and the
measurement conditions are not as good as those of the main
network. In addition, many differences exist between the
topology structure, line impedance characteristics and trans-
mission network [8]. Therefore, the parameter identification
methods of the transmission network may not be suitable for
the calculation of the PDN parameters. With the rapid devel-
opment of artificial intelligence technology, some researchers
have developed PDN parameter identification methods based
on deep learning and machine learning [11]–[14]. Artificial
intelligencemethods consider the fact that PDNmeasurement
devices lack parts of the original data of the line and exhibit
some deviations. According to the time invariant character-
istics of PDN line parameters in a short time, a convolu-
tional neural network (CNN) extracts a large amount of data
for regression calculations. These methods are proven to be
effective with simulation data, but only part of the parameters
can be obtained, and the precise voltage and voltage phase
angle have to be obtained. The Monte Carlo method (a statis-
tical simulation method) solves these problems with a large
number of random simulations. When the problem be solved
is based on the probability of the occurrence of a certain
random event, according to the means of random trials, this
method takes the frequency of the occurrence of the event as
the probability of the random event; thereby, the numerical
characteristics of a certain random variable are obtained and
then taken as the solution of the problem [15]. The Monte
Carlo method requires a probability distribution consistent
with the actual conditions. That is, we need to determine
the actual conditions to obtain the probability distribution
consistent with the real situation. According to the ergodic
theorem of the Markov chain, an initial random value can
quickly converge to the same stationary distribution through
theMarkov process. TheMarkov chainmethod can alsomake
up for the fact that theMonte Carlo method can only statically

simulate the experiment, and the convergence speed of the
Markov chain is fast when facing multiple high-dimension
random variables [16].

The parameters of the PDN lines, RL ,XL , and transform-
ers, Pk ,Uk%,P0, I0%, do not meet the convex function
requirements of the optimal iterative solution in a certain
range. In this paper, we assume that the PDN parameters
conform to the nonlinear relationship in the probability space,
set the random distribution of the distribution network param-
eters, and obtain the random values of the parameters by
using the Monte Carlo method. Under the given distribution
network parameters, the voltage on the low voltage side is
completely calculated with the power flow calculation, and
then the deviation between the measured voltage and the
calculated voltage on the low voltage side of the actual feeder
is calculated with the constraint function. Finally, the proba-
bility distribution of the assumed distribution network param-
eters can be updated by the state transition probability of the
Markov chain (the change in the parameters is dynamically
simulated by theMarkov process), and the optimal solution of
the distribution network dynamic parameters can be obtained
after iteration.

In conclusion, an accurate identification method for the
PDN parameters based on the Markov chain and Monte
Carlo (MCMC) algorithm is proposed. First, we assume
that the distribution network parameters obey the discrete
uniform joint distribution π (RL ,XL ,Pk ,Uk%,P0, I0% · · · ),
and the random values are given by using the Monte Carlo
method.

The constraint function is estimated with the data obtained
from the power flow calculation. The constraint function
and power flow calculation are used to express the joint
probability distribution of the PDN parameters in the actual
conditions. When the probability distribution (Bayesian pos-
terior probability distribution) of the Markov chain state
transition probability matrix updates the parameters in the
Monte Carlo method, a probability distribution that meets the
actual conditions is obtained. Finally, the optimal solution for
the PDN parameters is obtained after N rounds of iterative
computations. The proposed algorithm needs only the voltage
of the first section of the feeder and the voltage, active power,
and reactive power of the node on the low voltage side of the
feeder and does not need the power, voltage phase angle or
current phase angle on the high voltage side.

This paper mainly solves the following difficulties:
1). With incomplete high-voltage measurement data and

inaccurate voltage amplitude and phase angle, the parameters
are identified precisely.

2).Without knowing the distribution of the real parameters,
the estimated values of the parameters are calculated by using
the Markov process.
The structure of this paper is as follows. Section II introduces
the line and transformer models and the formula of the power
flow calculations and presents a way to obtain the original
distribution of the PDN parameters and the composition of
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loss function. Section III reveals results for an actual 10 kV
feeder. The original parameters and identification parameters
are substituted into the power flow calculation. A comparison
experiment on the deviation between the calculated voltage
and the measured voltage verifies the effectiveness of the
proposed algorithm.

II. MATERIALS AND METHODS
A. FLOW CHART OF THE IDENTIFICATION ALGORITHM
In this paper, according to the initial parameters of the net-
work (line length, transformer model, and line default param-
eters), the first section voltage of the feeder, and the active
power and reactive power on the low voltage side, the PDN
parameters identified. The flow chart of the identification
algorithm is shown in Figure 1.

FIGURE 1. Flow chart of the identification algorithm.

B. DETERMINATION OF THE INITIAL DISTRIBUTION
According to the properties of theMarkov chain, the selection
of the initial values does not affect the smooth convergence,
so the initial distribution of the parameters can be set as a nor-
mal distribution, a continuous distribution, etc.. Without loss
of generality, it is considered that there are m transformers
and N lines in the PDN system.

1) The transformer Pk ,Uk ,P0, I0 and the line default
RL ,XL are given.
2) Only the transformer SN ,UN , IN , the line length l and

the line type are given.
For the first situation, you can set the initial distribution of
P(i)k ,U

(i)
k ,P

(i)
0 , I

(i)
0 ,R

(i)
L ,X

(i)
L as {U (A,B) : A < B}.

where i is the transformer number and j is the line number.
Considering the line length, transformer operation sta-

tus and the meteorological conditions, the range coefficient
α, β(0 < α, β < 2) is introduced to finely describe the

distribution, and the distribution is obtained as follows:

P(i)k = U
(
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)
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X (j)
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(1)

We assume that the parameters of the line and transformer
cannot change to the twice of the original value under the
influence of temperature changes and voltage fluctuations.
That is, this constraint is equivalent to doubling the length
of the line and the capacity of the transformer, which is obvi-
ously unrealistic. The temperature, wind speed and humid-
ity of the geographical location of the line and transformer
should be considered when parameters are to be identified.
For the range coefficient, when the temperature is high,
β should be appropriately increased; when the temperature
and humidity change, the coefficient should be tuned to
improve the accuracy of the identification and accelerate its
convergence.

For the second situation, the distribution can be obtained
as follows, where r20 is the resistance at 20 ◦C, which can
be obtained by referring to the design manual if the type
of circuit is known. k is the temperature coefficient of the
resistance. x is the inductive reactance of the line, which can
be obtained by referring to the design manual if the type of
line is known.

U (i)
k = (4− 10)%

I (i)0 = IN (2− 10)%

P(i)k = SN (0.4− 4)%,

P(i)0 = SN (0.2− 1)%

R(j)L = lr20(1+ k(t − 20))

X
(j)

L = lx

(2)

C. MODEL OF THE POWER FLOW CALCULATION
In this paper, a 0-type equivalent circuit is used for the
distribution transformer. The line of the PDN is short and has
a low voltage. Consequently, the charging capacitance can be
ignored.

Hence, the values of RT ,XT ,GT ,BT (obtained by
Pk ,Uk%,P0, I0% transformation) [17]–[19] and RL ,XL are
calculated by using the Monte Carlo method. Then, these
parameters are input into the model of the power flow as
variables. Considering that the resistance of the PDN is large,
the requirement that the line conductance be far lower than the
line susceptance is not satisfied, and the leakage reactance of
the transformer is larger than the resistance; the constraints of
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FIGURE 2. 0 type equivalent circuit of the transformer and 5 type
equivalent model of the low voltage distribution line.

FIGURE 3. Power flow calculation circuit model.

the parameters are set as follows:

a < RL/XL < b

XT /RT > c

GT /BT > d (3)

where a, b, c, d are the preset constraint thresholds. If the
parameter violates the above constraints, it is discarded. Con-
sidering the error and computational complexity, we take the
three-phase balance as the premise in the calculation of the
power flow. The total power is distributed evenly to each
phase for calculation. The method of power flow calculation
is as follows:

The active power Pd , reactive powerQd and voltageUd on
the high voltage side of transformer at bus D are calculated
by the following formulas.

Pd = PLd +
P2Ld + Q

2
Ld

U2
Ld

RTd + U
2
LdG

T
d

Qd = QLd +
P2Ld + Q

2
Ld

U2
Ld

XTd + U
2
LdB

T
d

Ud =
√
(ULd +1UT

d )
2 + (δUT

d )
2

(4)

1UT
d and δUT

d are the longitudinal component and trans-
verse component of the transformer impedance voltage drop
at bus D in V.

1UT
d =

PLdRTd + QLdX
T
d

ULd

δUT
d =

PLdXTd − QLdR
T
d

ULd

(5)

The voltage of bus C can be expressed as:
Uc =

√
(Ud +1UT

cd )
2 + (δUT

cd )
2

1UT
cd =

PdRTcd + QdX
T
cd

ULd

δUT
cd =

PdXTcd − QdR
T
cd

Ud

(6)

fc(x) =
√
(Ud +1UT

cd )
2 + (δUT

cd )
2

−

√
(ULc +1UT

c )2 + (δUT
c )2 (7)

D. DESIGN OF THE LOSS FUNCTION
According to the power flow calculation, the probability
value of J is obtained. In this algorithm, the Bayesian poste-
rior probability distribution is first updated using the MCMC
method. Random values of the PDN parameters are given
using the new probability distribution, and the distribution
is calculated and updated in turn. After all iterations are
complete, the optimal dynamic parameters of the PDN are
obtained. The loss function in this paper is designed as
follows:

J =



T∑
k=1

(∣∣ûk − uk ∣∣+ ∣∣∣îk − ik ∣∣∣)
+

T∑
k=1

(∣∣∣∣∣∣∣∣ang( −̂→Uk−̂→
Ik

)∣∣∣∣− |ang (Pk + jQk)|∣∣∣∣)
+

T∑
k=1

(∣∣∣∣Ûk ∗ Îk −√P2k + Q2
k

∣∣∣∣)
+

T∑
k=1

(∣∣∣Ûk − uk ∗ n∣∣∣)


(8)

The core of the algorithm is whether the designed loss
function can take into account the real distribution of the
parameters. The idea of the above loss function design is as
follows:

1) Under the strong constraints of the voltage and current,
we construct as many small parts as possible. The more the
irrelevant the small part, the closer the value of J is to the real
distribution of the parameters.

2) The identified parameters are divided in two types, resis-
tance and inductance.When the current flows, the voltage and
the phase change. The design of the loss function should be
able to reflect the changes in the voltage and the phase so that
the value of J can be closer to the actual conditions and that
the distribution of J can be closer to the distribution of the true
parameters.

3) Each small part has different loss values, and the unified
values need to be the same order of magnitude to prevent a
small part from being too large, dominating J, and covering
up the influence of other parts on J. According to the experi-
mental results, the loss function is composed of the following
parts:

1) The value of the voltage on the low voltage side—-the
deviation between the calculated value and measured value

2) The value of the current on the low voltage side—-the
deviation between the calculated value and measured value
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TABLE 1. Line information.

TABLE 2. Transformer information.

3) The phase differences of the voltage (on the low voltage
side) and current (on the low voltage side)—-the deviations
between the calculated values and measured values

4) The apparent power on the low voltage side—-the devia-
tion between the calculated value and the value of the power-
factor that comes from the low voltage side

5) The voltage on the low voltage side—-the deviation
between the calculated value and the value of measured volt-
age multiplied by the transformer ratio.

E. UPDATED DISTRIBUTION OF THE MARKOV PROCESS
The Bayesian posterior probability distribution of the Monte
Carlo method can be updates by using the Markov process.
Random values for the PDN parameters can be used to gen-
erate the new probability distribution using the Monte Carlo
method, and the random values can make the Markov process
stable. In the Markov process, the state of the object depends
on the past state and is related only to its previous state.

π1 = π0P
π2 = π0P

2

πn = π0p
n
ij

pij = P(Xn+1 = j|Xn = i), i, j ∈ S

(9)

where πi represents the state of the object at time i. π0 is
the initial value. When the current state of the discrete-time
Markov chain is i. The probability that the next state equals j
is the transition probability pij.
The loss value J generated using the above loss function

meets the condition [0, +∞] and can be normalized to [0,
1], which is the transition probability. The optimal solution is
yielded by iterating N rounds.

III. EXPERIMENT AND VERIFICATION
Two groups of contrast experiments are performed to prove
the effectiveness of the algorithm. The least squares method
requires much more data than the dimension of the param-
eters to identify and ultimately obtains a static result. When
solving the nonlinear objective function, this method needs

to rely on the linearization method, and there are truncation
errors. [20]–[22] This paper addresses this problem from the
perspective of probability space and avoids directly solving
the nonlinear objective function. Each time point parameter
is obtained by the joint distribution of parameters that the
loss function and Markov chain update. Then, the dynamic
parameters of the equipment at each time point are obtained.
A group identification experiment of the parameters is com-
pleted using the least squares method, and the parameters are
substituted into the network for calculation. Another group
of experiments are performed by using the proposed algo-
rithm. Finally, accurate results are obtained via the power
flow calculation. In this section, we compare the errors with
voltage data parameters. In this paper, an actual 10 kV feeder
is selected for the calculations. The 10 kV feeder is com-
posed of a transformer (S11-M-400/10) and eight overhead
transmission lines and one cable. The specific topology is
displayed in Figure 4.

FIGURE 4. Ten-kilovolt feeder topology.

The static parameters of the 10 kV feeder network are as
follows:

According to the above calculation algorithm, we set the
following conditions:

1) Considering the fluctuations in the weather and the load,
the range coefficients of the line are set to α = 0.9, β = 1.1.
According to the experience of the workers on site, the fluc-
tuation of the transformer parameters with weather and load
is small, and the range coefficients are set to α = 0.95,
β = 1.05.
2) The original distribution of the line transformer param-

eters is set to {U (A,B) : A < B}, and the accuracy of each
generated parameter is set to a micrometer. The number of
iterations is 1000.

3) The loss function value is obtained using the power flow
calculation.

4) The optimal values is calculated after 1000 iterations.
Without loss of generality, data collected on January 1,

2020 are selected randomly. The data were collected by
SCADA, and the sampling period is 15 min. Figure 5 shows
the three-phase first section voltage (UA, UB, and UC) on the
high voltage side, Figure 6 shows the three-phase voltage (ua,
ub, and uc) on the low voltage side, and Figure 7 shows the
three-phase active power (Pa, Pb, and Pc) on the low voltage
side.

The standard value per unit is used for the voltage data,
and the named value is used for the power data. The low
voltage side voltage (u ∗) calculated with the identification
parameter value is comparedwith the low voltage side voltage
(u) calculated with the original parameter value.
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FIGURE 5. UA, UB, and UC on the high voltage side.

FIGURE 6. Ua, ub, and uc on the low voltage side.

FIGURE 7. Pa, Pb, and Pc on the low voltage side.

A. COMPARISON OF THE PARAMETERS CALCULATED
USING THE MCMC IDENTIFICATION METHOD AND THE
ORIGINAL VALUES
The red lines represent the identified results for the parame-
ters from the proposed algorithm, and the green lines are the
original parameter values. Figures 8 and 9 show that the error
between u∗ and the measured value is less than that between

FIGURE 8. Comparison of u∗ and u.

FIGURE 9. Error comparison of u∗ and u.

u and the measured value, which indicates that the identified
value reflects the actual changing network parameters. The
voltage error mean of u∗ is 0.0137(p.u.), but u is 0.0147(p.u.).
So parameters of algorithm identification is credible.

The parameters calculated using our proposedmethod have
a good effect on the real voltage conditions of the distribution
network and more accurately optimize the reactive power and
calculate the line loss of the distribution network.

B. THE CALCULATION RESULTS FROM THE MCMC
ALGORITHM AND THE LEAST SQUARES METHOD
According to formulas (2-7), the objective function is con-
structed and solved by the nonlinear unconstrained least
squares method and nonlinear constrained least squares
method. The algorithm can identify a group of parameter val-
ues at each time point, and 96 groups of data are obtained at
96 time points a day. The random results are shown in Table 3.

The data show that the greatest magnitude of error in the
transformer parameters is obtained by the unconstrained least
squares method and that the values of the line resistance and
inductance are obviously inconsistent. The nonlinear least
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TABLE 3. Comparison of parameters obtained using different methods.

FIGURE 10. Comparison of B∗ and B.

squares method has less error under the conditions of high
latitude identification parameters and incomplete data on the
high voltage side. The results calculated using the uncon-
strained least square method are incorrect and the power flow
calculation cannot converge because the parameters of the
constrained least squares method are adopted. In this paper,
the forward backward method [17] is used to calculate the
voltage on the high voltage side (the voltage on the low
voltage side has been obtained; the network parameters are
calculated with the least squares method and the MCMC
method). The first voltage on the high voltage side (B∗)
calculated via the MCMC identification parameters and the
voltage on the high voltage side (B∗) calculated using the least
squares identification parameters are obtained. The absolute
value of the error of B∗ and the measured value is taken as the
error distance. As shown in Figure 10, the first section voltage
(B∗) of the high voltage side is calculated using the proposed
identification parameters, and the low voltage side voltage
(B) is calculated via the original values; additionally, the error
between these values and the measured value is calculated.
The red line represents the calculation result of the parameters
identified using the proposed algorithm, and the green line
represents the calculation result via the least squares method.

In the calculation of the first voltage and network param-
eters, the error curve of our algorithm is smoother than the
error curve of the least squares method. The voltage error

FIGURE 11. Error comparison of B∗ and B.

mean of B∗ is 0.0144(p.u.), but B is 0.0179(p.u.). The error
mean and variance of this algorithm are smaller than those
of the least squares method, which demonstrates that our
proposed method has better parameter identification perfor-
mance for the PDN.

IV. CONCLUSION
This paper presents an accurate identification and calculation
method for PDN parameters based on the MCMC algorithm.
According to the node type of the PDN, a typical parame-
ter identification model of the PDN is established, and the
parameters of the branch and transformer in the PDN are
estimated and identified in real time by using the known
partial measurement data, power flow calculation method
and MCMC algorithm to estimate the minimum loss func-
tion. The experimental results demonstrate that the proposed
method has a higher accuracy, and the proposed algorithm
is better than the current mainstream method. The proposed
algorithm is insensitive to the initial measurement value and
has fast convergence speed and high calculation efficiency;
thus, it can be applied to calculations on a variety of electrical
devices in real time.
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