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ABSTRACT Do nasopharyngeal carcinoma (NPC) patients benefit from induction chemotherapy (IC)? This
problem is of great clinical interest; however, it is difficult to obtain an accurate and interpretable model
to inform IC decisions for NPC patients. In this study, a time-to-event supervised genetic algorithm was
developed to obtain an IC decision-making model for NPC patients. In this algorithm, the fitness function
is directly related to the time-to-event, which reflects the IC therapeutic effect for NPC. Then, the optimal
models are obtained by stability and validation analysis. The comprehensive clinical model is determined
by comprehensive feature analysis using the ‘‘or’’ operation. The overall survival for non-IC vs. IC patients
in the potential benefit group was 63.4% vs. 81.5%, with p = 0.020, and the comprehensive clinical model
exhibited good generalization ability. However, the benefits of OS according to the current NCCN guidelines
are limited (p > 0.05). None of the possible processes of LASSO we tried could obtain the significant
models validated in the testing cohort. The proposed method provides an interpretable model construction
process, reasonable data grouping strategy, concise experimental design, and convenient clinical application.
Moreover, we will develop a toolkit for the treatment decision-making model research to facilitate the use
of clinicians and provide technical support for precision medicine.

INDEX TERMS Treatment decision-making, genetic algorithm, survival analysis, LASSO, retrospective
study, nasopharyngeal carcinoma, induction chemotherapy.

I. INTRODUCTION
Induction chemotherapy (IC) is gaining recognition for
nasopharyngeal carcinoma (NPC) and has been used consis-
tently over the last decade [1]–[3]. However, not all patients
respond well to IC, and an effective means of identifying
patients who will respond well requires further study [4].
The risk of delaying standard intensity-modulated radiation
therapy- based concurrent chemoradiotherapy for IC has been
debated in recent years. Although many clinical trials have
confirmed that IC can benefit patients with advanced NPC,
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various studies have also pointed out that its benefits in
some patients with advanced NPC are not obvious [5]–[7].
Therefore, in addition to relying on clinical staging for patient
selection as most clinical studies do, there is an urgent need
for a patient selection tool or model to determine those
patients whomay obtain significant survival benefits from IC,
and those who will receive no significant benefits can use the
standard scheme earlier.

Stratification survival analysis has commonly been used to
investigate whether NPC patients benefit from IC [8]–[12].
As shown in Figure 1, the NPC patients who participate
in such tests are stratified into IC and non-IC groups. Uni-
variable Cox regression analysis is performed to obtain
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FIGURE 1. Flowchart of stratification survival analysis depending on whether a treatment is
performed on patients. a and b are the common stratification analysis process. IC= induction
chemotherapy.

the significant feature variables, which are used to evalu-
ate whether NPC patients benefit from IC. The prognostic
score model is constructed for each group by least absolute
shrinkage and selection operator (LASSO) or Cox regression
analysis, and then a cut-off score to divide the high-risk
and low-risk groups is identified using receiver-operating
characteristic (ROC) curve analysis. Usually, Cox regression
analysis with a stepwise method or more comprehensive
multivariable analysis can be utilized for feature analysis
when the number of candidate features is relatively small,
while LASSO can be employed when the number of fea-
ture parameters is large [13]. Multivariate analysis has also
been performed to confirm the benefits of IC while control-
ling specific parameters. The overall survival (OS) between
these two groups has been evaluated using the Kaplan-Meier
method and log-rank test in multivariate analysis with all
patients [14]–[16]. Model A, which can be used to select
NPC patients who benefit from IC, can be constructed by IC
group analysis, andmodel B, which can be used to select NPC
patients who do not benefit from IC, can be constructed by
non-IC group analysis.

However, these methods have several limitations. First,
there are many potential features for assessing whether NPC
patients benefit from IC, and the dimension of the feature
space is very high. An excessive number of potential mod-
els must be validated, which is difficult to do exhaustively
because this problem is a non-deterministic polynomial hard
problem. It is also challenging to evaluate the therapeutic
effect of NPC comprehensively using the treatment decision
model constructed by Cox regression analysis. Second,
although LASSO analysis can be used to construct an eval-
uation model when there are many feature variables, feature
selection in LASSO is blind to the OS of NPC patients.
In LASSO analysis, the objective function of model con-
struction and optimization is the deviation or area under the
ROC curve (AUC), which is only related to the values of
the feature variables involved in the analysis and ignores
the IC information in the feature selection. Hence, models
obtained by LASSO analysis have difficulty making accu-
rate IC treatment decisions for NPC patients. Third, it is
difficult to determine clearly whether NPC patients will ben-
efit from IC clinically; that is to say, it is challenging to
assign the IC treatment effect label for each NPC patient.
The methods of machine learning and artificial intelligence,

which can be used to construct models in high-dimensional
feature space, have failed to construct a treatment deci-
sion model to evaluate whether NPC patients will benefit
from IC.

To obtain an optimal treatment decision-making model,
the optimal combination of feature variables must be
selected from a massive number of feature variables.
A high-dimensional feature space can be formed from
the features obtained by feature analysis. The optimal
feature set is a subset of the high-dimensional feature
space. Genetic algorithms have been proven to be robust
global optimization algorithms for searching the subop-
timal solutions in high-dimensional space [17]–[21] and
have been used for feature selection in multimodal bio-
metric systems [22], high-dimensional cancer microarray
datasets [23], etc.

In the present report, a time-to-event supervised genetic
algorithm is proposed to obtain an IC decision-making model
for NPC patients based on feature selection from numerous
clinical characteristics. In our genetic algorithm, the fitness
function is defined as the reciprocal of the p-value of the
survival analysis, which is directly related to the time-to-
event, directly reflects the IC therapeutic effect for NPC, and
supervises the implementation process of genetic algorithm.
All models with p-values less than 0.05 in the genetic algo-
rithm were collected, and the stability and validation analysis
were used to select the optimal IC decision-making model
for NPC.

The main contributions of this paper are as follows. First,
we take the lead to put forward the integration of the
log-rank test and genetic algorithm. Time-to-event supervise
the whole process of model construction which result in the
result model is characterized as concise and interpretable.
Second, we provides a useful new means of evaluating the
therapeutic effectiveness or performing decision making for
disease treatment, and the patients who benefit from a spe-
cific therapy can be effectively screened out in terms of OS.
Third, we successfully constructed a comprehensive clinical
IC decision-making model for NPC based on the experi-
mental data, but the LASSO cannot. Using the new model,
KM survival curves of the patients with IC is significantly
higher than that of patients without IC (p<0.05). The ben-
efits of OS according to the current NCCN guidelines are
limited (p > 0.05).
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FIGURE 2. Design of IC decision-making model for NPC. a One-hot coded clinical features. b Genetic code for
feature description. c Selected features as model input. d Subjects with model output of 1. e Subjects with model
output of 0. The grey and green rectangles in d and e represent the subjects who received and did not receive
treatment, respectively. PB group = potential benefit group; NPB group = non-potential benefit group.

II. MATERIALS AND METHODS
A. DATA COLLECTION
A dataset of IC on NPC was obtained as in [24]. The ethics
committee of SunYat-senUniversity Cancer Center approved
this study, and the need for informed consent was exempted
for this study, which followed the tenets of the Helsinki
Declaration. The inclusion criteria and the details regarding
the image parameters can be found in the Appendix A in the
supplementary material. 719 patients underwent intensity-
modulated radiation therapy. Depending on the decision
of the attending physician, some patients received con-
current chemotherapy, IC, or both. The first 399 patients
were selected as the training cohort and the remaining
320 patients as the test cohort. The median follow-up dura-
tion for the OS of the whole cohort was 61.9 months
(range, 1.4–83.4 months). The outcomes of interest were OS,
progression-free survival, distant metastasis-free survival,
and regional recurrence-free survival. Upon the last follow-
up, 47 patients (11.8%) in the training cohort and 39 patients
(12.2%) in the test cohort were confirmed dead due to tumour
recurrence or metastasis. The clinical characteristics of the
training and testing cohorts are summarised in Appendix B
in the supplementary material. No significant differences
were found between the training and test cohorts (p > 0.05),
except for concurrent chemotherapy (p = 0.005); however,
patients in both groups mostly (>89%) received concurrent
chemotherapy. To some extent, they also received similar
treatments.

A total of 289 original features were found from the clin-
ical information, plasma parameters, and medical imaging
information; most of them were from the MRI-based detailed

imaging findings reported by two radiologists with the same
opinion. After one-hot encoding, 532 features were extracted
from the MRI according to a detailed report, including three
staging-related fields, one pathological type, 43 patient basic
information and laboratory- related fields such as blood test-
ing, and 468 detail report-related fields. The descriptions
of the selected features and the corresponding coefficients
are listed in Appendix C in the supplementary material.
Using univariable Cox regression, we selected 145 features
that were the most strongly associated with OS for further
analysis.

B. DESIGN OF IC DECISION-MAKING MODEL FOR NPC
Clinical features combined with survival analysis are
employed to determine whether a patient may benefit from
a treatment. All feature values used for the analysis are set to
0 or 1 after one-hot coding. Several features that are randomly
selected from the feature set can be used as model inputs to
determine a genetic code. In the genetic code, 1 represents
a randomly selected feature that is given as input to the
model, whereas 0 represents an unselected feature. A treat-
ment decision-making model is determined using the genetic
code based on the selected features. As shown in Figure 2,
the model is defined as an ‘or’ operation. The model input
consists of the values of the selected feature in a specific
genetic code, and the model output is the result of performing
the ‘or’ operation on the input. The subjects can be separated
into two groups using a specific model. If one of the selected
feature values of a patient is 1, the model considers the
patient to belong in the potential benefit (PB) group. Other-
wise, the patient is considered to belong in the non-potential
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benefit (NPB) group. The subjects who received and did not
receive treatment were included in each group.

The KM method and log-rank test can be independently
conducted in each group to evaluate the model performance.
When the p-value obtained from the log-rank test is less than
0.05, the model can be considered to effectively distinguish
the patients who will benefit from treatment. When the sur-
vival curve of the patients who receive treatment is above that
of the patients who do not receive treatment, there is reason
to believe that the patients will benefit from the treatment
based on the model. The p-value of the model is defined as
the p-value of survival analysis in the PB group because the
patients who will benefit from the treatment are of greater
interest. A model with a p-value of less than 0.05 indicates
that it is a potential model for treatment decision-making in
the training stage or an optimized one in the test stage.

C. TIME-TO-EVENT SUPERVISED GENETIC ALGORITHM
For n formatted features, the number of possible models
for treatment decision-making is 2n. This problem is a
non-deterministic polynomial complete problem. Usually,
the dimensions of the formatted features are significantly
high. Additionally, the number of models is so large that they
cannot be processed in an exhaustive manner. To determine
the optimal model with significance in survival analysis,
a time-to-event supervised genetic algorithm was imple-
mented in the training stage.

A genetic algorithm starts from a population that repre-
sents the potential solution set of the problem; a population
is composed of a certain number of individuals encoded
by gene. Each individual is actually a chromosomal entity
with features. Coding in the genetic algorithm is utilized
to build a mapping from the genotype to phenotype. The
binary coding technology was used for genetic encoding
because it is concise and easy to decode. For gene coding,
the clinical feature used for the model input is the feature
with a coding value of 1; subsequently, a binary coding
sequence can produce a treatment decision-making model.
The model p-value, which can describe the difference in
survival between the patients with and without treatment
based on the dataset, can be obtained by survival analysis.
The lower the p-value, the stronger the adaptability of the
population. Therefore, the fitness function of an individual
is set as the reciprocal of the model p-value to supervise the
iterative process of the genetic algorithm. A given iteration
In generated the population Pn from the population Pn−1
through the genetic operators. In each iteration, the individual
with the largest fitness function value was directly inherited
by the next population. The individual pairs were randomly
selected from population Pn, and each pair was submitted
to a crossing over process, thereby generating a couple of
children for population Pn+1. Each child had a 0.15% chance
of mutation, where one position was randomly selected for
substitution. When a new population was generated, it was
checkedwhether the individual in the new population adhered
to the coding rules. If not, the individual was discarded and

FIGURE 3. The process of IC decision-making model construction.

a new random individual who satisfied the coding rules was
generated to maintain a stable number of individuals in the
population.

D. TREATMENT DECISION-MAKING
MODEL CONSTRUCTION
The process of treatment decision-making model construc-
tion is shown in Figure 3. In the pre-processing stage,
the dataset was independently divided into training and test
cohorts. Each cohort included the treated and non-treated
patients. The clinical and survival features were extracted and
collected; the formatted features can be obtained after one-hot
encoding.

In the training stage, the time-to-event supervised genetic
algorithm is used to obtain the potential models, which
p-values of less than 0.05 during population evolution. And
then, bootstrap is used to evaluate the stability of all potential
models. Partial data from the training cohort were resampled
1,000 times. For each potential model, survival analysis was
performed on each resampled dataset. The stability coef-
ficient was defined as SC = F/1000, where F represents
the number of resampled datasets for which the p-value of
the model was less than 0.05 in survival analysis. Larger
values of SC indicate a more stable model. The first 2% of
the most stable potential models were selected as candidate
models.

In the validation stage, The KM method and log-rank test
were performed using the test cohort and candidate models
to identify models with p-values of less than 0.05 in the test
stage as the optimalmodel. The optimalmodels were stable in
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TABLE 1. Model patient distribution and selected features.

the training cohort and had statistical significance in the test
cohort; they were selected for further comprehensive clinical
analysis. There may be many optimal models that pass the
test, and the variables in these models may have correlation.
Therefore, the comprehensive clinical model was determined
by the comprehensive analysis of features based on the ‘or’
operation in the model design.

E. PERFORMANCE EVALUATION
To illustrate the superiority of the algorithm, the LASSO
analyses have been carried out on the same dataset. We will
discuss the performance of the proposed method and LASSO
from the process of model construction, data grouping strat-
egy, experimental design and clinical application.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. IMPLEMENTATION OF TIME-TO-EVENT SUPERVISED
GENETIC ALGORITHM
The algorithm was implemented in MATLAB 2016a on
Microsoft Windows 10 home. The source code of the
algorithm can be found at https://github.com/GUET-LDM/
TesGA_IC_NPC.

The parameters of the genetic algorithm were set as fol-
lows: 145 variables after one-hot coding, 200 sequences in the
population, one million iterations, and 0.15% probability of
mutation. The maximum number of features selected in one
model was limited to 15. In the iteration process, the genes for
the model with more than 15 selected features were discarded
to prevent the population from precocity. The fitness function
was set to the reciprocal of the p-value from the survival
analysis to supervise the evolutionary process of the genetic
algorithm.

72,904 potential models were collected within one million
iterations, and 1458 candidate models were obtained after
stability analysis. Only three of the candidate models in the
test cohort had p-values of less than 0.05 in the test stage by
tester, which were called the optimal models and selected for
further clinical analysis.

B. COMPREHENSIVE CLINICAL IC DECISION-MAKING
MODEL FOR NPC
The information regarding the three optimal models is sum-
marized in Table 1. Nine feature variables were listed as
a sample of the aforementioned 145 features (p < 0.05),
including cranial nerve invasion (CNI), bilateral invasion of
anterior styloid space (B.ASS), bilateral upper cervical lymph
nodes (BU.CLN), lower cervical lymph node (L.CLN), skip
lymph node (SLN), carotid sheath invasion (CSI), bilateral
nodal grouping of upper cervical lymph node (BNGU.CLN),
orbital or optic nerve invasion (ONI), and N2/3 classification.
The clinical analysis results for the PB and NPB groups are
shown in Appendixes E and F in the supplementary material,
respectively, in the training and test cohorts. The patients who
received IC exhibited significantly better survival rate than
the non-IC patients in models 1–3 in the PB group, but not in
the NPB group. The chi-square test results demonstrated no
significant difference in the number of patients in the training
and test sets who were recommended to receive IC. These
results imply that the selected three optimal models have
strong generalization ability.

We can further determine that there is a correlation between
the features in models 1 and 2. As is known clinically,
the N2/3 classification feature includes BU.CLN, L.CLN,
and BNGU.CLN. Among these, N2/3 classification has been
more widely used clinically. Therefore, the comprehensive
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FIGURE 4. OS for the comprehensive clinical model. Patients who belonged to the non-IC (blue)
and IC (yellow) groups show significant differences both in training and testing. KM survival curves
were used to calculate the five-year OS, and the p-values were calculated using the log-rank test.
HR(CI) and the adjusted p-values were calculated by multivariable Cox regression analysis,
as described in detail in appendix D in the supplementary material. Abbreviations: OS, overall
survival; KM, Kaplan-Meier; HR, hazard ratio; CI, confident interval; IC, induction chemotherapy.

clinical model was determined by the comprehensive analysis
of features based on the ‘or’ operation in the model design.
The features in the comprehensive clinical model are CNI,
B.ASS, CSI, SLN, and N2/3 classification. The informa-
tion for the comprehensive clinical model is summarized
in Table 1. In addition, the comprehensive clinical model has
good generalization ability. The clinical analysis results for
the comprehensive clinical model are presented in Figure 4.
For the PB group, the overall survival for the non-IC vs.
IC group was (64.2% vs. 83.4% p = 0.016; HR: 1/0.32(0.15,
0.69) adjusted p = 0.004) in the training cohort and (63.4%
vs. 81.5% p = 0.020; HR: 1/0.38(0.17, 0.86) adjusted p =
0.020) in the test cohort. For the NPB group, patients who
received IC exhibited a slightly, but not significantly. Based
on the current NCCN guidelines, stage III/IV patients (right
two images) with or without stage II should receive IC. The
benefits of OS according to the current guidelines are limited,
and the KM curves between the IC and non-IC groups overlap
with each other (p > 0.05) as shown in Figure 5. Thus,
the above results suggest that the comprehensive clinical

model was successful in identifying patients who would ben-
efit from IC in terms of OS.

C. PERFORMANCE COMPARISON WITH LASSO
To illustrate the superiority of the algorithm, the LASSO
analyses have been carried out on the dataset. Flow chart of
LASSO analysis for IC decision on NPC has been shown
in Appendix G in the supplementary material. There were
three steps for retrospective study based on LASSO analysis.
The first step was that a model could be built using the
LASSO with or without stepwise on the treatment group
or non-treatment group based on a specific hypothesis. The
second step was the subjects could be divided into high
risk group and low risk one according to a cut-off score.
And then, the performance of the model was validated using
Log-rank test and KM survival analysis on the validation
cohort. The results were shown in the Appendix G in the
supplementary material. The overall survival for the non-IC
vs. IC group was (82.9% vs. 80.3% p= 0.972) for all patients
in LASSO analysis, (74.7% vs. 80.7% p = 0.387) for only
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FIGURE 5. Background based on current NCCN guideline. Kaplan-Meier survival curves were used to calculate the 5 year OS, and the
P-values were calculated using the log-rank test. The HR(CI) and adjusted P-values were calculated by multivariable Cox regression
analysis. OS: overall survival; HR: hazard ratio; CI: confident interval; IC: induction chemotherapy.

patients with IC, and (54.0% vs. 72.9% p = 0.249) for only
patients without IC. None of the possible processes we tried
could obtain the significant models validated in the testing
cohort.

IV. DISCUSSIONS AND CONCLUSION
Can we determine the patients who may benefit from a treat-
ment? For example, non-small cell lung cancer patients from
epidermal growth factor receptor -tyrosine kinase inhibitors
therapy [25], [26], hepatocellular carcinoma patients from
interventional therapy [27]–[29], etc. These clinical problems
are of great interest to doctors; however, they cannot be
answered directly. Researchers usually collect information

about clinical features related to a treatment and follow
up with patients for a long time. Then, a retrospective
study is performed to estimate whether the treatment has
been effective, and inform clinical decisions for follow-up
patients [30], [31]. At present, LASSO is the most popular
analysis method, and KM survival analysis is the most effec-
tive means of model evaluation [32].

The main objective of this work was to develop a concise
and interpretable method for the construction of treatment
decision-making models. In this method, a time-to-event
genetic algorithmwas utilized to supervise the optimal model
selection process. The optimal model was verified via sta-
bility analysis and validation with the test dataset, thereby
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resulting in a reliable clinical decision model. The new
method has four characteristics.

First, the process of model construction using the pro-
posed method is more easily interpretable than the tradi-
tional process. Feature selection and model evaluation are
indispensable steps in retrospective analysis via the LASSO
method [33], [34]. In this case, feature selection for the
model was performed using the deviation, mean squared
error, or area under the curve [35]. These feature selection
methods are related to the dataset itself, but not directly to
the OS. Then, the KM and log-rank test were implemented
after determining the model cut-off score. In the proposed
method, the log-rank test, which is related to clinical pro-
cessing, supervises the entire feature selection process. The
features that contribute to the evaluation of the therapeu-
tic effectiveness of the treatment have a higher priority in
the selection process for constructing models for treatment
decision-making.

Second, the data grouping strategy in the new method is
more reasonable than the conventional approach. To obtain
a reliable model, the dataset should be divided into train-
ing and test cohorts in retrospective analysis. In LASSO,
each cohort only includes the patients who receive or do
not receive treatment, but not both [26], [36]. This cohort
partition scheme is effective for retrospective analysis by
LASSO only with big data from participants and a balance
between the amounts of data corresponding to the treated and
untreated subjects. However, it is difficult to obtain sufficient
data for a clinical dataset in medical research owing to the
potential risk factors, which could reduce the credibility of
the decision model. In the proposed method, the subjects for
the analysis were divided into training and test cohorts as
well. Each cohort included patients who received and did not
receive treatment. The model construction and KM survival
analysis were implemented using the training cohort to iden-
tify the candidate treatment decision models. The test cohort
was used to test the candidate models to obtain the optimal
models. The new method is more suitable for constructing
a treatment decision-making model because the expected
model can be obtained with an appropriate amount of
data.

Third, the experimental design is more concise than the
currently utilized design. Information about whether patients
can benefit from clinical treatment is unknown. Patients have
generally been categorized into high and low risk groups in
the traditional experimental design of retrospective analy-
sis according to a specific hypothesis [37]–[39]. Is there a
medium risk group? For example, the NPC patients diag-
nosed as stage III/IV had a higher risk of distant metastasis
than those of stage I/II [40]. However, some NPC patients
with early stage II benefit from IC [41], 42]. Therefore,
it was difficult to align the hypotheses with clinical prac-
tice because it could have resulted in some NPC patients
losing the opportunity for IC treatment. In the new method,
the significant feature variables in the dataset can be selected
without any hypothesis, and the optimal treatment decision

model can be obtained after stability analysis and verification.
The patients participating in the analysis did not need to
be grouped according to the risk level. According to the
feature distribution in the dataset, all patients at all risk
levels participated in themodel construction and analysis, and
all patients who would benefit from the treatment could be
identified.

Fourth, clinical application in terms of the proposed
method is more convenient than that of in the standard
approach. After applying the LASSO, the model becomes a
multivariate equation or a nomogram scoring table system,
and subsequent comparisons with the cut-off value are neces-
sary to predict the result. This process minimally requires the
clinician to record the results on a small note with a calculator,
which is inconvenient. At present, our method yields a series
of only five variables for IC decision-making for NPC. CNI
and N2/3 classification of NPC patients were associated with
poor prognosis in the late stages (stage III/IV); thus, both
features are familiar to clinicians and prove that our model
can select the variables effectively [43]. SLN [44], [45] and
CSI 46] can be easily identified via MRI and they are related
to poor outcomes. However, they are not mentioned in the
current American Joint Committee on Cancer (AJCC) staging
system manual for NPC [47]. It is well known that the bilat-
eral invasion of the anterior styloid space produces a larger
tumor volume than unilateral invasion. Importantly, all these
features are basic structures that can be further extended to
the reports of the radiology department with a wide range of
clinical applications.

In summary, we developed a time-to-event supervised
genetic algorithm to identify a concise and interpretable
treatment decision-making model that can help doctors
in effectively determining the patients who will benefit
from a specific therapy. The proposed method provides
a useful new means of evaluating the therapeutic effec-
tiveness or performing decision making for disease
treatment.

There are two interesting directions for future research.
First, we will further verify the performance of the algorithm
under different conditions, such as small samples, which are
common in medical research data. Second, we will develop
a toolkit for the treatment decision-making model research
to facilitate clinical usage and provide technical support for
precision medicine.
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